mirror of
https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
synced 2024-12-29 19:05:05 +08:00
Add option to save ti settings to file.
This commit is contained in:
parent
f8d0cf6a6e
commit
eea8fc40e1
@ -362,6 +362,7 @@ options_templates.update(options_section(('training', "Training"), {
|
||||
"unload_models_when_training": OptionInfo(False, "Move VAE and CLIP to RAM when training if possible. Saves VRAM."),
|
||||
"pin_memory": OptionInfo(False, "Turn on pin_memory for DataLoader. Makes training slightly faster but can increase memory usage."),
|
||||
"save_optimizer_state": OptionInfo(False, "Saves Optimizer state as separate *.optim file. Training of embedding or HN can be resumed with the matching optim file."),
|
||||
"save_train_settings_to_txt": OptionInfo(False, "Save textual inversion and hypernet settings to a text file when training starts."),
|
||||
"dataset_filename_word_regex": OptionInfo("", "Filename word regex"),
|
||||
"dataset_filename_join_string": OptionInfo(" ", "Filename join string"),
|
||||
"training_image_repeats_per_epoch": OptionInfo(1, "Number of repeats for a single input image per epoch; used only for displaying epoch number", gr.Number, {"precision": 0}),
|
||||
|
@ -1,6 +1,7 @@
|
||||
import os
|
||||
import sys
|
||||
import traceback
|
||||
import inspect
|
||||
|
||||
import torch
|
||||
import tqdm
|
||||
@ -229,6 +230,28 @@ def write_loss(log_directory, filename, step, epoch_len, values):
|
||||
**values,
|
||||
})
|
||||
|
||||
def save_settings_to_file(initial_step, num_of_dataset_images, embedding_name, vectors_per_token, learn_rate, batch_size, data_root, log_directory, training_width, training_height, steps, create_image_every, save_embedding_every, template_file, save_image_with_stored_embedding, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height):
|
||||
checkpoint = sd_models.select_checkpoint()
|
||||
model_name = checkpoint.model_name
|
||||
model_hash = '[{}]'.format(checkpoint.hash)
|
||||
|
||||
# Get a list of the argument names.
|
||||
arg_names = inspect.getfullargspec(save_settings_to_file).args
|
||||
|
||||
# Create a list of the argument names to include in the settings string.
|
||||
names = arg_names[:16] # Include all arguments up until the preview-related ones.
|
||||
if preview_from_txt2img:
|
||||
names.extend(arg_names[16:]) # Include all remaining arguments if `preview_from_txt2img` is True.
|
||||
|
||||
# Build the settings string.
|
||||
settings_str = "datetime : " + datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S") + "\n"
|
||||
for name in names:
|
||||
value = locals()[name]
|
||||
settings_str += f"{name}: {value}\n"
|
||||
|
||||
with open(os.path.join(log_directory, 'settings.txt'), "a+") as fout:
|
||||
fout.write(settings_str + "\n\n")
|
||||
|
||||
def validate_train_inputs(model_name, learn_rate, batch_size, gradient_step, data_root, template_file, steps, save_model_every, create_image_every, log_directory, name="embedding"):
|
||||
assert model_name, f"{name} not selected"
|
||||
assert learn_rate, "Learning rate is empty or 0"
|
||||
@ -292,13 +315,13 @@ def train_embedding(embedding_name, learn_rate, batch_size, gradient_step, data_
|
||||
if initial_step >= steps:
|
||||
shared.state.textinfo = "Model has already been trained beyond specified max steps"
|
||||
return embedding, filename
|
||||
|
||||
scheduler = LearnRateScheduler(learn_rate, steps, initial_step)
|
||||
|
||||
clip_grad = torch.nn.utils.clip_grad_value_ if clip_grad_mode == "value" else \
|
||||
torch.nn.utils.clip_grad_norm_ if clip_grad_mode == "norm" else \
|
||||
None
|
||||
if clip_grad:
|
||||
clip_grad_sched = LearnRateScheduler(clip_grad_value, steps, ititial_step, verbose=False)
|
||||
clip_grad_sched = LearnRateScheduler(clip_grad_value, steps, initial_step, verbose=False)
|
||||
# dataset loading may take a while, so input validations and early returns should be done before this
|
||||
shared.state.textinfo = f"Preparing dataset from {html.escape(data_root)}..."
|
||||
old_parallel_processing_allowed = shared.parallel_processing_allowed
|
||||
@ -306,7 +329,8 @@ def train_embedding(embedding_name, learn_rate, batch_size, gradient_step, data_
|
||||
pin_memory = shared.opts.pin_memory
|
||||
|
||||
ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=training_width, height=training_height, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=embedding_name, model=shared.sd_model, cond_model=shared.sd_model.cond_stage_model, device=devices.device, template_file=template_file, batch_size=batch_size, gradient_step=gradient_step, shuffle_tags=shuffle_tags, tag_drop_out=tag_drop_out, latent_sampling_method=latent_sampling_method)
|
||||
|
||||
if shared.opts.save_train_settings_to_txt:
|
||||
save_settings_to_file(initial_step , len(ds) , embedding_name, len(embedding.vec) , learn_rate, batch_size, data_root, log_directory, training_width, training_height, steps, create_image_every, save_embedding_every, template_file, save_image_with_stored_embedding, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height)
|
||||
latent_sampling_method = ds.latent_sampling_method
|
||||
|
||||
dl = modules.textual_inversion.dataset.PersonalizedDataLoader(ds, latent_sampling_method=latent_sampling_method, batch_size=ds.batch_size, pin_memory=pin_memory)
|
||||
|
Loading…
Reference in New Issue
Block a user