diff --git a/modules/shared.py b/modules/shared.py index e0f44c6de..933cd7380 100644 --- a/modules/shared.py +++ b/modules/shared.py @@ -362,6 +362,7 @@ options_templates.update(options_section(('training', "Training"), { "unload_models_when_training": OptionInfo(False, "Move VAE and CLIP to RAM when training if possible. Saves VRAM."), "pin_memory": OptionInfo(False, "Turn on pin_memory for DataLoader. Makes training slightly faster but can increase memory usage."), "save_optimizer_state": OptionInfo(False, "Saves Optimizer state as separate *.optim file. Training of embedding or HN can be resumed with the matching optim file."), + "save_train_settings_to_txt": OptionInfo(False, "Save textual inversion and hypernet settings to a text file when training starts."), "dataset_filename_word_regex": OptionInfo("", "Filename word regex"), "dataset_filename_join_string": OptionInfo(" ", "Filename join string"), "training_image_repeats_per_epoch": OptionInfo(1, "Number of repeats for a single input image per epoch; used only for displaying epoch number", gr.Number, {"precision": 0}), diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py index 71e07bcc2..2bed2ecbb 100644 --- a/modules/textual_inversion/textual_inversion.py +++ b/modules/textual_inversion/textual_inversion.py @@ -1,6 +1,7 @@ import os import sys import traceback +import inspect import torch import tqdm @@ -229,6 +230,28 @@ def write_loss(log_directory, filename, step, epoch_len, values): **values, }) +def save_settings_to_file(initial_step, num_of_dataset_images, embedding_name, vectors_per_token, learn_rate, batch_size, data_root, log_directory, training_width, training_height, steps, create_image_every, save_embedding_every, template_file, save_image_with_stored_embedding, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height): + checkpoint = sd_models.select_checkpoint() + model_name = checkpoint.model_name + model_hash = '[{}]'.format(checkpoint.hash) + + # Get a list of the argument names. + arg_names = inspect.getfullargspec(save_settings_to_file).args + + # Create a list of the argument names to include in the settings string. + names = arg_names[:16] # Include all arguments up until the preview-related ones. + if preview_from_txt2img: + names.extend(arg_names[16:]) # Include all remaining arguments if `preview_from_txt2img` is True. + + # Build the settings string. + settings_str = "datetime : " + datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S") + "\n" + for name in names: + value = locals()[name] + settings_str += f"{name}: {value}\n" + + with open(os.path.join(log_directory, 'settings.txt'), "a+") as fout: + fout.write(settings_str + "\n\n") + def validate_train_inputs(model_name, learn_rate, batch_size, gradient_step, data_root, template_file, steps, save_model_every, create_image_every, log_directory, name="embedding"): assert model_name, f"{name} not selected" assert learn_rate, "Learning rate is empty or 0" @@ -292,13 +315,13 @@ def train_embedding(embedding_name, learn_rate, batch_size, gradient_step, data_ if initial_step >= steps: shared.state.textinfo = "Model has already been trained beyond specified max steps" return embedding, filename + scheduler = LearnRateScheduler(learn_rate, steps, initial_step) - clip_grad = torch.nn.utils.clip_grad_value_ if clip_grad_mode == "value" else \ torch.nn.utils.clip_grad_norm_ if clip_grad_mode == "norm" else \ None if clip_grad: - clip_grad_sched = LearnRateScheduler(clip_grad_value, steps, ititial_step, verbose=False) + clip_grad_sched = LearnRateScheduler(clip_grad_value, steps, initial_step, verbose=False) # dataset loading may take a while, so input validations and early returns should be done before this shared.state.textinfo = f"Preparing dataset from {html.escape(data_root)}..." old_parallel_processing_allowed = shared.parallel_processing_allowed @@ -306,7 +329,8 @@ def train_embedding(embedding_name, learn_rate, batch_size, gradient_step, data_ pin_memory = shared.opts.pin_memory ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=training_width, height=training_height, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=embedding_name, model=shared.sd_model, cond_model=shared.sd_model.cond_stage_model, device=devices.device, template_file=template_file, batch_size=batch_size, gradient_step=gradient_step, shuffle_tags=shuffle_tags, tag_drop_out=tag_drop_out, latent_sampling_method=latent_sampling_method) - + if shared.opts.save_train_settings_to_txt: + save_settings_to_file(initial_step , len(ds) , embedding_name, len(embedding.vec) , learn_rate, batch_size, data_root, log_directory, training_width, training_height, steps, create_image_every, save_embedding_every, template_file, save_image_with_stored_embedding, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height) latent_sampling_method = ds.latent_sampling_method dl = modules.textual_inversion.dataset.PersonalizedDataLoader(ds, latent_sampling_method=latent_sampling_method, batch_size=ds.batch_size, pin_memory=pin_memory)