diff --git a/.github/workflows/run_tests.yaml b/.github/workflows/run_tests.yaml
new file mode 100644
index 000000000..49dc92bd9
--- /dev/null
+++ b/.github/workflows/run_tests.yaml
@@ -0,0 +1,31 @@
+name: Run basic features tests on CPU with empty SD model
+
+on:
+ - push
+ - pull_request
+
+jobs:
+ test:
+ runs-on: ubuntu-latest
+ steps:
+ - name: Checkout Code
+ uses: actions/checkout@v3
+ - name: Set up Python 3.10
+ uses: actions/setup-python@v4
+ with:
+ python-version: 3.10.6
+ - uses: actions/cache@v3
+ with:
+ path: ~/.cache/pip
+ key: ${{ runner.os }}-pip-${{ hashFiles('**/requirements.txt') }}
+ restore-keys: ${{ runner.os }}-pip-
+ - name: Run tests
+ run: python launch.py --tests basic_features --no-half --disable-opt-split-attention --use-cpu all --skip-torch-cuda-test
+ - name: Upload main app stdout-stderr
+ uses: actions/upload-artifact@v3
+ if: always()
+ with:
+ name: stdout-stderr
+ path: |
+ test/stdout.txt
+ test/stderr.txt
diff --git a/.gitignore b/.gitignore
index ee53044c5..21fa26a75 100644
--- a/.gitignore
+++ b/.gitignore
@@ -1,5 +1,6 @@
__pycache__
*.ckpt
+*.safetensors
*.pth
/ESRGAN/*
/SwinIR/*
diff --git a/README.md b/README.md
index 33508f311..88250a6bd 100644
--- a/README.md
+++ b/README.md
@@ -70,7 +70,7 @@ Check the [custom scripts](https://github.com/AUTOMATIC1111/stable-diffusion-web
- separate prompts using uppercase `AND`
- also supports weights for prompts: `a cat :1.2 AND a dog AND a penguin :2.2`
- No token limit for prompts (original stable diffusion lets you use up to 75 tokens)
-- DeepDanbooru integration, creates danbooru style tags for anime prompts (add --deepdanbooru to commandline args)
+- DeepDanbooru integration, creates danbooru style tags for anime prompts
- [xformers](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Xformers), major speed increase for select cards: (add --xformers to commandline args)
- via extension: [History tab](https://github.com/yfszzx/stable-diffusion-webui-images-browser): view, direct and delete images conveniently within the UI
- Generate forever option
@@ -82,28 +82,9 @@ Check the [custom scripts](https://github.com/AUTOMATIC1111/stable-diffusion-web
- Use VAEs
- Estimated completion time in progress bar
- API
-- Support for dedicated [inpainting model](https://github.com/runwayml/stable-diffusion#inpainting-with-stable-diffusion) by RunwayML.
-- via extension: [Aesthetic Gradients](https://github.com/AUTOMATIC1111/stable-diffusion-webui-aesthetic-gradients), a way to generate images with a specific aesthetic by using clip images embds (implementation of [https://github.com/vicgalle/stable-diffusion-aesthetic-gradients](https://github.com/vicgalle/stable-diffusion-aesthetic-gradients))
-
-## Where are Aesthetic Gradients?!?!
-Aesthetic Gradients are now an extension. You can install it using git:
-
-```commandline
-git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui-aesthetic-gradients extensions/aesthetic-gradients
-```
-
-After running this command, make sure that you have `aesthetic-gradients` dir in webui's `extensions` directory and restart
-the UI. The interface for Aesthetic Gradients should appear exactly the same as it was.
-
-## Where is History/Image browser?!?!
-Image browser is now an extension. You can install it using git:
-
-```commandline
-git clone https://github.com/yfszzx/stable-diffusion-webui-images-browser extensions/images-browser
-```
-
-After running this command, make sure that you have `images-browser` dir in webui's `extensions` directory and restart
-the UI. The interface for Image browser should appear exactly the same as it was.
+- Support for dedicated [inpainting model](https://github.com/runwayml/stable-diffusion#inpainting-with-stable-diffusion) by RunwayML.
+- via extension: [Aesthetic Gradients](https://github.com/AUTOMATIC1111/stable-diffusion-webui-aesthetic-gradients), a way to generate images with a specific aesthetic by using clip images embeds (implementation of [https://github.com/vicgalle/stable-diffusion-aesthetic-gradients](https://github.com/vicgalle/stable-diffusion-aesthetic-gradients))
+- [Stable Diffusion 2.0](https://github.com/Stability-AI/stablediffusion) support - see [wiki](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Features#stable-diffusion-20) for instructions
## Installation and Running
Make sure the required [dependencies](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Dependencies) are met and follow the instructions available for both [NVidia](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Install-and-Run-on-NVidia-GPUs) (recommended) and [AMD](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Install-and-Run-on-AMD-GPUs) GPUs.
@@ -146,6 +127,8 @@ Here's how to add code to this repo: [Contributing](https://github.com/AUTOMATIC
The documentation was moved from this README over to the project's [wiki](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki).
## Credits
+Licenses for borrowed code can be found in `Settings -> Licenses` screen, and also in `html/licenses.html` file.
+
- Stable Diffusion - https://github.com/CompVis/stable-diffusion, https://github.com/CompVis/taming-transformers
- k-diffusion - https://github.com/crowsonkb/k-diffusion.git
- GFPGAN - https://github.com/TencentARC/GFPGAN.git
@@ -154,6 +137,7 @@ The documentation was moved from this README over to the project's [wiki](https:
- SwinIR - https://github.com/JingyunLiang/SwinIR
- Swin2SR - https://github.com/mv-lab/swin2sr
- LDSR - https://github.com/Hafiidz/latent-diffusion
+- MiDaS - https://github.com/isl-org/MiDaS
- Ideas for optimizations - https://github.com/basujindal/stable-diffusion
- Cross Attention layer optimization - Doggettx - https://github.com/Doggettx/stable-diffusion, original idea for prompt editing.
- Cross Attention layer optimization - InvokeAI, lstein - https://github.com/invoke-ai/InvokeAI (originally http://github.com/lstein/stable-diffusion)
diff --git a/configs/alt-diffusion-inference.yaml b/configs/alt-diffusion-inference.yaml
new file mode 100644
index 000000000..cfbee72d7
--- /dev/null
+++ b/configs/alt-diffusion-inference.yaml
@@ -0,0 +1,72 @@
+model:
+ base_learning_rate: 1.0e-04
+ target: ldm.models.diffusion.ddpm.LatentDiffusion
+ params:
+ linear_start: 0.00085
+ linear_end: 0.0120
+ num_timesteps_cond: 1
+ log_every_t: 200
+ timesteps: 1000
+ first_stage_key: "jpg"
+ cond_stage_key: "txt"
+ image_size: 64
+ channels: 4
+ cond_stage_trainable: false # Note: different from the one we trained before
+ conditioning_key: crossattn
+ monitor: val/loss_simple_ema
+ scale_factor: 0.18215
+ use_ema: False
+
+ scheduler_config: # 10000 warmup steps
+ target: ldm.lr_scheduler.LambdaLinearScheduler
+ params:
+ warm_up_steps: [ 10000 ]
+ cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
+ f_start: [ 1.e-6 ]
+ f_max: [ 1. ]
+ f_min: [ 1. ]
+
+ unet_config:
+ target: ldm.modules.diffusionmodules.openaimodel.UNetModel
+ params:
+ image_size: 32 # unused
+ in_channels: 4
+ out_channels: 4
+ model_channels: 320
+ attention_resolutions: [ 4, 2, 1 ]
+ num_res_blocks: 2
+ channel_mult: [ 1, 2, 4, 4 ]
+ num_heads: 8
+ use_spatial_transformer: True
+ transformer_depth: 1
+ context_dim: 768
+ use_checkpoint: True
+ legacy: False
+
+ first_stage_config:
+ target: ldm.models.autoencoder.AutoencoderKL
+ params:
+ embed_dim: 4
+ monitor: val/rec_loss
+ ddconfig:
+ double_z: true
+ z_channels: 4
+ resolution: 256
+ in_channels: 3
+ out_ch: 3
+ ch: 128
+ ch_mult:
+ - 1
+ - 2
+ - 4
+ - 4
+ num_res_blocks: 2
+ attn_resolutions: []
+ dropout: 0.0
+ lossconfig:
+ target: torch.nn.Identity
+
+ cond_stage_config:
+ target: modules.xlmr.BertSeriesModelWithTransformation
+ params:
+ name: "XLMR-Large"
\ No newline at end of file
diff --git a/configs/v1-inference.yaml b/configs/v1-inference.yaml
new file mode 100644
index 000000000..d4effe569
--- /dev/null
+++ b/configs/v1-inference.yaml
@@ -0,0 +1,70 @@
+model:
+ base_learning_rate: 1.0e-04
+ target: ldm.models.diffusion.ddpm.LatentDiffusion
+ params:
+ linear_start: 0.00085
+ linear_end: 0.0120
+ num_timesteps_cond: 1
+ log_every_t: 200
+ timesteps: 1000
+ first_stage_key: "jpg"
+ cond_stage_key: "txt"
+ image_size: 64
+ channels: 4
+ cond_stage_trainable: false # Note: different from the one we trained before
+ conditioning_key: crossattn
+ monitor: val/loss_simple_ema
+ scale_factor: 0.18215
+ use_ema: False
+
+ scheduler_config: # 10000 warmup steps
+ target: ldm.lr_scheduler.LambdaLinearScheduler
+ params:
+ warm_up_steps: [ 10000 ]
+ cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
+ f_start: [ 1.e-6 ]
+ f_max: [ 1. ]
+ f_min: [ 1. ]
+
+ unet_config:
+ target: ldm.modules.diffusionmodules.openaimodel.UNetModel
+ params:
+ image_size: 32 # unused
+ in_channels: 4
+ out_channels: 4
+ model_channels: 320
+ attention_resolutions: [ 4, 2, 1 ]
+ num_res_blocks: 2
+ channel_mult: [ 1, 2, 4, 4 ]
+ num_heads: 8
+ use_spatial_transformer: True
+ transformer_depth: 1
+ context_dim: 768
+ use_checkpoint: True
+ legacy: False
+
+ first_stage_config:
+ target: ldm.models.autoencoder.AutoencoderKL
+ params:
+ embed_dim: 4
+ monitor: val/rec_loss
+ ddconfig:
+ double_z: true
+ z_channels: 4
+ resolution: 256
+ in_channels: 3
+ out_ch: 3
+ ch: 128
+ ch_mult:
+ - 1
+ - 2
+ - 4
+ - 4
+ num_res_blocks: 2
+ attn_resolutions: []
+ dropout: 0.0
+ lossconfig:
+ target: torch.nn.Identity
+
+ cond_stage_config:
+ target: ldm.modules.encoders.modules.FrozenCLIPEmbedder
diff --git a/modules/ldsr_model_arch.py b/extensions-builtin/LDSR/ldsr_model_arch.py
similarity index 84%
rename from modules/ldsr_model_arch.py
rename to extensions-builtin/LDSR/ldsr_model_arch.py
index 90e0a2f06..0ad49f4e9 100644
--- a/modules/ldsr_model_arch.py
+++ b/extensions-builtin/LDSR/ldsr_model_arch.py
@@ -1,3 +1,4 @@
+import os
import gc
import time
import warnings
@@ -8,27 +9,49 @@ import torchvision
from PIL import Image
from einops import rearrange, repeat
from omegaconf import OmegaConf
+import safetensors.torch
from ldm.models.diffusion.ddim import DDIMSampler
from ldm.util import instantiate_from_config, ismap
+from modules import shared, sd_hijack
warnings.filterwarnings("ignore", category=UserWarning)
+cached_ldsr_model: torch.nn.Module = None
+
# Create LDSR Class
class LDSR:
def load_model_from_config(self, half_attention):
- print(f"Loading model from {self.modelPath}")
- pl_sd = torch.load(self.modelPath, map_location="cpu")
- sd = pl_sd["state_dict"]
- config = OmegaConf.load(self.yamlPath)
- model = instantiate_from_config(config.model)
- model.load_state_dict(sd, strict=False)
- model.cuda()
- if half_attention:
- model = model.half()
+ global cached_ldsr_model
+
+ if shared.opts.ldsr_cached and cached_ldsr_model is not None:
+ print("Loading model from cache")
+ model: torch.nn.Module = cached_ldsr_model
+ else:
+ print(f"Loading model from {self.modelPath}")
+ _, extension = os.path.splitext(self.modelPath)
+ if extension.lower() == ".safetensors":
+ pl_sd = safetensors.torch.load_file(self.modelPath, device="cpu")
+ else:
+ pl_sd = torch.load(self.modelPath, map_location="cpu")
+ sd = pl_sd["state_dict"] if "state_dict" in pl_sd else pl_sd
+ config = OmegaConf.load(self.yamlPath)
+ config.model.target = "ldm.models.diffusion.ddpm.LatentDiffusionV1"
+ model: torch.nn.Module = instantiate_from_config(config.model)
+ model.load_state_dict(sd, strict=False)
+ model = model.to(shared.device)
+ if half_attention:
+ model = model.half()
+ if shared.cmd_opts.opt_channelslast:
+ model = model.to(memory_format=torch.channels_last)
+
+ sd_hijack.model_hijack.hijack(model) # apply optimization
+ model.eval()
+
+ if shared.opts.ldsr_cached:
+ cached_ldsr_model = model
- model.eval()
return {"model": model}
def __init__(self, model_path, yaml_path):
@@ -93,7 +116,8 @@ class LDSR:
down_sample_method = 'Lanczos'
gc.collect()
- torch.cuda.empty_cache()
+ if torch.cuda.is_available:
+ torch.cuda.empty_cache()
im_og = image
width_og, height_og = im_og.size
@@ -130,7 +154,9 @@ class LDSR:
del model
gc.collect()
- torch.cuda.empty_cache()
+ if torch.cuda.is_available:
+ torch.cuda.empty_cache()
+
return a
@@ -145,7 +171,7 @@ def get_cond(selected_path):
c = rearrange(c, '1 c h w -> 1 h w c')
c = 2. * c - 1.
- c = c.to(torch.device("cuda"))
+ c = c.to(shared.device)
example["LR_image"] = c
example["image"] = c_up
diff --git a/extensions-builtin/LDSR/preload.py b/extensions-builtin/LDSR/preload.py
new file mode 100644
index 000000000..d746007c7
--- /dev/null
+++ b/extensions-builtin/LDSR/preload.py
@@ -0,0 +1,6 @@
+import os
+from modules import paths
+
+
+def preload(parser):
+ parser.add_argument("--ldsr-models-path", type=str, help="Path to directory with LDSR model file(s).", default=os.path.join(paths.models_path, 'LDSR'))
diff --git a/modules/ldsr_model.py b/extensions-builtin/LDSR/scripts/ldsr_model.py
similarity index 66%
rename from modules/ldsr_model.py
rename to extensions-builtin/LDSR/scripts/ldsr_model.py
index 8c4db44ad..b8cff29b9 100644
--- a/modules/ldsr_model.py
+++ b/extensions-builtin/LDSR/scripts/ldsr_model.py
@@ -5,8 +5,9 @@ import traceback
from basicsr.utils.download_util import load_file_from_url
from modules.upscaler import Upscaler, UpscalerData
-from modules.ldsr_model_arch import LDSR
-from modules import shared
+from ldsr_model_arch import LDSR
+from modules import shared, script_callbacks
+import sd_hijack_autoencoder, sd_hijack_ddpm_v1
class UpscalerLDSR(Upscaler):
@@ -24,6 +25,7 @@ class UpscalerLDSR(Upscaler):
yaml_path = os.path.join(self.model_path, "project.yaml")
old_model_path = os.path.join(self.model_path, "model.pth")
new_model_path = os.path.join(self.model_path, "model.ckpt")
+ safetensors_model_path = os.path.join(self.model_path, "model.safetensors")
if os.path.exists(yaml_path):
statinfo = os.stat(yaml_path)
if statinfo.st_size >= 10485760:
@@ -32,8 +34,11 @@ class UpscalerLDSR(Upscaler):
if os.path.exists(old_model_path):
print("Renaming model from model.pth to model.ckpt")
os.rename(old_model_path, new_model_path)
- model = load_file_from_url(url=self.model_url, model_dir=self.model_path,
- file_name="model.ckpt", progress=True)
+ if os.path.exists(safetensors_model_path):
+ model = safetensors_model_path
+ else:
+ model = load_file_from_url(url=self.model_url, model_dir=self.model_path,
+ file_name="model.ckpt", progress=True)
yaml = load_file_from_url(url=self.yaml_url, model_dir=self.model_path,
file_name="project.yaml", progress=True)
@@ -52,3 +57,13 @@ class UpscalerLDSR(Upscaler):
return img
ddim_steps = shared.opts.ldsr_steps
return ldsr.super_resolution(img, ddim_steps, self.scale)
+
+
+def on_ui_settings():
+ import gradio as gr
+
+ shared.opts.add_option("ldsr_steps", shared.OptionInfo(100, "LDSR processing steps. Lower = faster", gr.Slider, {"minimum": 1, "maximum": 200, "step": 1}, section=('upscaling', "Upscaling")))
+ shared.opts.add_option("ldsr_cached", shared.OptionInfo(False, "Cache LDSR model in memory", gr.Checkbox, {"interactive": True}, section=('upscaling', "Upscaling")))
+
+
+script_callbacks.on_ui_settings(on_ui_settings)
diff --git a/extensions-builtin/LDSR/sd_hijack_autoencoder.py b/extensions-builtin/LDSR/sd_hijack_autoencoder.py
new file mode 100644
index 000000000..8e03c7f89
--- /dev/null
+++ b/extensions-builtin/LDSR/sd_hijack_autoencoder.py
@@ -0,0 +1,286 @@
+# The content of this file comes from the ldm/models/autoencoder.py file of the compvis/stable-diffusion repo
+# The VQModel & VQModelInterface were subsequently removed from ldm/models/autoencoder.py when we moved to the stability-ai/stablediffusion repo
+# As the LDSR upscaler relies on VQModel & VQModelInterface, the hijack aims to put them back into the ldm.models.autoencoder
+
+import torch
+import pytorch_lightning as pl
+import torch.nn.functional as F
+from contextlib import contextmanager
+from taming.modules.vqvae.quantize import VectorQuantizer2 as VectorQuantizer
+from ldm.modules.diffusionmodules.model import Encoder, Decoder
+from ldm.util import instantiate_from_config
+
+import ldm.models.autoencoder
+
+class VQModel(pl.LightningModule):
+ def __init__(self,
+ ddconfig,
+ lossconfig,
+ n_embed,
+ embed_dim,
+ ckpt_path=None,
+ ignore_keys=[],
+ image_key="image",
+ colorize_nlabels=None,
+ monitor=None,
+ batch_resize_range=None,
+ scheduler_config=None,
+ lr_g_factor=1.0,
+ remap=None,
+ sane_index_shape=False, # tell vector quantizer to return indices as bhw
+ use_ema=False
+ ):
+ super().__init__()
+ self.embed_dim = embed_dim
+ self.n_embed = n_embed
+ self.image_key = image_key
+ self.encoder = Encoder(**ddconfig)
+ self.decoder = Decoder(**ddconfig)
+ self.loss = instantiate_from_config(lossconfig)
+ self.quantize = VectorQuantizer(n_embed, embed_dim, beta=0.25,
+ remap=remap,
+ sane_index_shape=sane_index_shape)
+ self.quant_conv = torch.nn.Conv2d(ddconfig["z_channels"], embed_dim, 1)
+ self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1)
+ if colorize_nlabels is not None:
+ assert type(colorize_nlabels)==int
+ self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1))
+ if monitor is not None:
+ self.monitor = monitor
+ self.batch_resize_range = batch_resize_range
+ if self.batch_resize_range is not None:
+ print(f"{self.__class__.__name__}: Using per-batch resizing in range {batch_resize_range}.")
+
+ self.use_ema = use_ema
+ if self.use_ema:
+ self.model_ema = LitEma(self)
+ print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
+
+ if ckpt_path is not None:
+ self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
+ self.scheduler_config = scheduler_config
+ self.lr_g_factor = lr_g_factor
+
+ @contextmanager
+ def ema_scope(self, context=None):
+ if self.use_ema:
+ self.model_ema.store(self.parameters())
+ self.model_ema.copy_to(self)
+ if context is not None:
+ print(f"{context}: Switched to EMA weights")
+ try:
+ yield None
+ finally:
+ if self.use_ema:
+ self.model_ema.restore(self.parameters())
+ if context is not None:
+ print(f"{context}: Restored training weights")
+
+ def init_from_ckpt(self, path, ignore_keys=list()):
+ sd = torch.load(path, map_location="cpu")["state_dict"]
+ keys = list(sd.keys())
+ for k in keys:
+ for ik in ignore_keys:
+ if k.startswith(ik):
+ print("Deleting key {} from state_dict.".format(k))
+ del sd[k]
+ missing, unexpected = self.load_state_dict(sd, strict=False)
+ print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
+ if len(missing) > 0:
+ print(f"Missing Keys: {missing}")
+ print(f"Unexpected Keys: {unexpected}")
+
+ def on_train_batch_end(self, *args, **kwargs):
+ if self.use_ema:
+ self.model_ema(self)
+
+ def encode(self, x):
+ h = self.encoder(x)
+ h = self.quant_conv(h)
+ quant, emb_loss, info = self.quantize(h)
+ return quant, emb_loss, info
+
+ def encode_to_prequant(self, x):
+ h = self.encoder(x)
+ h = self.quant_conv(h)
+ return h
+
+ def decode(self, quant):
+ quant = self.post_quant_conv(quant)
+ dec = self.decoder(quant)
+ return dec
+
+ def decode_code(self, code_b):
+ quant_b = self.quantize.embed_code(code_b)
+ dec = self.decode(quant_b)
+ return dec
+
+ def forward(self, input, return_pred_indices=False):
+ quant, diff, (_,_,ind) = self.encode(input)
+ dec = self.decode(quant)
+ if return_pred_indices:
+ return dec, diff, ind
+ return dec, diff
+
+ def get_input(self, batch, k):
+ x = batch[k]
+ if len(x.shape) == 3:
+ x = x[..., None]
+ x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format).float()
+ if self.batch_resize_range is not None:
+ lower_size = self.batch_resize_range[0]
+ upper_size = self.batch_resize_range[1]
+ if self.global_step <= 4:
+ # do the first few batches with max size to avoid later oom
+ new_resize = upper_size
+ else:
+ new_resize = np.random.choice(np.arange(lower_size, upper_size+16, 16))
+ if new_resize != x.shape[2]:
+ x = F.interpolate(x, size=new_resize, mode="bicubic")
+ x = x.detach()
+ return x
+
+ def training_step(self, batch, batch_idx, optimizer_idx):
+ # https://github.com/pytorch/pytorch/issues/37142
+ # try not to fool the heuristics
+ x = self.get_input(batch, self.image_key)
+ xrec, qloss, ind = self(x, return_pred_indices=True)
+
+ if optimizer_idx == 0:
+ # autoencode
+ aeloss, log_dict_ae = self.loss(qloss, x, xrec, optimizer_idx, self.global_step,
+ last_layer=self.get_last_layer(), split="train",
+ predicted_indices=ind)
+
+ self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=True)
+ return aeloss
+
+ if optimizer_idx == 1:
+ # discriminator
+ discloss, log_dict_disc = self.loss(qloss, x, xrec, optimizer_idx, self.global_step,
+ last_layer=self.get_last_layer(), split="train")
+ self.log_dict(log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=True)
+ return discloss
+
+ def validation_step(self, batch, batch_idx):
+ log_dict = self._validation_step(batch, batch_idx)
+ with self.ema_scope():
+ log_dict_ema = self._validation_step(batch, batch_idx, suffix="_ema")
+ return log_dict
+
+ def _validation_step(self, batch, batch_idx, suffix=""):
+ x = self.get_input(batch, self.image_key)
+ xrec, qloss, ind = self(x, return_pred_indices=True)
+ aeloss, log_dict_ae = self.loss(qloss, x, xrec, 0,
+ self.global_step,
+ last_layer=self.get_last_layer(),
+ split="val"+suffix,
+ predicted_indices=ind
+ )
+
+ discloss, log_dict_disc = self.loss(qloss, x, xrec, 1,
+ self.global_step,
+ last_layer=self.get_last_layer(),
+ split="val"+suffix,
+ predicted_indices=ind
+ )
+ rec_loss = log_dict_ae[f"val{suffix}/rec_loss"]
+ self.log(f"val{suffix}/rec_loss", rec_loss,
+ prog_bar=True, logger=True, on_step=False, on_epoch=True, sync_dist=True)
+ self.log(f"val{suffix}/aeloss", aeloss,
+ prog_bar=True, logger=True, on_step=False, on_epoch=True, sync_dist=True)
+ if version.parse(pl.__version__) >= version.parse('1.4.0'):
+ del log_dict_ae[f"val{suffix}/rec_loss"]
+ self.log_dict(log_dict_ae)
+ self.log_dict(log_dict_disc)
+ return self.log_dict
+
+ def configure_optimizers(self):
+ lr_d = self.learning_rate
+ lr_g = self.lr_g_factor*self.learning_rate
+ print("lr_d", lr_d)
+ print("lr_g", lr_g)
+ opt_ae = torch.optim.Adam(list(self.encoder.parameters())+
+ list(self.decoder.parameters())+
+ list(self.quantize.parameters())+
+ list(self.quant_conv.parameters())+
+ list(self.post_quant_conv.parameters()),
+ lr=lr_g, betas=(0.5, 0.9))
+ opt_disc = torch.optim.Adam(self.loss.discriminator.parameters(),
+ lr=lr_d, betas=(0.5, 0.9))
+
+ if self.scheduler_config is not None:
+ scheduler = instantiate_from_config(self.scheduler_config)
+
+ print("Setting up LambdaLR scheduler...")
+ scheduler = [
+ {
+ 'scheduler': LambdaLR(opt_ae, lr_lambda=scheduler.schedule),
+ 'interval': 'step',
+ 'frequency': 1
+ },
+ {
+ 'scheduler': LambdaLR(opt_disc, lr_lambda=scheduler.schedule),
+ 'interval': 'step',
+ 'frequency': 1
+ },
+ ]
+ return [opt_ae, opt_disc], scheduler
+ return [opt_ae, opt_disc], []
+
+ def get_last_layer(self):
+ return self.decoder.conv_out.weight
+
+ def log_images(self, batch, only_inputs=False, plot_ema=False, **kwargs):
+ log = dict()
+ x = self.get_input(batch, self.image_key)
+ x = x.to(self.device)
+ if only_inputs:
+ log["inputs"] = x
+ return log
+ xrec, _ = self(x)
+ if x.shape[1] > 3:
+ # colorize with random projection
+ assert xrec.shape[1] > 3
+ x = self.to_rgb(x)
+ xrec = self.to_rgb(xrec)
+ log["inputs"] = x
+ log["reconstructions"] = xrec
+ if plot_ema:
+ with self.ema_scope():
+ xrec_ema, _ = self(x)
+ if x.shape[1] > 3: xrec_ema = self.to_rgb(xrec_ema)
+ log["reconstructions_ema"] = xrec_ema
+ return log
+
+ def to_rgb(self, x):
+ assert self.image_key == "segmentation"
+ if not hasattr(self, "colorize"):
+ self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x))
+ x = F.conv2d(x, weight=self.colorize)
+ x = 2.*(x-x.min())/(x.max()-x.min()) - 1.
+ return x
+
+
+class VQModelInterface(VQModel):
+ def __init__(self, embed_dim, *args, **kwargs):
+ super().__init__(embed_dim=embed_dim, *args, **kwargs)
+ self.embed_dim = embed_dim
+
+ def encode(self, x):
+ h = self.encoder(x)
+ h = self.quant_conv(h)
+ return h
+
+ def decode(self, h, force_not_quantize=False):
+ # also go through quantization layer
+ if not force_not_quantize:
+ quant, emb_loss, info = self.quantize(h)
+ else:
+ quant = h
+ quant = self.post_quant_conv(quant)
+ dec = self.decoder(quant)
+ return dec
+
+setattr(ldm.models.autoencoder, "VQModel", VQModel)
+setattr(ldm.models.autoencoder, "VQModelInterface", VQModelInterface)
diff --git a/extensions-builtin/LDSR/sd_hijack_ddpm_v1.py b/extensions-builtin/LDSR/sd_hijack_ddpm_v1.py
new file mode 100644
index 000000000..5c0488e5f
--- /dev/null
+++ b/extensions-builtin/LDSR/sd_hijack_ddpm_v1.py
@@ -0,0 +1,1449 @@
+# This script is copied from the compvis/stable-diffusion repo (aka the SD V1 repo)
+# Original filename: ldm/models/diffusion/ddpm.py
+# The purpose to reinstate the old DDPM logic which works with VQ, whereas the V2 one doesn't
+# Some models such as LDSR require VQ to work correctly
+# The classes are suffixed with "V1" and added back to the "ldm.models.diffusion.ddpm" module
+
+import torch
+import torch.nn as nn
+import numpy as np
+import pytorch_lightning as pl
+from torch.optim.lr_scheduler import LambdaLR
+from einops import rearrange, repeat
+from contextlib import contextmanager
+from functools import partial
+from tqdm import tqdm
+from torchvision.utils import make_grid
+from pytorch_lightning.utilities.distributed import rank_zero_only
+
+from ldm.util import log_txt_as_img, exists, default, ismap, isimage, mean_flat, count_params, instantiate_from_config
+from ldm.modules.ema import LitEma
+from ldm.modules.distributions.distributions import normal_kl, DiagonalGaussianDistribution
+from ldm.models.autoencoder import VQModelInterface, IdentityFirstStage, AutoencoderKL
+from ldm.modules.diffusionmodules.util import make_beta_schedule, extract_into_tensor, noise_like
+from ldm.models.diffusion.ddim import DDIMSampler
+
+import ldm.models.diffusion.ddpm
+
+__conditioning_keys__ = {'concat': 'c_concat',
+ 'crossattn': 'c_crossattn',
+ 'adm': 'y'}
+
+
+def disabled_train(self, mode=True):
+ """Overwrite model.train with this function to make sure train/eval mode
+ does not change anymore."""
+ return self
+
+
+def uniform_on_device(r1, r2, shape, device):
+ return (r1 - r2) * torch.rand(*shape, device=device) + r2
+
+
+class DDPMV1(pl.LightningModule):
+ # classic DDPM with Gaussian diffusion, in image space
+ def __init__(self,
+ unet_config,
+ timesteps=1000,
+ beta_schedule="linear",
+ loss_type="l2",
+ ckpt_path=None,
+ ignore_keys=[],
+ load_only_unet=False,
+ monitor="val/loss",
+ use_ema=True,
+ first_stage_key="image",
+ image_size=256,
+ channels=3,
+ log_every_t=100,
+ clip_denoised=True,
+ linear_start=1e-4,
+ linear_end=2e-2,
+ cosine_s=8e-3,
+ given_betas=None,
+ original_elbo_weight=0.,
+ v_posterior=0., # weight for choosing posterior variance as sigma = (1-v) * beta_tilde + v * beta
+ l_simple_weight=1.,
+ conditioning_key=None,
+ parameterization="eps", # all assuming fixed variance schedules
+ scheduler_config=None,
+ use_positional_encodings=False,
+ learn_logvar=False,
+ logvar_init=0.,
+ ):
+ super().__init__()
+ assert parameterization in ["eps", "x0"], 'currently only supporting "eps" and "x0"'
+ self.parameterization = parameterization
+ print(f"{self.__class__.__name__}: Running in {self.parameterization}-prediction mode")
+ self.cond_stage_model = None
+ self.clip_denoised = clip_denoised
+ self.log_every_t = log_every_t
+ self.first_stage_key = first_stage_key
+ self.image_size = image_size # try conv?
+ self.channels = channels
+ self.use_positional_encodings = use_positional_encodings
+ self.model = DiffusionWrapperV1(unet_config, conditioning_key)
+ count_params(self.model, verbose=True)
+ self.use_ema = use_ema
+ if self.use_ema:
+ self.model_ema = LitEma(self.model)
+ print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
+
+ self.use_scheduler = scheduler_config is not None
+ if self.use_scheduler:
+ self.scheduler_config = scheduler_config
+
+ self.v_posterior = v_posterior
+ self.original_elbo_weight = original_elbo_weight
+ self.l_simple_weight = l_simple_weight
+
+ if monitor is not None:
+ self.monitor = monitor
+ if ckpt_path is not None:
+ self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys, only_model=load_only_unet)
+
+ self.register_schedule(given_betas=given_betas, beta_schedule=beta_schedule, timesteps=timesteps,
+ linear_start=linear_start, linear_end=linear_end, cosine_s=cosine_s)
+
+ self.loss_type = loss_type
+
+ self.learn_logvar = learn_logvar
+ self.logvar = torch.full(fill_value=logvar_init, size=(self.num_timesteps,))
+ if self.learn_logvar:
+ self.logvar = nn.Parameter(self.logvar, requires_grad=True)
+
+
+ def register_schedule(self, given_betas=None, beta_schedule="linear", timesteps=1000,
+ linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
+ if exists(given_betas):
+ betas = given_betas
+ else:
+ betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end,
+ cosine_s=cosine_s)
+ alphas = 1. - betas
+ alphas_cumprod = np.cumprod(alphas, axis=0)
+ alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1])
+
+ timesteps, = betas.shape
+ self.num_timesteps = int(timesteps)
+ self.linear_start = linear_start
+ self.linear_end = linear_end
+ assert alphas_cumprod.shape[0] == self.num_timesteps, 'alphas have to be defined for each timestep'
+
+ to_torch = partial(torch.tensor, dtype=torch.float32)
+
+ self.register_buffer('betas', to_torch(betas))
+ self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
+ self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev))
+
+ # calculations for diffusion q(x_t | x_{t-1}) and others
+ self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod)))
+ self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod)))
+ self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod)))
+ self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod)))
+ self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1)))
+
+ # calculations for posterior q(x_{t-1} | x_t, x_0)
+ posterior_variance = (1 - self.v_posterior) * betas * (1. - alphas_cumprod_prev) / (
+ 1. - alphas_cumprod) + self.v_posterior * betas
+ # above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t)
+ self.register_buffer('posterior_variance', to_torch(posterior_variance))
+ # below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain
+ self.register_buffer('posterior_log_variance_clipped', to_torch(np.log(np.maximum(posterior_variance, 1e-20))))
+ self.register_buffer('posterior_mean_coef1', to_torch(
+ betas * np.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod)))
+ self.register_buffer('posterior_mean_coef2', to_torch(
+ (1. - alphas_cumprod_prev) * np.sqrt(alphas) / (1. - alphas_cumprod)))
+
+ if self.parameterization == "eps":
+ lvlb_weights = self.betas ** 2 / (
+ 2 * self.posterior_variance * to_torch(alphas) * (1 - self.alphas_cumprod))
+ elif self.parameterization == "x0":
+ lvlb_weights = 0.5 * np.sqrt(torch.Tensor(alphas_cumprod)) / (2. * 1 - torch.Tensor(alphas_cumprod))
+ else:
+ raise NotImplementedError("mu not supported")
+ # TODO how to choose this term
+ lvlb_weights[0] = lvlb_weights[1]
+ self.register_buffer('lvlb_weights', lvlb_weights, persistent=False)
+ assert not torch.isnan(self.lvlb_weights).all()
+
+ @contextmanager
+ def ema_scope(self, context=None):
+ if self.use_ema:
+ self.model_ema.store(self.model.parameters())
+ self.model_ema.copy_to(self.model)
+ if context is not None:
+ print(f"{context}: Switched to EMA weights")
+ try:
+ yield None
+ finally:
+ if self.use_ema:
+ self.model_ema.restore(self.model.parameters())
+ if context is not None:
+ print(f"{context}: Restored training weights")
+
+ def init_from_ckpt(self, path, ignore_keys=list(), only_model=False):
+ sd = torch.load(path, map_location="cpu")
+ if "state_dict" in list(sd.keys()):
+ sd = sd["state_dict"]
+ keys = list(sd.keys())
+ for k in keys:
+ for ik in ignore_keys:
+ if k.startswith(ik):
+ print("Deleting key {} from state_dict.".format(k))
+ del sd[k]
+ missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict(
+ sd, strict=False)
+ print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
+ if len(missing) > 0:
+ print(f"Missing Keys: {missing}")
+ if len(unexpected) > 0:
+ print(f"Unexpected Keys: {unexpected}")
+
+ def q_mean_variance(self, x_start, t):
+ """
+ Get the distribution q(x_t | x_0).
+ :param x_start: the [N x C x ...] tensor of noiseless inputs.
+ :param t: the number of diffusion steps (minus 1). Here, 0 means one step.
+ :return: A tuple (mean, variance, log_variance), all of x_start's shape.
+ """
+ mean = (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start)
+ variance = extract_into_tensor(1.0 - self.alphas_cumprod, t, x_start.shape)
+ log_variance = extract_into_tensor(self.log_one_minus_alphas_cumprod, t, x_start.shape)
+ return mean, variance, log_variance
+
+ def predict_start_from_noise(self, x_t, t, noise):
+ return (
+ extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t -
+ extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * noise
+ )
+
+ def q_posterior(self, x_start, x_t, t):
+ posterior_mean = (
+ extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) * x_start +
+ extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) * x_t
+ )
+ posterior_variance = extract_into_tensor(self.posterior_variance, t, x_t.shape)
+ posterior_log_variance_clipped = extract_into_tensor(self.posterior_log_variance_clipped, t, x_t.shape)
+ return posterior_mean, posterior_variance, posterior_log_variance_clipped
+
+ def p_mean_variance(self, x, t, clip_denoised: bool):
+ model_out = self.model(x, t)
+ if self.parameterization == "eps":
+ x_recon = self.predict_start_from_noise(x, t=t, noise=model_out)
+ elif self.parameterization == "x0":
+ x_recon = model_out
+ if clip_denoised:
+ x_recon.clamp_(-1., 1.)
+
+ model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
+ return model_mean, posterior_variance, posterior_log_variance
+
+ @torch.no_grad()
+ def p_sample(self, x, t, clip_denoised=True, repeat_noise=False):
+ b, *_, device = *x.shape, x.device
+ model_mean, _, model_log_variance = self.p_mean_variance(x=x, t=t, clip_denoised=clip_denoised)
+ noise = noise_like(x.shape, device, repeat_noise)
+ # no noise when t == 0
+ nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
+ return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
+
+ @torch.no_grad()
+ def p_sample_loop(self, shape, return_intermediates=False):
+ device = self.betas.device
+ b = shape[0]
+ img = torch.randn(shape, device=device)
+ intermediates = [img]
+ for i in tqdm(reversed(range(0, self.num_timesteps)), desc='Sampling t', total=self.num_timesteps):
+ img = self.p_sample(img, torch.full((b,), i, device=device, dtype=torch.long),
+ clip_denoised=self.clip_denoised)
+ if i % self.log_every_t == 0 or i == self.num_timesteps - 1:
+ intermediates.append(img)
+ if return_intermediates:
+ return img, intermediates
+ return img
+
+ @torch.no_grad()
+ def sample(self, batch_size=16, return_intermediates=False):
+ image_size = self.image_size
+ channels = self.channels
+ return self.p_sample_loop((batch_size, channels, image_size, image_size),
+ return_intermediates=return_intermediates)
+
+ def q_sample(self, x_start, t, noise=None):
+ noise = default(noise, lambda: torch.randn_like(x_start))
+ return (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start +
+ extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise)
+
+ def get_loss(self, pred, target, mean=True):
+ if self.loss_type == 'l1':
+ loss = (target - pred).abs()
+ if mean:
+ loss = loss.mean()
+ elif self.loss_type == 'l2':
+ if mean:
+ loss = torch.nn.functional.mse_loss(target, pred)
+ else:
+ loss = torch.nn.functional.mse_loss(target, pred, reduction='none')
+ else:
+ raise NotImplementedError("unknown loss type '{loss_type}'")
+
+ return loss
+
+ def p_losses(self, x_start, t, noise=None):
+ noise = default(noise, lambda: torch.randn_like(x_start))
+ x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
+ model_out = self.model(x_noisy, t)
+
+ loss_dict = {}
+ if self.parameterization == "eps":
+ target = noise
+ elif self.parameterization == "x0":
+ target = x_start
+ else:
+ raise NotImplementedError(f"Paramterization {self.parameterization} not yet supported")
+
+ loss = self.get_loss(model_out, target, mean=False).mean(dim=[1, 2, 3])
+
+ log_prefix = 'train' if self.training else 'val'
+
+ loss_dict.update({f'{log_prefix}/loss_simple': loss.mean()})
+ loss_simple = loss.mean() * self.l_simple_weight
+
+ loss_vlb = (self.lvlb_weights[t] * loss).mean()
+ loss_dict.update({f'{log_prefix}/loss_vlb': loss_vlb})
+
+ loss = loss_simple + self.original_elbo_weight * loss_vlb
+
+ loss_dict.update({f'{log_prefix}/loss': loss})
+
+ return loss, loss_dict
+
+ def forward(self, x, *args, **kwargs):
+ # b, c, h, w, device, img_size, = *x.shape, x.device, self.image_size
+ # assert h == img_size and w == img_size, f'height and width of image must be {img_size}'
+ t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=self.device).long()
+ return self.p_losses(x, t, *args, **kwargs)
+
+ def get_input(self, batch, k):
+ x = batch[k]
+ if len(x.shape) == 3:
+ x = x[..., None]
+ x = rearrange(x, 'b h w c -> b c h w')
+ x = x.to(memory_format=torch.contiguous_format).float()
+ return x
+
+ def shared_step(self, batch):
+ x = self.get_input(batch, self.first_stage_key)
+ loss, loss_dict = self(x)
+ return loss, loss_dict
+
+ def training_step(self, batch, batch_idx):
+ loss, loss_dict = self.shared_step(batch)
+
+ self.log_dict(loss_dict, prog_bar=True,
+ logger=True, on_step=True, on_epoch=True)
+
+ self.log("global_step", self.global_step,
+ prog_bar=True, logger=True, on_step=True, on_epoch=False)
+
+ if self.use_scheduler:
+ lr = self.optimizers().param_groups[0]['lr']
+ self.log('lr_abs', lr, prog_bar=True, logger=True, on_step=True, on_epoch=False)
+
+ return loss
+
+ @torch.no_grad()
+ def validation_step(self, batch, batch_idx):
+ _, loss_dict_no_ema = self.shared_step(batch)
+ with self.ema_scope():
+ _, loss_dict_ema = self.shared_step(batch)
+ loss_dict_ema = {key + '_ema': loss_dict_ema[key] for key in loss_dict_ema}
+ self.log_dict(loss_dict_no_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True)
+ self.log_dict(loss_dict_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True)
+
+ def on_train_batch_end(self, *args, **kwargs):
+ if self.use_ema:
+ self.model_ema(self.model)
+
+ def _get_rows_from_list(self, samples):
+ n_imgs_per_row = len(samples)
+ denoise_grid = rearrange(samples, 'n b c h w -> b n c h w')
+ denoise_grid = rearrange(denoise_grid, 'b n c h w -> (b n) c h w')
+ denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row)
+ return denoise_grid
+
+ @torch.no_grad()
+ def log_images(self, batch, N=8, n_row=2, sample=True, return_keys=None, **kwargs):
+ log = dict()
+ x = self.get_input(batch, self.first_stage_key)
+ N = min(x.shape[0], N)
+ n_row = min(x.shape[0], n_row)
+ x = x.to(self.device)[:N]
+ log["inputs"] = x
+
+ # get diffusion row
+ diffusion_row = list()
+ x_start = x[:n_row]
+
+ for t in range(self.num_timesteps):
+ if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
+ t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
+ t = t.to(self.device).long()
+ noise = torch.randn_like(x_start)
+ x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
+ diffusion_row.append(x_noisy)
+
+ log["diffusion_row"] = self._get_rows_from_list(diffusion_row)
+
+ if sample:
+ # get denoise row
+ with self.ema_scope("Plotting"):
+ samples, denoise_row = self.sample(batch_size=N, return_intermediates=True)
+
+ log["samples"] = samples
+ log["denoise_row"] = self._get_rows_from_list(denoise_row)
+
+ if return_keys:
+ if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0:
+ return log
+ else:
+ return {key: log[key] for key in return_keys}
+ return log
+
+ def configure_optimizers(self):
+ lr = self.learning_rate
+ params = list(self.model.parameters())
+ if self.learn_logvar:
+ params = params + [self.logvar]
+ opt = torch.optim.AdamW(params, lr=lr)
+ return opt
+
+
+class LatentDiffusionV1(DDPMV1):
+ """main class"""
+ def __init__(self,
+ first_stage_config,
+ cond_stage_config,
+ num_timesteps_cond=None,
+ cond_stage_key="image",
+ cond_stage_trainable=False,
+ concat_mode=True,
+ cond_stage_forward=None,
+ conditioning_key=None,
+ scale_factor=1.0,
+ scale_by_std=False,
+ *args, **kwargs):
+ self.num_timesteps_cond = default(num_timesteps_cond, 1)
+ self.scale_by_std = scale_by_std
+ assert self.num_timesteps_cond <= kwargs['timesteps']
+ # for backwards compatibility after implementation of DiffusionWrapper
+ if conditioning_key is None:
+ conditioning_key = 'concat' if concat_mode else 'crossattn'
+ if cond_stage_config == '__is_unconditional__':
+ conditioning_key = None
+ ckpt_path = kwargs.pop("ckpt_path", None)
+ ignore_keys = kwargs.pop("ignore_keys", [])
+ super().__init__(conditioning_key=conditioning_key, *args, **kwargs)
+ self.concat_mode = concat_mode
+ self.cond_stage_trainable = cond_stage_trainable
+ self.cond_stage_key = cond_stage_key
+ try:
+ self.num_downs = len(first_stage_config.params.ddconfig.ch_mult) - 1
+ except:
+ self.num_downs = 0
+ if not scale_by_std:
+ self.scale_factor = scale_factor
+ else:
+ self.register_buffer('scale_factor', torch.tensor(scale_factor))
+ self.instantiate_first_stage(first_stage_config)
+ self.instantiate_cond_stage(cond_stage_config)
+ self.cond_stage_forward = cond_stage_forward
+ self.clip_denoised = False
+ self.bbox_tokenizer = None
+
+ self.restarted_from_ckpt = False
+ if ckpt_path is not None:
+ self.init_from_ckpt(ckpt_path, ignore_keys)
+ self.restarted_from_ckpt = True
+
+ def make_cond_schedule(self, ):
+ self.cond_ids = torch.full(size=(self.num_timesteps,), fill_value=self.num_timesteps - 1, dtype=torch.long)
+ ids = torch.round(torch.linspace(0, self.num_timesteps - 1, self.num_timesteps_cond)).long()
+ self.cond_ids[:self.num_timesteps_cond] = ids
+
+ @rank_zero_only
+ @torch.no_grad()
+ def on_train_batch_start(self, batch, batch_idx, dataloader_idx):
+ # only for very first batch
+ if self.scale_by_std and self.current_epoch == 0 and self.global_step == 0 and batch_idx == 0 and not self.restarted_from_ckpt:
+ assert self.scale_factor == 1., 'rather not use custom rescaling and std-rescaling simultaneously'
+ # set rescale weight to 1./std of encodings
+ print("### USING STD-RESCALING ###")
+ x = super().get_input(batch, self.first_stage_key)
+ x = x.to(self.device)
+ encoder_posterior = self.encode_first_stage(x)
+ z = self.get_first_stage_encoding(encoder_posterior).detach()
+ del self.scale_factor
+ self.register_buffer('scale_factor', 1. / z.flatten().std())
+ print(f"setting self.scale_factor to {self.scale_factor}")
+ print("### USING STD-RESCALING ###")
+
+ def register_schedule(self,
+ given_betas=None, beta_schedule="linear", timesteps=1000,
+ linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
+ super().register_schedule(given_betas, beta_schedule, timesteps, linear_start, linear_end, cosine_s)
+
+ self.shorten_cond_schedule = self.num_timesteps_cond > 1
+ if self.shorten_cond_schedule:
+ self.make_cond_schedule()
+
+ def instantiate_first_stage(self, config):
+ model = instantiate_from_config(config)
+ self.first_stage_model = model.eval()
+ self.first_stage_model.train = disabled_train
+ for param in self.first_stage_model.parameters():
+ param.requires_grad = False
+
+ def instantiate_cond_stage(self, config):
+ if not self.cond_stage_trainable:
+ if config == "__is_first_stage__":
+ print("Using first stage also as cond stage.")
+ self.cond_stage_model = self.first_stage_model
+ elif config == "__is_unconditional__":
+ print(f"Training {self.__class__.__name__} as an unconditional model.")
+ self.cond_stage_model = None
+ # self.be_unconditional = True
+ else:
+ model = instantiate_from_config(config)
+ self.cond_stage_model = model.eval()
+ self.cond_stage_model.train = disabled_train
+ for param in self.cond_stage_model.parameters():
+ param.requires_grad = False
+ else:
+ assert config != '__is_first_stage__'
+ assert config != '__is_unconditional__'
+ model = instantiate_from_config(config)
+ self.cond_stage_model = model
+
+ def _get_denoise_row_from_list(self, samples, desc='', force_no_decoder_quantization=False):
+ denoise_row = []
+ for zd in tqdm(samples, desc=desc):
+ denoise_row.append(self.decode_first_stage(zd.to(self.device),
+ force_not_quantize=force_no_decoder_quantization))
+ n_imgs_per_row = len(denoise_row)
+ denoise_row = torch.stack(denoise_row) # n_log_step, n_row, C, H, W
+ denoise_grid = rearrange(denoise_row, 'n b c h w -> b n c h w')
+ denoise_grid = rearrange(denoise_grid, 'b n c h w -> (b n) c h w')
+ denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row)
+ return denoise_grid
+
+ def get_first_stage_encoding(self, encoder_posterior):
+ if isinstance(encoder_posterior, DiagonalGaussianDistribution):
+ z = encoder_posterior.sample()
+ elif isinstance(encoder_posterior, torch.Tensor):
+ z = encoder_posterior
+ else:
+ raise NotImplementedError(f"encoder_posterior of type '{type(encoder_posterior)}' not yet implemented")
+ return self.scale_factor * z
+
+ def get_learned_conditioning(self, c):
+ if self.cond_stage_forward is None:
+ if hasattr(self.cond_stage_model, 'encode') and callable(self.cond_stage_model.encode):
+ c = self.cond_stage_model.encode(c)
+ if isinstance(c, DiagonalGaussianDistribution):
+ c = c.mode()
+ else:
+ c = self.cond_stage_model(c)
+ else:
+ assert hasattr(self.cond_stage_model, self.cond_stage_forward)
+ c = getattr(self.cond_stage_model, self.cond_stage_forward)(c)
+ return c
+
+ def meshgrid(self, h, w):
+ y = torch.arange(0, h).view(h, 1, 1).repeat(1, w, 1)
+ x = torch.arange(0, w).view(1, w, 1).repeat(h, 1, 1)
+
+ arr = torch.cat([y, x], dim=-1)
+ return arr
+
+ def delta_border(self, h, w):
+ """
+ :param h: height
+ :param w: width
+ :return: normalized distance to image border,
+ wtith min distance = 0 at border and max dist = 0.5 at image center
+ """
+ lower_right_corner = torch.tensor([h - 1, w - 1]).view(1, 1, 2)
+ arr = self.meshgrid(h, w) / lower_right_corner
+ dist_left_up = torch.min(arr, dim=-1, keepdims=True)[0]
+ dist_right_down = torch.min(1 - arr, dim=-1, keepdims=True)[0]
+ edge_dist = torch.min(torch.cat([dist_left_up, dist_right_down], dim=-1), dim=-1)[0]
+ return edge_dist
+
+ def get_weighting(self, h, w, Ly, Lx, device):
+ weighting = self.delta_border(h, w)
+ weighting = torch.clip(weighting, self.split_input_params["clip_min_weight"],
+ self.split_input_params["clip_max_weight"], )
+ weighting = weighting.view(1, h * w, 1).repeat(1, 1, Ly * Lx).to(device)
+
+ if self.split_input_params["tie_braker"]:
+ L_weighting = self.delta_border(Ly, Lx)
+ L_weighting = torch.clip(L_weighting,
+ self.split_input_params["clip_min_tie_weight"],
+ self.split_input_params["clip_max_tie_weight"])
+
+ L_weighting = L_weighting.view(1, 1, Ly * Lx).to(device)
+ weighting = weighting * L_weighting
+ return weighting
+
+ def get_fold_unfold(self, x, kernel_size, stride, uf=1, df=1): # todo load once not every time, shorten code
+ """
+ :param x: img of size (bs, c, h, w)
+ :return: n img crops of size (n, bs, c, kernel_size[0], kernel_size[1])
+ """
+ bs, nc, h, w = x.shape
+
+ # number of crops in image
+ Ly = (h - kernel_size[0]) // stride[0] + 1
+ Lx = (w - kernel_size[1]) // stride[1] + 1
+
+ if uf == 1 and df == 1:
+ fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
+ unfold = torch.nn.Unfold(**fold_params)
+
+ fold = torch.nn.Fold(output_size=x.shape[2:], **fold_params)
+
+ weighting = self.get_weighting(kernel_size[0], kernel_size[1], Ly, Lx, x.device).to(x.dtype)
+ normalization = fold(weighting).view(1, 1, h, w) # normalizes the overlap
+ weighting = weighting.view((1, 1, kernel_size[0], kernel_size[1], Ly * Lx))
+
+ elif uf > 1 and df == 1:
+ fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
+ unfold = torch.nn.Unfold(**fold_params)
+
+ fold_params2 = dict(kernel_size=(kernel_size[0] * uf, kernel_size[0] * uf),
+ dilation=1, padding=0,
+ stride=(stride[0] * uf, stride[1] * uf))
+ fold = torch.nn.Fold(output_size=(x.shape[2] * uf, x.shape[3] * uf), **fold_params2)
+
+ weighting = self.get_weighting(kernel_size[0] * uf, kernel_size[1] * uf, Ly, Lx, x.device).to(x.dtype)
+ normalization = fold(weighting).view(1, 1, h * uf, w * uf) # normalizes the overlap
+ weighting = weighting.view((1, 1, kernel_size[0] * uf, kernel_size[1] * uf, Ly * Lx))
+
+ elif df > 1 and uf == 1:
+ fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
+ unfold = torch.nn.Unfold(**fold_params)
+
+ fold_params2 = dict(kernel_size=(kernel_size[0] // df, kernel_size[0] // df),
+ dilation=1, padding=0,
+ stride=(stride[0] // df, stride[1] // df))
+ fold = torch.nn.Fold(output_size=(x.shape[2] // df, x.shape[3] // df), **fold_params2)
+
+ weighting = self.get_weighting(kernel_size[0] // df, kernel_size[1] // df, Ly, Lx, x.device).to(x.dtype)
+ normalization = fold(weighting).view(1, 1, h // df, w // df) # normalizes the overlap
+ weighting = weighting.view((1, 1, kernel_size[0] // df, kernel_size[1] // df, Ly * Lx))
+
+ else:
+ raise NotImplementedError
+
+ return fold, unfold, normalization, weighting
+
+ @torch.no_grad()
+ def get_input(self, batch, k, return_first_stage_outputs=False, force_c_encode=False,
+ cond_key=None, return_original_cond=False, bs=None):
+ x = super().get_input(batch, k)
+ if bs is not None:
+ x = x[:bs]
+ x = x.to(self.device)
+ encoder_posterior = self.encode_first_stage(x)
+ z = self.get_first_stage_encoding(encoder_posterior).detach()
+
+ if self.model.conditioning_key is not None:
+ if cond_key is None:
+ cond_key = self.cond_stage_key
+ if cond_key != self.first_stage_key:
+ if cond_key in ['caption', 'coordinates_bbox']:
+ xc = batch[cond_key]
+ elif cond_key == 'class_label':
+ xc = batch
+ else:
+ xc = super().get_input(batch, cond_key).to(self.device)
+ else:
+ xc = x
+ if not self.cond_stage_trainable or force_c_encode:
+ if isinstance(xc, dict) or isinstance(xc, list):
+ # import pudb; pudb.set_trace()
+ c = self.get_learned_conditioning(xc)
+ else:
+ c = self.get_learned_conditioning(xc.to(self.device))
+ else:
+ c = xc
+ if bs is not None:
+ c = c[:bs]
+
+ if self.use_positional_encodings:
+ pos_x, pos_y = self.compute_latent_shifts(batch)
+ ckey = __conditioning_keys__[self.model.conditioning_key]
+ c = {ckey: c, 'pos_x': pos_x, 'pos_y': pos_y}
+
+ else:
+ c = None
+ xc = None
+ if self.use_positional_encodings:
+ pos_x, pos_y = self.compute_latent_shifts(batch)
+ c = {'pos_x': pos_x, 'pos_y': pos_y}
+ out = [z, c]
+ if return_first_stage_outputs:
+ xrec = self.decode_first_stage(z)
+ out.extend([x, xrec])
+ if return_original_cond:
+ out.append(xc)
+ return out
+
+ @torch.no_grad()
+ def decode_first_stage(self, z, predict_cids=False, force_not_quantize=False):
+ if predict_cids:
+ if z.dim() == 4:
+ z = torch.argmax(z.exp(), dim=1).long()
+ z = self.first_stage_model.quantize.get_codebook_entry(z, shape=None)
+ z = rearrange(z, 'b h w c -> b c h w').contiguous()
+
+ z = 1. / self.scale_factor * z
+
+ if hasattr(self, "split_input_params"):
+ if self.split_input_params["patch_distributed_vq"]:
+ ks = self.split_input_params["ks"] # eg. (128, 128)
+ stride = self.split_input_params["stride"] # eg. (64, 64)
+ uf = self.split_input_params["vqf"]
+ bs, nc, h, w = z.shape
+ if ks[0] > h or ks[1] > w:
+ ks = (min(ks[0], h), min(ks[1], w))
+ print("reducing Kernel")
+
+ if stride[0] > h or stride[1] > w:
+ stride = (min(stride[0], h), min(stride[1], w))
+ print("reducing stride")
+
+ fold, unfold, normalization, weighting = self.get_fold_unfold(z, ks, stride, uf=uf)
+
+ z = unfold(z) # (bn, nc * prod(**ks), L)
+ # 1. Reshape to img shape
+ z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L )
+
+ # 2. apply model loop over last dim
+ if isinstance(self.first_stage_model, VQModelInterface):
+ output_list = [self.first_stage_model.decode(z[:, :, :, :, i],
+ force_not_quantize=predict_cids or force_not_quantize)
+ for i in range(z.shape[-1])]
+ else:
+
+ output_list = [self.first_stage_model.decode(z[:, :, :, :, i])
+ for i in range(z.shape[-1])]
+
+ o = torch.stack(output_list, axis=-1) # # (bn, nc, ks[0], ks[1], L)
+ o = o * weighting
+ # Reverse 1. reshape to img shape
+ o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L)
+ # stitch crops together
+ decoded = fold(o)
+ decoded = decoded / normalization # norm is shape (1, 1, h, w)
+ return decoded
+ else:
+ if isinstance(self.first_stage_model, VQModelInterface):
+ return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize)
+ else:
+ return self.first_stage_model.decode(z)
+
+ else:
+ if isinstance(self.first_stage_model, VQModelInterface):
+ return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize)
+ else:
+ return self.first_stage_model.decode(z)
+
+ # same as above but without decorator
+ def differentiable_decode_first_stage(self, z, predict_cids=False, force_not_quantize=False):
+ if predict_cids:
+ if z.dim() == 4:
+ z = torch.argmax(z.exp(), dim=1).long()
+ z = self.first_stage_model.quantize.get_codebook_entry(z, shape=None)
+ z = rearrange(z, 'b h w c -> b c h w').contiguous()
+
+ z = 1. / self.scale_factor * z
+
+ if hasattr(self, "split_input_params"):
+ if self.split_input_params["patch_distributed_vq"]:
+ ks = self.split_input_params["ks"] # eg. (128, 128)
+ stride = self.split_input_params["stride"] # eg. (64, 64)
+ uf = self.split_input_params["vqf"]
+ bs, nc, h, w = z.shape
+ if ks[0] > h or ks[1] > w:
+ ks = (min(ks[0], h), min(ks[1], w))
+ print("reducing Kernel")
+
+ if stride[0] > h or stride[1] > w:
+ stride = (min(stride[0], h), min(stride[1], w))
+ print("reducing stride")
+
+ fold, unfold, normalization, weighting = self.get_fold_unfold(z, ks, stride, uf=uf)
+
+ z = unfold(z) # (bn, nc * prod(**ks), L)
+ # 1. Reshape to img shape
+ z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L )
+
+ # 2. apply model loop over last dim
+ if isinstance(self.first_stage_model, VQModelInterface):
+ output_list = [self.first_stage_model.decode(z[:, :, :, :, i],
+ force_not_quantize=predict_cids or force_not_quantize)
+ for i in range(z.shape[-1])]
+ else:
+
+ output_list = [self.first_stage_model.decode(z[:, :, :, :, i])
+ for i in range(z.shape[-1])]
+
+ o = torch.stack(output_list, axis=-1) # # (bn, nc, ks[0], ks[1], L)
+ o = o * weighting
+ # Reverse 1. reshape to img shape
+ o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L)
+ # stitch crops together
+ decoded = fold(o)
+ decoded = decoded / normalization # norm is shape (1, 1, h, w)
+ return decoded
+ else:
+ if isinstance(self.first_stage_model, VQModelInterface):
+ return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize)
+ else:
+ return self.first_stage_model.decode(z)
+
+ else:
+ if isinstance(self.first_stage_model, VQModelInterface):
+ return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize)
+ else:
+ return self.first_stage_model.decode(z)
+
+ @torch.no_grad()
+ def encode_first_stage(self, x):
+ if hasattr(self, "split_input_params"):
+ if self.split_input_params["patch_distributed_vq"]:
+ ks = self.split_input_params["ks"] # eg. (128, 128)
+ stride = self.split_input_params["stride"] # eg. (64, 64)
+ df = self.split_input_params["vqf"]
+ self.split_input_params['original_image_size'] = x.shape[-2:]
+ bs, nc, h, w = x.shape
+ if ks[0] > h or ks[1] > w:
+ ks = (min(ks[0], h), min(ks[1], w))
+ print("reducing Kernel")
+
+ if stride[0] > h or stride[1] > w:
+ stride = (min(stride[0], h), min(stride[1], w))
+ print("reducing stride")
+
+ fold, unfold, normalization, weighting = self.get_fold_unfold(x, ks, stride, df=df)
+ z = unfold(x) # (bn, nc * prod(**ks), L)
+ # Reshape to img shape
+ z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L )
+
+ output_list = [self.first_stage_model.encode(z[:, :, :, :, i])
+ for i in range(z.shape[-1])]
+
+ o = torch.stack(output_list, axis=-1)
+ o = o * weighting
+
+ # Reverse reshape to img shape
+ o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L)
+ # stitch crops together
+ decoded = fold(o)
+ decoded = decoded / normalization
+ return decoded
+
+ else:
+ return self.first_stage_model.encode(x)
+ else:
+ return self.first_stage_model.encode(x)
+
+ def shared_step(self, batch, **kwargs):
+ x, c = self.get_input(batch, self.first_stage_key)
+ loss = self(x, c)
+ return loss
+
+ def forward(self, x, c, *args, **kwargs):
+ t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=self.device).long()
+ if self.model.conditioning_key is not None:
+ assert c is not None
+ if self.cond_stage_trainable:
+ c = self.get_learned_conditioning(c)
+ if self.shorten_cond_schedule: # TODO: drop this option
+ tc = self.cond_ids[t].to(self.device)
+ c = self.q_sample(x_start=c, t=tc, noise=torch.randn_like(c.float()))
+ return self.p_losses(x, c, t, *args, **kwargs)
+
+ def _rescale_annotations(self, bboxes, crop_coordinates): # TODO: move to dataset
+ def rescale_bbox(bbox):
+ x0 = clamp((bbox[0] - crop_coordinates[0]) / crop_coordinates[2])
+ y0 = clamp((bbox[1] - crop_coordinates[1]) / crop_coordinates[3])
+ w = min(bbox[2] / crop_coordinates[2], 1 - x0)
+ h = min(bbox[3] / crop_coordinates[3], 1 - y0)
+ return x0, y0, w, h
+
+ return [rescale_bbox(b) for b in bboxes]
+
+ def apply_model(self, x_noisy, t, cond, return_ids=False):
+
+ if isinstance(cond, dict):
+ # hybrid case, cond is exptected to be a dict
+ pass
+ else:
+ if not isinstance(cond, list):
+ cond = [cond]
+ key = 'c_concat' if self.model.conditioning_key == 'concat' else 'c_crossattn'
+ cond = {key: cond}
+
+ if hasattr(self, "split_input_params"):
+ assert len(cond) == 1 # todo can only deal with one conditioning atm
+ assert not return_ids
+ ks = self.split_input_params["ks"] # eg. (128, 128)
+ stride = self.split_input_params["stride"] # eg. (64, 64)
+
+ h, w = x_noisy.shape[-2:]
+
+ fold, unfold, normalization, weighting = self.get_fold_unfold(x_noisy, ks, stride)
+
+ z = unfold(x_noisy) # (bn, nc * prod(**ks), L)
+ # Reshape to img shape
+ z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L )
+ z_list = [z[:, :, :, :, i] for i in range(z.shape[-1])]
+
+ if self.cond_stage_key in ["image", "LR_image", "segmentation",
+ 'bbox_img'] and self.model.conditioning_key: # todo check for completeness
+ c_key = next(iter(cond.keys())) # get key
+ c = next(iter(cond.values())) # get value
+ assert (len(c) == 1) # todo extend to list with more than one elem
+ c = c[0] # get element
+
+ c = unfold(c)
+ c = c.view((c.shape[0], -1, ks[0], ks[1], c.shape[-1])) # (bn, nc, ks[0], ks[1], L )
+
+ cond_list = [{c_key: [c[:, :, :, :, i]]} for i in range(c.shape[-1])]
+
+ elif self.cond_stage_key == 'coordinates_bbox':
+ assert 'original_image_size' in self.split_input_params, 'BoudingBoxRescaling is missing original_image_size'
+
+ # assuming padding of unfold is always 0 and its dilation is always 1
+ n_patches_per_row = int((w - ks[0]) / stride[0] + 1)
+ full_img_h, full_img_w = self.split_input_params['original_image_size']
+ # as we are operating on latents, we need the factor from the original image size to the
+ # spatial latent size to properly rescale the crops for regenerating the bbox annotations
+ num_downs = self.first_stage_model.encoder.num_resolutions - 1
+ rescale_latent = 2 ** (num_downs)
+
+ # get top left postions of patches as conforming for the bbbox tokenizer, therefore we
+ # need to rescale the tl patch coordinates to be in between (0,1)
+ tl_patch_coordinates = [(rescale_latent * stride[0] * (patch_nr % n_patches_per_row) / full_img_w,
+ rescale_latent * stride[1] * (patch_nr // n_patches_per_row) / full_img_h)
+ for patch_nr in range(z.shape[-1])]
+
+ # patch_limits are tl_coord, width and height coordinates as (x_tl, y_tl, h, w)
+ patch_limits = [(x_tl, y_tl,
+ rescale_latent * ks[0] / full_img_w,
+ rescale_latent * ks[1] / full_img_h) for x_tl, y_tl in tl_patch_coordinates]
+ # patch_values = [(np.arange(x_tl,min(x_tl+ks, 1.)),np.arange(y_tl,min(y_tl+ks, 1.))) for x_tl, y_tl in tl_patch_coordinates]
+
+ # tokenize crop coordinates for the bounding boxes of the respective patches
+ patch_limits_tknzd = [torch.LongTensor(self.bbox_tokenizer._crop_encoder(bbox))[None].to(self.device)
+ for bbox in patch_limits] # list of length l with tensors of shape (1, 2)
+ print(patch_limits_tknzd[0].shape)
+ # cut tknzd crop position from conditioning
+ assert isinstance(cond, dict), 'cond must be dict to be fed into model'
+ cut_cond = cond['c_crossattn'][0][..., :-2].to(self.device)
+ print(cut_cond.shape)
+
+ adapted_cond = torch.stack([torch.cat([cut_cond, p], dim=1) for p in patch_limits_tknzd])
+ adapted_cond = rearrange(adapted_cond, 'l b n -> (l b) n')
+ print(adapted_cond.shape)
+ adapted_cond = self.get_learned_conditioning(adapted_cond)
+ print(adapted_cond.shape)
+ adapted_cond = rearrange(adapted_cond, '(l b) n d -> l b n d', l=z.shape[-1])
+ print(adapted_cond.shape)
+
+ cond_list = [{'c_crossattn': [e]} for e in adapted_cond]
+
+ else:
+ cond_list = [cond for i in range(z.shape[-1])] # Todo make this more efficient
+
+ # apply model by loop over crops
+ output_list = [self.model(z_list[i], t, **cond_list[i]) for i in range(z.shape[-1])]
+ assert not isinstance(output_list[0],
+ tuple) # todo cant deal with multiple model outputs check this never happens
+
+ o = torch.stack(output_list, axis=-1)
+ o = o * weighting
+ # Reverse reshape to img shape
+ o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L)
+ # stitch crops together
+ x_recon = fold(o) / normalization
+
+ else:
+ x_recon = self.model(x_noisy, t, **cond)
+
+ if isinstance(x_recon, tuple) and not return_ids:
+ return x_recon[0]
+ else:
+ return x_recon
+
+ def _predict_eps_from_xstart(self, x_t, t, pred_xstart):
+ return (extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - pred_xstart) / \
+ extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape)
+
+ def _prior_bpd(self, x_start):
+ """
+ Get the prior KL term for the variational lower-bound, measured in
+ bits-per-dim.
+ This term can't be optimized, as it only depends on the encoder.
+ :param x_start: the [N x C x ...] tensor of inputs.
+ :return: a batch of [N] KL values (in bits), one per batch element.
+ """
+ batch_size = x_start.shape[0]
+ t = torch.tensor([self.num_timesteps - 1] * batch_size, device=x_start.device)
+ qt_mean, _, qt_log_variance = self.q_mean_variance(x_start, t)
+ kl_prior = normal_kl(mean1=qt_mean, logvar1=qt_log_variance, mean2=0.0, logvar2=0.0)
+ return mean_flat(kl_prior) / np.log(2.0)
+
+ def p_losses(self, x_start, cond, t, noise=None):
+ noise = default(noise, lambda: torch.randn_like(x_start))
+ x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
+ model_output = self.apply_model(x_noisy, t, cond)
+
+ loss_dict = {}
+ prefix = 'train' if self.training else 'val'
+
+ if self.parameterization == "x0":
+ target = x_start
+ elif self.parameterization == "eps":
+ target = noise
+ else:
+ raise NotImplementedError()
+
+ loss_simple = self.get_loss(model_output, target, mean=False).mean([1, 2, 3])
+ loss_dict.update({f'{prefix}/loss_simple': loss_simple.mean()})
+
+ logvar_t = self.logvar[t].to(self.device)
+ loss = loss_simple / torch.exp(logvar_t) + logvar_t
+ # loss = loss_simple / torch.exp(self.logvar) + self.logvar
+ if self.learn_logvar:
+ loss_dict.update({f'{prefix}/loss_gamma': loss.mean()})
+ loss_dict.update({'logvar': self.logvar.data.mean()})
+
+ loss = self.l_simple_weight * loss.mean()
+
+ loss_vlb = self.get_loss(model_output, target, mean=False).mean(dim=(1, 2, 3))
+ loss_vlb = (self.lvlb_weights[t] * loss_vlb).mean()
+ loss_dict.update({f'{prefix}/loss_vlb': loss_vlb})
+ loss += (self.original_elbo_weight * loss_vlb)
+ loss_dict.update({f'{prefix}/loss': loss})
+
+ return loss, loss_dict
+
+ def p_mean_variance(self, x, c, t, clip_denoised: bool, return_codebook_ids=False, quantize_denoised=False,
+ return_x0=False, score_corrector=None, corrector_kwargs=None):
+ t_in = t
+ model_out = self.apply_model(x, t_in, c, return_ids=return_codebook_ids)
+
+ if score_corrector is not None:
+ assert self.parameterization == "eps"
+ model_out = score_corrector.modify_score(self, model_out, x, t, c, **corrector_kwargs)
+
+ if return_codebook_ids:
+ model_out, logits = model_out
+
+ if self.parameterization == "eps":
+ x_recon = self.predict_start_from_noise(x, t=t, noise=model_out)
+ elif self.parameterization == "x0":
+ x_recon = model_out
+ else:
+ raise NotImplementedError()
+
+ if clip_denoised:
+ x_recon.clamp_(-1., 1.)
+ if quantize_denoised:
+ x_recon, _, [_, _, indices] = self.first_stage_model.quantize(x_recon)
+ model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
+ if return_codebook_ids:
+ return model_mean, posterior_variance, posterior_log_variance, logits
+ elif return_x0:
+ return model_mean, posterior_variance, posterior_log_variance, x_recon
+ else:
+ return model_mean, posterior_variance, posterior_log_variance
+
+ @torch.no_grad()
+ def p_sample(self, x, c, t, clip_denoised=False, repeat_noise=False,
+ return_codebook_ids=False, quantize_denoised=False, return_x0=False,
+ temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None):
+ b, *_, device = *x.shape, x.device
+ outputs = self.p_mean_variance(x=x, c=c, t=t, clip_denoised=clip_denoised,
+ return_codebook_ids=return_codebook_ids,
+ quantize_denoised=quantize_denoised,
+ return_x0=return_x0,
+ score_corrector=score_corrector, corrector_kwargs=corrector_kwargs)
+ if return_codebook_ids:
+ raise DeprecationWarning("Support dropped.")
+ model_mean, _, model_log_variance, logits = outputs
+ elif return_x0:
+ model_mean, _, model_log_variance, x0 = outputs
+ else:
+ model_mean, _, model_log_variance = outputs
+
+ noise = noise_like(x.shape, device, repeat_noise) * temperature
+ if noise_dropout > 0.:
+ noise = torch.nn.functional.dropout(noise, p=noise_dropout)
+ # no noise when t == 0
+ nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
+
+ if return_codebook_ids:
+ return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, logits.argmax(dim=1)
+ if return_x0:
+ return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, x0
+ else:
+ return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
+
+ @torch.no_grad()
+ def progressive_denoising(self, cond, shape, verbose=True, callback=None, quantize_denoised=False,
+ img_callback=None, mask=None, x0=None, temperature=1., noise_dropout=0.,
+ score_corrector=None, corrector_kwargs=None, batch_size=None, x_T=None, start_T=None,
+ log_every_t=None):
+ if not log_every_t:
+ log_every_t = self.log_every_t
+ timesteps = self.num_timesteps
+ if batch_size is not None:
+ b = batch_size if batch_size is not None else shape[0]
+ shape = [batch_size] + list(shape)
+ else:
+ b = batch_size = shape[0]
+ if x_T is None:
+ img = torch.randn(shape, device=self.device)
+ else:
+ img = x_T
+ intermediates = []
+ if cond is not None:
+ if isinstance(cond, dict):
+ cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else
+ list(map(lambda x: x[:batch_size], cond[key])) for key in cond}
+ else:
+ cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size]
+
+ if start_T is not None:
+ timesteps = min(timesteps, start_T)
+ iterator = tqdm(reversed(range(0, timesteps)), desc='Progressive Generation',
+ total=timesteps) if verbose else reversed(
+ range(0, timesteps))
+ if type(temperature) == float:
+ temperature = [temperature] * timesteps
+
+ for i in iterator:
+ ts = torch.full((b,), i, device=self.device, dtype=torch.long)
+ if self.shorten_cond_schedule:
+ assert self.model.conditioning_key != 'hybrid'
+ tc = self.cond_ids[ts].to(cond.device)
+ cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond))
+
+ img, x0_partial = self.p_sample(img, cond, ts,
+ clip_denoised=self.clip_denoised,
+ quantize_denoised=quantize_denoised, return_x0=True,
+ temperature=temperature[i], noise_dropout=noise_dropout,
+ score_corrector=score_corrector, corrector_kwargs=corrector_kwargs)
+ if mask is not None:
+ assert x0 is not None
+ img_orig = self.q_sample(x0, ts)
+ img = img_orig * mask + (1. - mask) * img
+
+ if i % log_every_t == 0 or i == timesteps - 1:
+ intermediates.append(x0_partial)
+ if callback: callback(i)
+ if img_callback: img_callback(img, i)
+ return img, intermediates
+
+ @torch.no_grad()
+ def p_sample_loop(self, cond, shape, return_intermediates=False,
+ x_T=None, verbose=True, callback=None, timesteps=None, quantize_denoised=False,
+ mask=None, x0=None, img_callback=None, start_T=None,
+ log_every_t=None):
+
+ if not log_every_t:
+ log_every_t = self.log_every_t
+ device = self.betas.device
+ b = shape[0]
+ if x_T is None:
+ img = torch.randn(shape, device=device)
+ else:
+ img = x_T
+
+ intermediates = [img]
+ if timesteps is None:
+ timesteps = self.num_timesteps
+
+ if start_T is not None:
+ timesteps = min(timesteps, start_T)
+ iterator = tqdm(reversed(range(0, timesteps)), desc='Sampling t', total=timesteps) if verbose else reversed(
+ range(0, timesteps))
+
+ if mask is not None:
+ assert x0 is not None
+ assert x0.shape[2:3] == mask.shape[2:3] # spatial size has to match
+
+ for i in iterator:
+ ts = torch.full((b,), i, device=device, dtype=torch.long)
+ if self.shorten_cond_schedule:
+ assert self.model.conditioning_key != 'hybrid'
+ tc = self.cond_ids[ts].to(cond.device)
+ cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond))
+
+ img = self.p_sample(img, cond, ts,
+ clip_denoised=self.clip_denoised,
+ quantize_denoised=quantize_denoised)
+ if mask is not None:
+ img_orig = self.q_sample(x0, ts)
+ img = img_orig * mask + (1. - mask) * img
+
+ if i % log_every_t == 0 or i == timesteps - 1:
+ intermediates.append(img)
+ if callback: callback(i)
+ if img_callback: img_callback(img, i)
+
+ if return_intermediates:
+ return img, intermediates
+ return img
+
+ @torch.no_grad()
+ def sample(self, cond, batch_size=16, return_intermediates=False, x_T=None,
+ verbose=True, timesteps=None, quantize_denoised=False,
+ mask=None, x0=None, shape=None,**kwargs):
+ if shape is None:
+ shape = (batch_size, self.channels, self.image_size, self.image_size)
+ if cond is not None:
+ if isinstance(cond, dict):
+ cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else
+ list(map(lambda x: x[:batch_size], cond[key])) for key in cond}
+ else:
+ cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size]
+ return self.p_sample_loop(cond,
+ shape,
+ return_intermediates=return_intermediates, x_T=x_T,
+ verbose=verbose, timesteps=timesteps, quantize_denoised=quantize_denoised,
+ mask=mask, x0=x0)
+
+ @torch.no_grad()
+ def sample_log(self,cond,batch_size,ddim, ddim_steps,**kwargs):
+
+ if ddim:
+ ddim_sampler = DDIMSampler(self)
+ shape = (self.channels, self.image_size, self.image_size)
+ samples, intermediates =ddim_sampler.sample(ddim_steps,batch_size,
+ shape,cond,verbose=False,**kwargs)
+
+ else:
+ samples, intermediates = self.sample(cond=cond, batch_size=batch_size,
+ return_intermediates=True,**kwargs)
+
+ return samples, intermediates
+
+
+ @torch.no_grad()
+ def log_images(self, batch, N=8, n_row=4, sample=True, ddim_steps=200, ddim_eta=1., return_keys=None,
+ quantize_denoised=True, inpaint=True, plot_denoise_rows=False, plot_progressive_rows=True,
+ plot_diffusion_rows=True, **kwargs):
+
+ use_ddim = ddim_steps is not None
+
+ log = dict()
+ z, c, x, xrec, xc = self.get_input(batch, self.first_stage_key,
+ return_first_stage_outputs=True,
+ force_c_encode=True,
+ return_original_cond=True,
+ bs=N)
+ N = min(x.shape[0], N)
+ n_row = min(x.shape[0], n_row)
+ log["inputs"] = x
+ log["reconstruction"] = xrec
+ if self.model.conditioning_key is not None:
+ if hasattr(self.cond_stage_model, "decode"):
+ xc = self.cond_stage_model.decode(c)
+ log["conditioning"] = xc
+ elif self.cond_stage_key in ["caption"]:
+ xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["caption"])
+ log["conditioning"] = xc
+ elif self.cond_stage_key == 'class_label':
+ xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"])
+ log['conditioning'] = xc
+ elif isimage(xc):
+ log["conditioning"] = xc
+ if ismap(xc):
+ log["original_conditioning"] = self.to_rgb(xc)
+
+ if plot_diffusion_rows:
+ # get diffusion row
+ diffusion_row = list()
+ z_start = z[:n_row]
+ for t in range(self.num_timesteps):
+ if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
+ t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
+ t = t.to(self.device).long()
+ noise = torch.randn_like(z_start)
+ z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise)
+ diffusion_row.append(self.decode_first_stage(z_noisy))
+
+ diffusion_row = torch.stack(diffusion_row) # n_log_step, n_row, C, H, W
+ diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w')
+ diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w')
+ diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0])
+ log["diffusion_row"] = diffusion_grid
+
+ if sample:
+ # get denoise row
+ with self.ema_scope("Plotting"):
+ samples, z_denoise_row = self.sample_log(cond=c,batch_size=N,ddim=use_ddim,
+ ddim_steps=ddim_steps,eta=ddim_eta)
+ # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True)
+ x_samples = self.decode_first_stage(samples)
+ log["samples"] = x_samples
+ if plot_denoise_rows:
+ denoise_grid = self._get_denoise_row_from_list(z_denoise_row)
+ log["denoise_row"] = denoise_grid
+
+ if quantize_denoised and not isinstance(self.first_stage_model, AutoencoderKL) and not isinstance(
+ self.first_stage_model, IdentityFirstStage):
+ # also display when quantizing x0 while sampling
+ with self.ema_scope("Plotting Quantized Denoised"):
+ samples, z_denoise_row = self.sample_log(cond=c,batch_size=N,ddim=use_ddim,
+ ddim_steps=ddim_steps,eta=ddim_eta,
+ quantize_denoised=True)
+ # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True,
+ # quantize_denoised=True)
+ x_samples = self.decode_first_stage(samples.to(self.device))
+ log["samples_x0_quantized"] = x_samples
+
+ if inpaint:
+ # make a simple center square
+ b, h, w = z.shape[0], z.shape[2], z.shape[3]
+ mask = torch.ones(N, h, w).to(self.device)
+ # zeros will be filled in
+ mask[:, h // 4:3 * h // 4, w // 4:3 * w // 4] = 0.
+ mask = mask[:, None, ...]
+ with self.ema_scope("Plotting Inpaint"):
+
+ samples, _ = self.sample_log(cond=c,batch_size=N,ddim=use_ddim, eta=ddim_eta,
+ ddim_steps=ddim_steps, x0=z[:N], mask=mask)
+ x_samples = self.decode_first_stage(samples.to(self.device))
+ log["samples_inpainting"] = x_samples
+ log["mask"] = mask
+
+ # outpaint
+ with self.ema_scope("Plotting Outpaint"):
+ samples, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,eta=ddim_eta,
+ ddim_steps=ddim_steps, x0=z[:N], mask=mask)
+ x_samples = self.decode_first_stage(samples.to(self.device))
+ log["samples_outpainting"] = x_samples
+
+ if plot_progressive_rows:
+ with self.ema_scope("Plotting Progressives"):
+ img, progressives = self.progressive_denoising(c,
+ shape=(self.channels, self.image_size, self.image_size),
+ batch_size=N)
+ prog_row = self._get_denoise_row_from_list(progressives, desc="Progressive Generation")
+ log["progressive_row"] = prog_row
+
+ if return_keys:
+ if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0:
+ return log
+ else:
+ return {key: log[key] for key in return_keys}
+ return log
+
+ def configure_optimizers(self):
+ lr = self.learning_rate
+ params = list(self.model.parameters())
+ if self.cond_stage_trainable:
+ print(f"{self.__class__.__name__}: Also optimizing conditioner params!")
+ params = params + list(self.cond_stage_model.parameters())
+ if self.learn_logvar:
+ print('Diffusion model optimizing logvar')
+ params.append(self.logvar)
+ opt = torch.optim.AdamW(params, lr=lr)
+ if self.use_scheduler:
+ assert 'target' in self.scheduler_config
+ scheduler = instantiate_from_config(self.scheduler_config)
+
+ print("Setting up LambdaLR scheduler...")
+ scheduler = [
+ {
+ 'scheduler': LambdaLR(opt, lr_lambda=scheduler.schedule),
+ 'interval': 'step',
+ 'frequency': 1
+ }]
+ return [opt], scheduler
+ return opt
+
+ @torch.no_grad()
+ def to_rgb(self, x):
+ x = x.float()
+ if not hasattr(self, "colorize"):
+ self.colorize = torch.randn(3, x.shape[1], 1, 1).to(x)
+ x = nn.functional.conv2d(x, weight=self.colorize)
+ x = 2. * (x - x.min()) / (x.max() - x.min()) - 1.
+ return x
+
+
+class DiffusionWrapperV1(pl.LightningModule):
+ def __init__(self, diff_model_config, conditioning_key):
+ super().__init__()
+ self.diffusion_model = instantiate_from_config(diff_model_config)
+ self.conditioning_key = conditioning_key
+ assert self.conditioning_key in [None, 'concat', 'crossattn', 'hybrid', 'adm']
+
+ def forward(self, x, t, c_concat: list = None, c_crossattn: list = None):
+ if self.conditioning_key is None:
+ out = self.diffusion_model(x, t)
+ elif self.conditioning_key == 'concat':
+ xc = torch.cat([x] + c_concat, dim=1)
+ out = self.diffusion_model(xc, t)
+ elif self.conditioning_key == 'crossattn':
+ cc = torch.cat(c_crossattn, 1)
+ out = self.diffusion_model(x, t, context=cc)
+ elif self.conditioning_key == 'hybrid':
+ xc = torch.cat([x] + c_concat, dim=1)
+ cc = torch.cat(c_crossattn, 1)
+ out = self.diffusion_model(xc, t, context=cc)
+ elif self.conditioning_key == 'adm':
+ cc = c_crossattn[0]
+ out = self.diffusion_model(x, t, y=cc)
+ else:
+ raise NotImplementedError()
+
+ return out
+
+
+class Layout2ImgDiffusionV1(LatentDiffusionV1):
+ # TODO: move all layout-specific hacks to this class
+ def __init__(self, cond_stage_key, *args, **kwargs):
+ assert cond_stage_key == 'coordinates_bbox', 'Layout2ImgDiffusion only for cond_stage_key="coordinates_bbox"'
+ super().__init__(cond_stage_key=cond_stage_key, *args, **kwargs)
+
+ def log_images(self, batch, N=8, *args, **kwargs):
+ logs = super().log_images(batch=batch, N=N, *args, **kwargs)
+
+ key = 'train' if self.training else 'validation'
+ dset = self.trainer.datamodule.datasets[key]
+ mapper = dset.conditional_builders[self.cond_stage_key]
+
+ bbox_imgs = []
+ map_fn = lambda catno: dset.get_textual_label(dset.get_category_id(catno))
+ for tknzd_bbox in batch[self.cond_stage_key][:N]:
+ bboximg = mapper.plot(tknzd_bbox.detach().cpu(), map_fn, (256, 256))
+ bbox_imgs.append(bboximg)
+
+ cond_img = torch.stack(bbox_imgs, dim=0)
+ logs['bbox_image'] = cond_img
+ return logs
+
+setattr(ldm.models.diffusion.ddpm, "DDPMV1", DDPMV1)
+setattr(ldm.models.diffusion.ddpm, "LatentDiffusionV1", LatentDiffusionV1)
+setattr(ldm.models.diffusion.ddpm, "DiffusionWrapperV1", DiffusionWrapperV1)
+setattr(ldm.models.diffusion.ddpm, "Layout2ImgDiffusionV1", Layout2ImgDiffusionV1)
diff --git a/extensions-builtin/ScuNET/preload.py b/extensions-builtin/ScuNET/preload.py
new file mode 100644
index 000000000..f12c5b90e
--- /dev/null
+++ b/extensions-builtin/ScuNET/preload.py
@@ -0,0 +1,6 @@
+import os
+from modules import paths
+
+
+def preload(parser):
+ parser.add_argument("--scunet-models-path", type=str, help="Path to directory with ScuNET model file(s).", default=os.path.join(paths.models_path, 'ScuNET'))
diff --git a/modules/scunet_model.py b/extensions-builtin/ScuNET/scripts/scunet_model.py
similarity index 93%
rename from modules/scunet_model.py
rename to extensions-builtin/ScuNET/scripts/scunet_model.py
index 59532274f..e0fbf3a33 100644
--- a/modules/scunet_model.py
+++ b/extensions-builtin/ScuNET/scripts/scunet_model.py
@@ -9,7 +9,7 @@ from basicsr.utils.download_util import load_file_from_url
import modules.upscaler
from modules import devices, modelloader
-from modules.scunet_model_arch import SCUNet as net
+from scunet_model_arch import SCUNet as net
class UpscalerScuNET(modules.upscaler.Upscaler):
@@ -49,12 +49,12 @@ class UpscalerScuNET(modules.upscaler.Upscaler):
if model is None:
return img
- device = devices.device_scunet
+ device = devices.get_device_for('scunet')
img = np.array(img)
img = img[:, :, ::-1]
img = np.moveaxis(img, 2, 0) / 255
img = torch.from_numpy(img).float()
- img = devices.mps_contiguous_to(img.unsqueeze(0), device)
+ img = img.unsqueeze(0).to(device)
with torch.no_grad():
output = model(img)
@@ -66,7 +66,7 @@ class UpscalerScuNET(modules.upscaler.Upscaler):
return PIL.Image.fromarray(output, 'RGB')
def load_model(self, path: str):
- device = devices.device_scunet
+ device = devices.get_device_for('scunet')
if "http" in path:
filename = load_file_from_url(url=self.model_url, model_dir=self.model_path, file_name="%s.pth" % self.name,
progress=True)
diff --git a/modules/scunet_model_arch.py b/extensions-builtin/ScuNET/scunet_model_arch.py
similarity index 100%
rename from modules/scunet_model_arch.py
rename to extensions-builtin/ScuNET/scunet_model_arch.py
diff --git a/extensions-builtin/SwinIR/preload.py b/extensions-builtin/SwinIR/preload.py
new file mode 100644
index 000000000..567e44bca
--- /dev/null
+++ b/extensions-builtin/SwinIR/preload.py
@@ -0,0 +1,6 @@
+import os
+from modules import paths
+
+
+def preload(parser):
+ parser.add_argument("--swinir-models-path", type=str, help="Path to directory with SwinIR model file(s).", default=os.path.join(paths.models_path, 'SwinIR'))
diff --git a/modules/swinir_model.py b/extensions-builtin/SwinIR/scripts/swinir_model.py
similarity index 80%
rename from modules/swinir_model.py
rename to extensions-builtin/SwinIR/scripts/swinir_model.py
index 4253b66d5..9a74b2538 100644
--- a/modules/swinir_model.py
+++ b/extensions-builtin/SwinIR/scripts/swinir_model.py
@@ -7,15 +7,14 @@ from PIL import Image
from basicsr.utils.download_util import load_file_from_url
from tqdm import tqdm
-from modules import modelloader, devices
+from modules import modelloader, devices, script_callbacks, shared
from modules.shared import cmd_opts, opts
-from modules.swinir_model_arch import SwinIR as net
-from modules.swinir_model_arch_v2 import Swin2SR as net2
+from swinir_model_arch import SwinIR as net
+from swinir_model_arch_v2 import Swin2SR as net2
from modules.upscaler import Upscaler, UpscalerData
-precision_scope = (
- torch.autocast if cmd_opts.precision == "autocast" else contextlib.nullcontext
-)
+
+device_swinir = devices.get_device_for('swinir')
class UpscalerSwinIR(Upscaler):
@@ -42,7 +41,7 @@ class UpscalerSwinIR(Upscaler):
model = self.load_model(model_file)
if model is None:
return img
- model = model.to(devices.device_swinir)
+ model = model.to(device_swinir, dtype=devices.dtype)
img = upscale(img, model)
try:
torch.cuda.empty_cache()
@@ -94,25 +93,27 @@ class UpscalerSwinIR(Upscaler):
model.load_state_dict(pretrained_model[params], strict=True)
else:
model.load_state_dict(pretrained_model, strict=True)
- if not cmd_opts.no_half:
- model = model.half()
return model
def upscale(
img,
model,
- tile=opts.SWIN_tile,
- tile_overlap=opts.SWIN_tile_overlap,
+ tile=None,
+ tile_overlap=None,
window_size=8,
scale=4,
):
+ tile = tile or opts.SWIN_tile
+ tile_overlap = tile_overlap or opts.SWIN_tile_overlap
+
+
img = np.array(img)
img = img[:, :, ::-1]
img = np.moveaxis(img, 2, 0) / 255
img = torch.from_numpy(img).float()
- img = devices.mps_contiguous_to(img.unsqueeze(0), devices.device_swinir)
- with torch.no_grad(), precision_scope("cuda"):
+ img = img.unsqueeze(0).to(device_swinir, dtype=devices.dtype)
+ with torch.no_grad(), devices.autocast():
_, _, h_old, w_old = img.size()
h_pad = (h_old // window_size + 1) * window_size - h_old
w_pad = (w_old // window_size + 1) * window_size - w_old
@@ -139,8 +140,8 @@ def inference(img, model, tile, tile_overlap, window_size, scale):
stride = tile - tile_overlap
h_idx_list = list(range(0, h - tile, stride)) + [h - tile]
w_idx_list = list(range(0, w - tile, stride)) + [w - tile]
- E = torch.zeros(b, c, h * sf, w * sf, dtype=torch.half, device=devices.device_swinir).type_as(img)
- W = torch.zeros_like(E, dtype=torch.half, device=devices.device_swinir)
+ E = torch.zeros(b, c, h * sf, w * sf, dtype=devices.dtype, device=device_swinir).type_as(img)
+ W = torch.zeros_like(E, dtype=devices.dtype, device=device_swinir)
with tqdm(total=len(h_idx_list) * len(w_idx_list), desc="SwinIR tiles") as pbar:
for h_idx in h_idx_list:
@@ -159,3 +160,13 @@ def inference(img, model, tile, tile_overlap, window_size, scale):
output = E.div_(W)
return output
+
+
+def on_ui_settings():
+ import gradio as gr
+
+ shared.opts.add_option("SWIN_tile", shared.OptionInfo(192, "Tile size for all SwinIR.", gr.Slider, {"minimum": 16, "maximum": 512, "step": 16}, section=('upscaling', "Upscaling")))
+ shared.opts.add_option("SWIN_tile_overlap", shared.OptionInfo(8, "Tile overlap, in pixels for SwinIR. Low values = visible seam.", gr.Slider, {"minimum": 0, "maximum": 48, "step": 1}, section=('upscaling', "Upscaling")))
+
+
+script_callbacks.on_ui_settings(on_ui_settings)
diff --git a/modules/swinir_model_arch.py b/extensions-builtin/SwinIR/swinir_model_arch.py
similarity index 100%
rename from modules/swinir_model_arch.py
rename to extensions-builtin/SwinIR/swinir_model_arch.py
diff --git a/modules/swinir_model_arch_v2.py b/extensions-builtin/SwinIR/swinir_model_arch_v2.py
similarity index 100%
rename from modules/swinir_model_arch_v2.py
rename to extensions-builtin/SwinIR/swinir_model_arch_v2.py
diff --git a/extensions-builtin/prompt-bracket-checker/javascript/prompt-bracket-checker.js b/extensions-builtin/prompt-bracket-checker/javascript/prompt-bracket-checker.js
new file mode 100644
index 000000000..eccfb0f9d
--- /dev/null
+++ b/extensions-builtin/prompt-bracket-checker/javascript/prompt-bracket-checker.js
@@ -0,0 +1,107 @@
+// Stable Diffusion WebUI - Bracket checker
+// Version 1.0
+// By Hingashi no Florin/Bwin4L
+// Counts open and closed brackets (round, square, curly) in the prompt and negative prompt text boxes in the txt2img and img2img tabs.
+// If there's a mismatch, the keyword counter turns red and if you hover on it, a tooltip tells you what's wrong.
+
+function checkBrackets(evt) {
+ textArea = evt.target;
+ tabName = evt.target.parentElement.parentElement.id.split("_")[0];
+ counterElt = document.querySelector('gradio-app').shadowRoot.querySelector('#' + tabName + '_token_counter');
+
+ promptName = evt.target.parentElement.parentElement.id.includes('neg') ? ' negative' : '';
+
+ errorStringParen = '(' + tabName + promptName + ' prompt) - Different number of opening and closing parentheses detected.\n';
+ errorStringSquare = '[' + tabName + promptName + ' prompt] - Different number of opening and closing square brackets detected.\n';
+ errorStringCurly = '{' + tabName + promptName + ' prompt} - Different number of opening and closing curly brackets detected.\n';
+
+ openBracketRegExp = /\(/g;
+ closeBracketRegExp = /\)/g;
+
+ openSquareBracketRegExp = /\[/g;
+ closeSquareBracketRegExp = /\]/g;
+
+ openCurlyBracketRegExp = /\{/g;
+ closeCurlyBracketRegExp = /\}/g;
+
+ totalOpenBracketMatches = 0;
+ totalCloseBracketMatches = 0;
+ totalOpenSquareBracketMatches = 0;
+ totalCloseSquareBracketMatches = 0;
+ totalOpenCurlyBracketMatches = 0;
+ totalCloseCurlyBracketMatches = 0;
+
+ openBracketMatches = textArea.value.match(openBracketRegExp);
+ if(openBracketMatches) {
+ totalOpenBracketMatches = openBracketMatches.length;
+ }
+
+ closeBracketMatches = textArea.value.match(closeBracketRegExp);
+ if(closeBracketMatches) {
+ totalCloseBracketMatches = closeBracketMatches.length;
+ }
+
+ openSquareBracketMatches = textArea.value.match(openSquareBracketRegExp);
+ if(openSquareBracketMatches) {
+ totalOpenSquareBracketMatches = openSquareBracketMatches.length;
+ }
+
+ closeSquareBracketMatches = textArea.value.match(closeSquareBracketRegExp);
+ if(closeSquareBracketMatches) {
+ totalCloseSquareBracketMatches = closeSquareBracketMatches.length;
+ }
+
+ openCurlyBracketMatches = textArea.value.match(openCurlyBracketRegExp);
+ if(openCurlyBracketMatches) {
+ totalOpenCurlyBracketMatches = openCurlyBracketMatches.length;
+ }
+
+ closeCurlyBracketMatches = textArea.value.match(closeCurlyBracketRegExp);
+ if(closeCurlyBracketMatches) {
+ totalCloseCurlyBracketMatches = closeCurlyBracketMatches.length;
+ }
+
+ if(totalOpenBracketMatches != totalCloseBracketMatches) {
+ if(!counterElt.title.includes(errorStringParen)) {
+ counterElt.title += errorStringParen;
+ }
+ } else {
+ counterElt.title = counterElt.title.replace(errorStringParen, '');
+ }
+
+ if(totalOpenSquareBracketMatches != totalCloseSquareBracketMatches) {
+ if(!counterElt.title.includes(errorStringSquare)) {
+ counterElt.title += errorStringSquare;
+ }
+ } else {
+ counterElt.title = counterElt.title.replace(errorStringSquare, '');
+ }
+
+ if(totalOpenCurlyBracketMatches != totalCloseCurlyBracketMatches) {
+ if(!counterElt.title.includes(errorStringCurly)) {
+ counterElt.title += errorStringCurly;
+ }
+ } else {
+ counterElt.title = counterElt.title.replace(errorStringCurly, '');
+ }
+
+ if(counterElt.title != '') {
+ counterElt.style = 'color: #FF5555;';
+ } else {
+ counterElt.style = '';
+ }
+}
+
+var shadowRootLoaded = setInterval(function() {
+ var shadowTextArea = document.querySelector('gradio-app').shadowRoot.querySelectorAll('#txt2img_prompt > label > textarea');
+ if(shadowTextArea.length < 1) {
+ return false;
+ }
+
+ clearInterval(shadowRootLoaded);
+
+ document.querySelector('gradio-app').shadowRoot.querySelector('#txt2img_prompt').onkeyup = checkBrackets;
+ document.querySelector('gradio-app').shadowRoot.querySelector('#txt2img_neg_prompt').onkeyup = checkBrackets;
+ document.querySelector('gradio-app').shadowRoot.querySelector('#img2img_prompt').onkeyup = checkBrackets;
+ document.querySelector('gradio-app').shadowRoot.querySelector('#img2img_neg_prompt').onkeyup = checkBrackets;
+}, 1000);
diff --git a/extensions-builtin/roll-artist/scripts/roll-artist.py b/extensions-builtin/roll-artist/scripts/roll-artist.py
new file mode 100644
index 000000000..c3bc1fd09
--- /dev/null
+++ b/extensions-builtin/roll-artist/scripts/roll-artist.py
@@ -0,0 +1,50 @@
+import random
+
+from modules import script_callbacks, shared
+import gradio as gr
+
+art_symbol = '\U0001f3a8' # 🎨
+global_prompt = None
+related_ids = {"txt2img_prompt", "txt2img_clear_prompt", "img2img_prompt", "img2img_clear_prompt" }
+
+
+def roll_artist(prompt):
+ allowed_cats = set([x for x in shared.artist_db.categories() if len(shared.opts.random_artist_categories)==0 or x in shared.opts.random_artist_categories])
+ artist = random.choice([x for x in shared.artist_db.artists if x.category in allowed_cats])
+
+ return prompt + ", " + artist.name if prompt != '' else artist.name
+
+
+def add_roll_button(prompt):
+ roll = gr.Button(value=art_symbol, elem_id="roll", visible=len(shared.artist_db.artists) > 0)
+
+ roll.click(
+ fn=roll_artist,
+ _js="update_txt2img_tokens",
+ inputs=[
+ prompt,
+ ],
+ outputs=[
+ prompt,
+ ]
+ )
+
+
+def after_component(component, **kwargs):
+ global global_prompt
+
+ elem_id = kwargs.get('elem_id', None)
+ if elem_id not in related_ids:
+ return
+
+ if elem_id == "txt2img_prompt":
+ global_prompt = component
+ elif elem_id == "txt2img_clear_prompt":
+ add_roll_button(global_prompt)
+ elif elem_id == "img2img_prompt":
+ global_prompt = component
+ elif elem_id == "img2img_clear_prompt":
+ add_roll_button(global_prompt)
+
+
+script_callbacks.on_after_component(after_component)
diff --git a/html/footer.html b/html/footer.html
new file mode 100644
index 000000000..a8f2adf7e
--- /dev/null
+++ b/html/footer.html
@@ -0,0 +1,9 @@
+
diff --git a/html/licenses.html b/html/licenses.html
new file mode 100644
index 000000000..9eeaa0726
--- /dev/null
+++ b/html/licenses.html
@@ -0,0 +1,392 @@
+
+
+
+Parts of CodeFormer code had to be copied to be compatible with GFPGAN.
+
+S-Lab License 1.0
+
+Copyright 2022 S-Lab
+
+Redistribution and use for non-commercial purpose in source and
+binary forms, with or without modification, are permitted provided
+that the following conditions are met:
+
+1. Redistributions of source code must retain the above copyright
+ notice, this list of conditions and the following disclaimer.
+
+2. Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in
+ the documentation and/or other materials provided with the
+ distribution.
+
+3. Neither the name of the copyright holder nor the names of its
+ contributors may be used to endorse or promote products derived
+ from this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+In the event that redistribution and/or use for commercial purpose in
+source or binary forms, with or without modification is required,
+please contact the contributor(s) of the work.
+
+
+
+
+Code for architecture and reading models copied.
+
+MIT License
+
+Copyright (c) 2021 victorca25
+
+Permission is hereby granted, free of charge, to any person obtaining a copy
+of this software and associated documentation files (the "Software"), to deal
+in the Software without restriction, including without limitation the rights
+to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+copies of the Software, and to permit persons to whom the Software is
+furnished to do so, subject to the following conditions:
+
+The above copyright notice and this permission notice shall be included in all
+copies or substantial portions of the Software.
+
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+SOFTWARE.
+
+
+
+Some code is copied to support ESRGAN models.
+
+BSD 3-Clause License
+
+Copyright (c) 2021, Xintao Wang
+All rights reserved.
+
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+1. Redistributions of source code must retain the above copyright notice, this
+ list of conditions and the following disclaimer.
+
+2. Redistributions in binary form must reproduce the above copyright notice,
+ this list of conditions and the following disclaimer in the documentation
+ and/or other materials provided with the distribution.
+
+3. Neither the name of the copyright holder nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
+FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
+OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+
+
+Some code for compatibility with OSX is taken from lstein's repository.
+
+MIT License
+
+Copyright (c) 2022 InvokeAI Team
+
+Permission is hereby granted, free of charge, to any person obtaining a copy
+of this software and associated documentation files (the "Software"), to deal
+in the Software without restriction, including without limitation the rights
+to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+copies of the Software, and to permit persons to whom the Software is
+furnished to do so, subject to the following conditions:
+
+The above copyright notice and this permission notice shall be included in all
+copies or substantial portions of the Software.
+
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+SOFTWARE.
+
+
+
+Code added by contirubtors, most likely copied from this repository.
+
+MIT License
+
+Copyright (c) 2022 Machine Vision and Learning Group, LMU Munich
+
+Permission is hereby granted, free of charge, to any person obtaining a copy
+of this software and associated documentation files (the "Software"), to deal
+in the Software without restriction, including without limitation the rights
+to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+copies of the Software, and to permit persons to whom the Software is
+furnished to do so, subject to the following conditions:
+
+The above copyright notice and this permission notice shall be included in all
+copies or substantial portions of the Software.
+
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+SOFTWARE.
+
+
+
+Some small amounts of code borrowed and reworked.
+
+MIT License
+
+Copyright (c) 2022 pharmapsychotic
+
+Permission is hereby granted, free of charge, to any person obtaining a copy
+of this software and associated documentation files (the "Software"), to deal
+in the Software without restriction, including without limitation the rights
+to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+copies of the Software, and to permit persons to whom the Software is
+furnished to do so, subject to the following conditions:
+
+The above copyright notice and this permission notice shall be included in all
+copies or substantial portions of the Software.
+
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+SOFTWARE.
+
+
+
+Code added by contirubtors, most likely copied from this repository.
+
+
+ Apache License
+ Version 2.0, January 2004
+ http://www.apache.org/licenses/
+
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
+
+ 1. Definitions.
+
+ "License" shall mean the terms and conditions for use, reproduction,
+ and distribution as defined by Sections 1 through 9 of this document.
+
+ "Licensor" shall mean the copyright owner or entity authorized by
+ the copyright owner that is granting the License.
+
+ "Legal Entity" shall mean the union of the acting entity and all
+ other entities that control, are controlled by, or are under common
+ control with that entity. For the purposes of this definition,
+ "control" means (i) the power, direct or indirect, to cause the
+ direction or management of such entity, whether by contract or
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
+ outstanding shares, or (iii) beneficial ownership of such entity.
+
+ "You" (or "Your") shall mean an individual or Legal Entity
+ exercising permissions granted by this License.
+
+ "Source" form shall mean the preferred form for making modifications,
+ including but not limited to software source code, documentation
+ source, and configuration files.
+
+ "Object" form shall mean any form resulting from mechanical
+ transformation or translation of a Source form, including but
+ not limited to compiled object code, generated documentation,
+ and conversions to other media types.
+
+ "Work" shall mean the work of authorship, whether in Source or
+ Object form, made available under the License, as indicated by a
+ copyright notice that is included in or attached to the work
+ (an example is provided in the Appendix below).
+
+ "Derivative Works" shall mean any work, whether in Source or Object
+ form, that is based on (or derived from) the Work and for which the
+ editorial revisions, annotations, elaborations, or other modifications
+ represent, as a whole, an original work of authorship. For the purposes
+ of this License, Derivative Works shall not include works that remain
+ separable from, or merely link (or bind by name) to the interfaces of,
+ the Work and Derivative Works thereof.
+
+ "Contribution" shall mean any work of authorship, including
+ the original version of the Work and any modifications or additions
+ to that Work or Derivative Works thereof, that is intentionally
+ submitted to Licensor for inclusion in the Work by the copyright owner
+ or by an individual or Legal Entity authorized to submit on behalf of
+ the copyright owner. For the purposes of this definition, "submitted"
+ means any form of electronic, verbal, or written communication sent
+ to the Licensor or its representatives, including but not limited to
+ communication on electronic mailing lists, source code control systems,
+ and issue tracking systems that are managed by, or on behalf of, the
+ Licensor for the purpose of discussing and improving the Work, but
+ excluding communication that is conspicuously marked or otherwise
+ designated in writing by the copyright owner as "Not a Contribution."
+
+ "Contributor" shall mean Licensor and any individual or Legal Entity
+ on behalf of whom a Contribution has been received by Licensor and
+ subsequently incorporated within the Work.
+
+ 2. Grant of Copyright License. Subject to the terms and conditions of
+ this License, each Contributor hereby grants to You a perpetual,
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
+ copyright license to reproduce, prepare Derivative Works of,
+ publicly display, publicly perform, sublicense, and distribute the
+ Work and such Derivative Works in Source or Object form.
+
+ 3. Grant of Patent License. Subject to the terms and conditions of
+ this License, each Contributor hereby grants to You a perpetual,
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
+ (except as stated in this section) patent license to make, have made,
+ use, offer to sell, sell, import, and otherwise transfer the Work,
+ where such license applies only to those patent claims licensable
+ by such Contributor that are necessarily infringed by their
+ Contribution(s) alone or by combination of their Contribution(s)
+ with the Work to which such Contribution(s) was submitted. If You
+ institute patent litigation against any entity (including a
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
+ or a Contribution incorporated within the Work constitutes direct
+ or contributory patent infringement, then any patent licenses
+ granted to You under this License for that Work shall terminate
+ as of the date such litigation is filed.
+
+ 4. Redistribution. You may reproduce and distribute copies of the
+ Work or Derivative Works thereof in any medium, with or without
+ modifications, and in Source or Object form, provided that You
+ meet the following conditions:
+
+ (a) You must give any other recipients of the Work or
+ Derivative Works a copy of this License; and
+
+ (b) You must cause any modified files to carry prominent notices
+ stating that You changed the files; and
+
+ (c) You must retain, in the Source form of any Derivative Works
+ that You distribute, all copyright, patent, trademark, and
+ attribution notices from the Source form of the Work,
+ excluding those notices that do not pertain to any part of
+ the Derivative Works; and
+
+ (d) If the Work includes a "NOTICE" text file as part of its
+ distribution, then any Derivative Works that You distribute must
+ include a readable copy of the attribution notices contained
+ within such NOTICE file, excluding those notices that do not
+ pertain to any part of the Derivative Works, in at least one
+ of the following places: within a NOTICE text file distributed
+ as part of the Derivative Works; within the Source form or
+ documentation, if provided along with the Derivative Works; or,
+ within a display generated by the Derivative Works, if and
+ wherever such third-party notices normally appear. The contents
+ of the NOTICE file are for informational purposes only and
+ do not modify the License. You may add Your own attribution
+ notices within Derivative Works that You distribute, alongside
+ or as an addendum to the NOTICE text from the Work, provided
+ that such additional attribution notices cannot be construed
+ as modifying the License.
+
+ You may add Your own copyright statement to Your modifications and
+ may provide additional or different license terms and conditions
+ for use, reproduction, or distribution of Your modifications, or
+ for any such Derivative Works as a whole, provided Your use,
+ reproduction, and distribution of the Work otherwise complies with
+ the conditions stated in this License.
+
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
+ any Contribution intentionally submitted for inclusion in the Work
+ by You to the Licensor shall be under the terms and conditions of
+ this License, without any additional terms or conditions.
+ Notwithstanding the above, nothing herein shall supersede or modify
+ the terms of any separate license agreement you may have executed
+ with Licensor regarding such Contributions.
+
+ 6. Trademarks. This License does not grant permission to use the trade
+ names, trademarks, service marks, or product names of the Licensor,
+ except as required for reasonable and customary use in describing the
+ origin of the Work and reproducing the content of the NOTICE file.
+
+ 7. Disclaimer of Warranty. Unless required by applicable law or
+ agreed to in writing, Licensor provides the Work (and each
+ Contributor provides its Contributions) on an "AS IS" BASIS,
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
+ implied, including, without limitation, any warranties or conditions
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
+ PARTICULAR PURPOSE. You are solely responsible for determining the
+ appropriateness of using or redistributing the Work and assume any
+ risks associated with Your exercise of permissions under this License.
+
+ 8. Limitation of Liability. In no event and under no legal theory,
+ whether in tort (including negligence), contract, or otherwise,
+ unless required by applicable law (such as deliberate and grossly
+ negligent acts) or agreed to in writing, shall any Contributor be
+ liable to You for damages, including any direct, indirect, special,
+ incidental, or consequential damages of any character arising as a
+ result of this License or out of the use or inability to use the
+ Work (including but not limited to damages for loss of goodwill,
+ work stoppage, computer failure or malfunction, or any and all
+ other commercial damages or losses), even if such Contributor
+ has been advised of the possibility of such damages.
+
+ 9. Accepting Warranty or Additional Liability. While redistributing
+ the Work or Derivative Works thereof, You may choose to offer,
+ and charge a fee for, acceptance of support, warranty, indemnity,
+ or other liability obligations and/or rights consistent with this
+ License. However, in accepting such obligations, You may act only
+ on Your own behalf and on Your sole responsibility, not on behalf
+ of any other Contributor, and only if You agree to indemnify,
+ defend, and hold each Contributor harmless for any liability
+ incurred by, or claims asserted against, such Contributor by reason
+ of your accepting any such warranty or additional liability.
+
+ END OF TERMS AND CONDITIONS
+
+ APPENDIX: How to apply the Apache License to your work.
+
+ To apply the Apache License to your work, attach the following
+ boilerplate notice, with the fields enclosed by brackets "[]"
+ replaced with your own identifying information. (Don't include
+ the brackets!) The text should be enclosed in the appropriate
+ comment syntax for the file format. We also recommend that a
+ file or class name and description of purpose be included on the
+ same "printed page" as the copyright notice for easier
+ identification within third-party archives.
+
+ Copyright [2021] [SwinIR Authors]
+
+ Licensed under the Apache License, Version 2.0 (the "License");
+ you may not use this file except in compliance with the License.
+ You may obtain a copy of the License at
+
+ http://www.apache.org/licenses/LICENSE-2.0
+
+ Unless required by applicable law or agreed to in writing, software
+ distributed under the License is distributed on an "AS IS" BASIS,
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ See the License for the specific language governing permissions and
+ limitations under the License.
+
+
diff --git a/javascript/contextMenus.js b/javascript/contextMenus.js
index fe67c42e1..11bcce1bc 100644
--- a/javascript/contextMenus.js
+++ b/javascript/contextMenus.js
@@ -9,7 +9,7 @@ contextMenuInit = function(){
function showContextMenu(event,element,menuEntries){
let posx = event.clientX + document.body.scrollLeft + document.documentElement.scrollLeft;
- let posy = event.clientY + document.body.scrollTop + document.documentElement.scrollTop;
+ let posy = event.clientY + document.body.scrollTop + document.documentElement.scrollTop;
let oldMenu = gradioApp().querySelector('#context-menu')
if(oldMenu){
@@ -61,15 +61,15 @@ contextMenuInit = function(){
}
- function appendContextMenuOption(targetEmementSelector,entryName,entryFunction){
-
- currentItems = menuSpecs.get(targetEmementSelector)
-
+ function appendContextMenuOption(targetElementSelector,entryName,entryFunction){
+
+ currentItems = menuSpecs.get(targetElementSelector)
+
if(!currentItems){
currentItems = []
- menuSpecs.set(targetEmementSelector,currentItems);
+ menuSpecs.set(targetElementSelector,currentItems);
}
- let newItem = {'id':targetEmementSelector+'_'+uid(),
+ let newItem = {'id':targetElementSelector+'_'+uid(),
'name':entryName,
'func':entryFunction,
'isNew':true}
@@ -97,7 +97,7 @@ contextMenuInit = function(){
if(source.id && source.id.indexOf('check_progress')>-1){
return
}
-
+
let oldMenu = gradioApp().querySelector('#context-menu')
if(oldMenu){
oldMenu.remove()
@@ -117,7 +117,7 @@ contextMenuInit = function(){
})
});
eventListenerApplied=true
-
+
}
return [appendContextMenuOption, removeContextMenuOption, addContextMenuEventListener]
@@ -152,8 +152,8 @@ addContextMenuEventListener = initResponse[2];
generateOnRepeat('#img2img_generate','#img2img_interrupt');
})
- let cancelGenerateForever = function(){
- clearInterval(window.generateOnRepeatInterval)
+ let cancelGenerateForever = function(){
+ clearInterval(window.generateOnRepeatInterval)
}
appendContextMenuOption('#txt2img_interrupt','Cancel generate forever',cancelGenerateForever)
@@ -162,7 +162,7 @@ addContextMenuEventListener = initResponse[2];
appendContextMenuOption('#img2img_generate', 'Cancel generate forever',cancelGenerateForever)
appendContextMenuOption('#roll','Roll three',
- function(){
+ function(){
let rollbutton = get_uiCurrentTabContent().querySelector('#roll');
setTimeout(function(){rollbutton.click()},100)
setTimeout(function(){rollbutton.click()},200)
diff --git a/javascript/dragdrop.js b/javascript/dragdrop.js
index 3ed1cb3c6..fe0089248 100644
--- a/javascript/dragdrop.js
+++ b/javascript/dragdrop.js
@@ -9,11 +9,19 @@ function dropReplaceImage( imgWrap, files ) {
return;
}
+ const tmpFile = files[0];
+
imgWrap.querySelector('.modify-upload button + button, .touch-none + div button + button')?.click();
const callback = () => {
const fileInput = imgWrap.querySelector('input[type="file"]');
if ( fileInput ) {
- fileInput.files = files;
+ if ( files.length === 0 ) {
+ files = new DataTransfer();
+ files.items.add(tmpFile);
+ fileInput.files = files.files;
+ } else {
+ fileInput.files = files;
+ }
fileInput.dispatchEvent(new Event('change'));
}
};
diff --git a/javascript/generationParams.js b/javascript/generationParams.js
new file mode 100644
index 000000000..95f050939
--- /dev/null
+++ b/javascript/generationParams.js
@@ -0,0 +1,33 @@
+// attaches listeners to the txt2img and img2img galleries to update displayed generation param text when the image changes
+
+let txt2img_gallery, img2img_gallery, modal = undefined;
+onUiUpdate(function(){
+ if (!txt2img_gallery) {
+ txt2img_gallery = attachGalleryListeners("txt2img")
+ }
+ if (!img2img_gallery) {
+ img2img_gallery = attachGalleryListeners("img2img")
+ }
+ if (!modal) {
+ modal = gradioApp().getElementById('lightboxModal')
+ modalObserver.observe(modal, { attributes : true, attributeFilter : ['style'] });
+ }
+});
+
+let modalObserver = new MutationObserver(function(mutations) {
+ mutations.forEach(function(mutationRecord) {
+ let selectedTab = gradioApp().querySelector('#tabs div button.bg-white')?.innerText
+ if (mutationRecord.target.style.display === 'none' && selectedTab === 'txt2img' || selectedTab === 'img2img')
+ gradioApp().getElementById(selectedTab+"_generation_info_button").click()
+ });
+});
+
+function attachGalleryListeners(tab_name) {
+ gallery = gradioApp().querySelector('#'+tab_name+'_gallery')
+ gallery?.addEventListener('click', () => gradioApp().getElementById(tab_name+"_generation_info_button").click());
+ gallery?.addEventListener('keydown', (e) => {
+ if (e.keyCode == 37 || e.keyCode == 39) // left or right arrow
+ gradioApp().getElementById(tab_name+"_generation_info_button").click()
+ });
+ return gallery;
+}
diff --git a/javascript/hints.js b/javascript/hints.js
index 623bc25cd..63e17e05f 100644
--- a/javascript/hints.js
+++ b/javascript/hints.js
@@ -6,6 +6,7 @@ titles = {
"GFPGAN": "Restore low quality faces using GFPGAN neural network",
"Euler a": "Euler Ancestral - very creative, each can get a completely different picture depending on step count, setting steps to higher than 30-40 does not help",
"DDIM": "Denoising Diffusion Implicit Models - best at inpainting",
+ "DPM adaptive": "Ignores step count - uses a number of steps determined by the CFG and resolution",
"Batch count": "How many batches of images to create",
"Batch size": "How many image to create in a single batch",
@@ -17,6 +18,7 @@ titles = {
"\u2199\ufe0f": "Read generation parameters from prompt or last generation if prompt is empty into user interface.",
"\u{1f4c2}": "Open images output directory",
"\u{1f4be}": "Save style",
+ "\U0001F5D1": "Clear prompt",
"\u{1f4cb}": "Apply selected styles to current prompt",
"Inpaint a part of image": "Draw a mask over an image, and the script will regenerate the masked area with content according to prompt",
@@ -62,8 +64,8 @@ titles = {
"Interrogate": "Reconstruct prompt from existing image and put it into the prompt field.",
- "Images filename pattern": "Use following tags to define how filenames for images are chosen: [steps], [cfg], [prompt], [prompt_no_styles], [prompt_spaces], [width], [height], [styles], [sampler], [seed], [model_hash], [prompt_words], [date], [datetime], [datetime], [datetime], [job_timestamp]; leave empty for default.",
- "Directory name pattern": "Use following tags to define how subdirectories for images and grids are chosen: [steps], [cfg], [prompt], [prompt_no_styles], [prompt_spaces], [width], [height], [styles], [sampler], [seed], [model_hash], [prompt_words], [date], [datetime], [datetime], [datetime], [job_timestamp]; leave empty for default.",
+ "Images filename pattern": "Use following tags to define how filenames for images are chosen: [steps], [cfg], [prompt], [prompt_no_styles], [prompt_spaces], [width], [height], [styles], [sampler], [seed], [model_hash], [model_name], [prompt_words], [date], [datetime], [datetime], [datetime], [job_timestamp]; leave empty for default.",
+ "Directory name pattern": "Use following tags to define how subdirectories for images and grids are chosen: [steps], [cfg], [prompt], [prompt_no_styles], [prompt_spaces], [width], [height], [styles], [sampler], [seed], [model_hash], [model_name], [prompt_words], [date], [datetime], [datetime], [datetime], [job_timestamp]; leave empty for default.",
"Max prompt words": "Set the maximum number of words to be used in the [prompt_words] option; ATTENTION: If the words are too long, they may exceed the maximum length of the file path that the system can handle",
"Loopback": "Process an image, use it as an input, repeat.",
@@ -94,6 +96,11 @@ titles = {
"Add difference": "Result = A + (B - C) * M",
"Learning rate": "how fast should the training go. Low values will take longer to train, high values may fail to converge (not generate accurate results) and/or may break the embedding (This has happened if you see Loss: nan in the training info textbox. If this happens, you need to manually restore your embedding from an older not-broken backup).\n\nYou can set a single numeric value, or multiple learning rates using the syntax:\n\n rate_1:max_steps_1, rate_2:max_steps_2, ...\n\nEG: 0.005:100, 1e-3:1000, 1e-5\n\nWill train with rate of 0.005 for first 100 steps, then 1e-3 until 1000 steps, then 1e-5 for all remaining steps.",
+
+ "Clip skip": "Early stopping parameter for CLIP model; 1 is stop at last layer as usual, 2 is stop at penultimate layer, etc.",
+
+ "Approx NN": "Cheap neural network approximation. Very fast compared to VAE, but produces pictures with 4 times smaller horizontal/vertical resoluton and lower quality.",
+ "Approx cheap": "Very cheap approximation. Very fast compared to VAE, but produces pictures with 8 times smaller horizontal/vertical resoluton and extremely low quality."
}
diff --git a/javascript/notification.js b/javascript/notification.js
index f96de313b..040a3afac 100644
--- a/javascript/notification.js
+++ b/javascript/notification.js
@@ -15,7 +15,7 @@ onUiUpdate(function(){
}
}
- const galleryPreviews = gradioApp().querySelectorAll('img.h-full.w-full.overflow-hidden');
+ const galleryPreviews = gradioApp().querySelectorAll('div[id^="tab_"][style*="display: block"] img.h-full.w-full.overflow-hidden');
if (galleryPreviews == null) return;
diff --git a/javascript/progressbar.js b/javascript/progressbar.js
index 671fde340..d6323ed92 100644
--- a/javascript/progressbar.js
+++ b/javascript/progressbar.js
@@ -3,7 +3,7 @@ global_progressbars = {}
galleries = {}
galleryObservers = {}
-// this tracks laumnches of window.setTimeout for progressbar to prevent starting a new timeout when the previous is still running
+// this tracks launches of window.setTimeout for progressbar to prevent starting a new timeout when the previous is still running
timeoutIds = {}
function check_progressbar(id_part, id_progressbar, id_progressbar_span, id_skip, id_interrupt, id_preview, id_gallery){
@@ -20,21 +20,21 @@ function check_progressbar(id_part, id_progressbar, id_progressbar_span, id_skip
var skip = id_skip ? gradioApp().getElementById(id_skip) : null
var interrupt = gradioApp().getElementById(id_interrupt)
-
+
if(opts.show_progress_in_title && progressbar && progressbar.offsetParent){
if(progressbar.innerText){
- let newtitle = 'Stable Diffusion - ' + progressbar.innerText
+ let newtitle = '[' + progressbar.innerText.trim() + '] Stable Diffusion';
if(document.title != newtitle){
- document.title = newtitle;
+ document.title = newtitle;
}
}else{
let newtitle = 'Stable Diffusion'
if(document.title != newtitle){
- document.title = newtitle;
+ document.title = newtitle;
}
}
}
-
+
if(progressbar!= null && progressbar != global_progressbars[id_progressbar]){
global_progressbars[id_progressbar] = progressbar
@@ -63,7 +63,7 @@ function check_progressbar(id_part, id_progressbar, id_progressbar_span, id_skip
skip.style.display = "none"
}
interrupt.style.display = "none"
-
+
//disconnect observer once generation finished, so user can close selected image if they want
if (galleryObservers[id_gallery]) {
galleryObservers[id_gallery].disconnect();
@@ -92,14 +92,26 @@ function check_gallery(id_gallery){
if (prevSelectedIndex !== -1 && galleryButtons.length>prevSelectedIndex && !galleryBtnSelected) {
// automatically re-open previously selected index (if exists)
activeElement = gradioApp().activeElement;
+ let scrollX = window.scrollX;
+ let scrollY = window.scrollY;
galleryButtons[prevSelectedIndex].click();
showGalleryImage();
+ // When the gallery button is clicked, it gains focus and scrolls itself into view
+ // We need to scroll back to the previous position
+ setTimeout(function (){
+ window.scrollTo(scrollX, scrollY);
+ }, 50);
+
if(activeElement){
// i fought this for about an hour; i don't know why the focus is lost or why this helps recover it
- // if somenoe has a better solution please by all means
- setTimeout(function() { activeElement.focus() }, 1);
+ // if someone has a better solution please by all means
+ setTimeout(function (){
+ activeElement.focus({
+ preventScroll: true // Refocus the element that was focused before the gallery was opened without scrolling to it
+ })
+ }, 1);
}
}
})
diff --git a/javascript/ui.js b/javascript/ui.js
index 95cfd106f..ee226927e 100644
--- a/javascript/ui.js
+++ b/javascript/ui.js
@@ -1,4 +1,4 @@
-// various functions for interation with ui.py not large enough to warrant putting them in separate files
+// various functions for interaction with ui.py not large enough to warrant putting them in separate files
function set_theme(theme){
gradioURL = window.location.href
@@ -8,8 +8,8 @@ function set_theme(theme){
}
function selected_gallery_index(){
- var buttons = gradioApp().querySelectorAll('[style="display: block;"].tabitem .gallery-item')
- var button = gradioApp().querySelector('[style="display: block;"].tabitem .gallery-item.\\!ring-2')
+ var buttons = gradioApp().querySelectorAll('[style="display: block;"].tabitem div[id$=_gallery] .gallery-item')
+ var button = gradioApp().querySelector('[style="display: block;"].tabitem div[id$=_gallery] .gallery-item.\\!ring-2')
var result = -1
buttons.forEach(function(v, i){ if(v==button) { result = i } })
@@ -19,7 +19,7 @@ function selected_gallery_index(){
function extract_image_from_gallery(gallery){
if(gallery.length == 1){
- return gallery[0]
+ return [gallery[0]]
}
index = selected_gallery_index()
@@ -28,7 +28,7 @@ function extract_image_from_gallery(gallery){
return [null]
}
- return gallery[index];
+ return [gallery[index]];
}
function args_to_array(args){
@@ -100,7 +100,7 @@ function create_submit_args(args){
// As it is currently, txt2img and img2img send back the previous output args (txt2img_gallery, generation_info, html_info) whenever you generate a new image.
// This can lead to uploading a huge gallery of previously generated images, which leads to an unnecessary delay between submitting and beginning to generate.
- // I don't know why gradio is seding outputs along with inputs, but we can prevent sending the image gallery here, which seems to be an issue for some.
+ // I don't know why gradio is sending outputs along with inputs, but we can prevent sending the image gallery here, which seems to be an issue for some.
// If gradio at some point stops sending outputs, this may break something
if(Array.isArray(res[res.length - 3])){
res[res.length - 3] = null
@@ -131,6 +131,15 @@ function ask_for_style_name(_, prompt_text, negative_prompt_text) {
return [name_, prompt_text, negative_prompt_text]
}
+function confirm_clear_prompt(prompt, negative_prompt) {
+ if(confirm("Delete prompt?")) {
+ prompt = ""
+ negative_prompt = ""
+ }
+
+ return [prompt, negative_prompt]
+}
+
opts = {}
@@ -179,6 +188,17 @@ onUiUpdate(function(){
img2img_textarea = gradioApp().querySelector("#img2img_prompt > label > textarea");
img2img_textarea?.addEventListener("input", () => update_token_counter("img2img_token_button"));
}
+
+ show_all_pages = gradioApp().getElementById('settings_show_all_pages')
+ settings_tabs = gradioApp().querySelector('#settings div')
+ if(show_all_pages && settings_tabs){
+ settings_tabs.appendChild(show_all_pages)
+ show_all_pages.onclick = function(){
+ gradioApp().querySelectorAll('#settings > div').forEach(function(elem){
+ elem.style.display = "block";
+ })
+ }
+ }
})
let txt2img_textarea, img2img_textarea = undefined;
diff --git a/launch.py b/launch.py
index 5fa115606..af0d418bc 100644
--- a/launch.py
+++ b/launch.py
@@ -5,6 +5,8 @@ import sys
import importlib.util
import shlex
import platform
+import argparse
+import json
dir_repos = "repositories"
dir_extensions = "extensions"
@@ -17,6 +19,19 @@ def extract_arg(args, name):
return [x for x in args if x != name], name in args
+def extract_opt(args, name):
+ opt = None
+ is_present = False
+ if name in args:
+ is_present = True
+ idx = args.index(name)
+ del args[idx]
+ if idx < len(args) and args[idx][0] != "-":
+ opt = args[idx]
+ del args[idx]
+ return args, is_present, opt
+
+
def run(command, desc=None, errdesc=None, custom_env=None):
if desc is not None:
print(desc)
@@ -105,56 +120,78 @@ def version_check(commit):
print("version check failed", e)
-def run_extensions_installers():
+def run_extension_installer(extension_dir):
+ path_installer = os.path.join(extension_dir, "install.py")
+ if not os.path.isfile(path_installer):
+ return
+
+ try:
+ env = os.environ.copy()
+ env['PYTHONPATH'] = os.path.abspath(".")
+
+ print(run(f'"{python}" "{path_installer}"', errdesc=f"Error running install.py for extension {extension_dir}", custom_env=env))
+ except Exception as e:
+ print(e, file=sys.stderr)
+
+
+def list_extensions(settings_file):
+ settings = {}
+
+ try:
+ if os.path.isfile(settings_file):
+ with open(settings_file, "r", encoding="utf8") as file:
+ settings = json.load(file)
+ except Exception as e:
+ print(e, file=sys.stderr)
+
+ disabled_extensions = set(settings.get('disabled_extensions', []))
+
+ return [x for x in os.listdir(dir_extensions) if x not in disabled_extensions]
+
+
+def run_extensions_installers(settings_file):
if not os.path.isdir(dir_extensions):
return
- for dirname_extension in os.listdir(dir_extensions):
- path_installer = os.path.join(dir_extensions, dirname_extension, "install.py")
- if not os.path.isfile(path_installer):
- continue
-
- try:
- env = os.environ.copy()
- env['PYTHONPATH'] = os.path.abspath(".")
-
- print(run(f'"{python}" "{path_installer}"', errdesc=f"Error running install.py for extension {dirname_extension}", custom_env=env))
- except Exception as e:
- print(e, file=sys.stderr)
+ for dirname_extension in list_extensions(settings_file):
+ run_extension_installer(os.path.join(dir_extensions, dirname_extension))
-def prepare_enviroment():
+def prepare_environment():
torch_command = os.environ.get('TORCH_COMMAND', "pip install torch==1.12.1+cu113 torchvision==0.13.1+cu113 --extra-index-url https://download.pytorch.org/whl/cu113")
requirements_file = os.environ.get('REQS_FILE', "requirements_versions.txt")
commandline_args = os.environ.get('COMMANDLINE_ARGS', "")
gfpgan_package = os.environ.get('GFPGAN_PACKAGE', "git+https://github.com/TencentARC/GFPGAN.git@8d2447a2d918f8eba5a4a01463fd48e45126a379")
clip_package = os.environ.get('CLIP_PACKAGE', "git+https://github.com/openai/CLIP.git@d50d76daa670286dd6cacf3bcd80b5e4823fc8e1")
- deepdanbooru_package = os.environ.get('DEEPDANBOORU_PACKAGE', "git+https://github.com/KichangKim/DeepDanbooru.git@d91a2963bf87c6a770d74894667e9ffa9f6de7ff")
+ openclip_package = os.environ.get('OPENCLIP_PACKAGE', "git+https://github.com/mlfoundations/open_clip.git@bb6e834e9c70d9c27d0dc3ecedeebeaeb1ffad6b")
xformers_windows_package = os.environ.get('XFORMERS_WINDOWS_PACKAGE', 'https://github.com/C43H66N12O12S2/stable-diffusion-webui/releases/download/f/xformers-0.0.14.dev0-cp310-cp310-win_amd64.whl')
- stable_diffusion_repo = os.environ.get('STABLE_DIFFUSION_REPO', "https://github.com/CompVis/stable-diffusion.git")
- taming_transformers_repo = os.environ.get('TAMING_REANSFORMERS_REPO', "https://github.com/CompVis/taming-transformers.git")
+ stable_diffusion_repo = os.environ.get('STABLE_DIFFUSION_REPO', "https://github.com/Stability-AI/stablediffusion.git")
+ taming_transformers_repo = os.environ.get('TAMING_TRANSFORMERS_REPO', "https://github.com/CompVis/taming-transformers.git")
k_diffusion_repo = os.environ.get('K_DIFFUSION_REPO', 'https://github.com/crowsonkb/k-diffusion.git')
- codeformer_repo = os.environ.get('CODEFORMET_REPO', 'https://github.com/sczhou/CodeFormer.git')
+ codeformer_repo = os.environ.get('CODEFORMER_REPO', 'https://github.com/sczhou/CodeFormer.git')
blip_repo = os.environ.get('BLIP_REPO', 'https://github.com/salesforce/BLIP.git')
- stable_diffusion_commit_hash = os.environ.get('STABLE_DIFFUSION_COMMIT_HASH', "69ae4b35e0a0f6ee1af8bb9a5d0016ccb27e36dc")
+ stable_diffusion_commit_hash = os.environ.get('STABLE_DIFFUSION_COMMIT_HASH', "47b6b607fdd31875c9279cd2f4f16b92e4ea958e")
taming_transformers_commit_hash = os.environ.get('TAMING_TRANSFORMERS_COMMIT_HASH', "24268930bf1dce879235a7fddd0b2355b84d7ea6")
- k_diffusion_commit_hash = os.environ.get('K_DIFFUSION_COMMIT_HASH', "60e5042ca0da89c14d1dd59d73883280f8fce991")
+ k_diffusion_commit_hash = os.environ.get('K_DIFFUSION_COMMIT_HASH', "5b3af030dd83e0297272d861c19477735d0317ec")
codeformer_commit_hash = os.environ.get('CODEFORMER_COMMIT_HASH', "c5b4593074ba6214284d6acd5f1719b6c5d739af")
blip_commit_hash = os.environ.get('BLIP_COMMIT_HASH', "48211a1594f1321b00f14c9f7a5b4813144b2fb9")
sys.argv += shlex.split(commandline_args)
- test_argv = [x for x in sys.argv if x != '--tests']
+ parser = argparse.ArgumentParser()
+ parser.add_argument("--ui-settings-file", type=str, help="filename to use for ui settings", default='config.json')
+ args, _ = parser.parse_known_args(sys.argv)
+
+ sys.argv, _ = extract_arg(sys.argv, '-f')
sys.argv, skip_torch_cuda_test = extract_arg(sys.argv, '--skip-torch-cuda-test')
sys.argv, reinstall_xformers = extract_arg(sys.argv, '--reinstall-xformers')
sys.argv, update_check = extract_arg(sys.argv, '--update-check')
- sys.argv, run_tests = extract_arg(sys.argv, '--tests')
+ sys.argv, run_tests, test_dir = extract_opt(sys.argv, '--tests')
xformers = '--xformers' in sys.argv
- deepdanbooru = '--deepdanbooru' in sys.argv
ngrok = '--ngrok' in sys.argv
try:
@@ -177,6 +214,9 @@ def prepare_enviroment():
if not is_installed("clip"):
run_pip(f"install {clip_package}", "clip")
+ if not is_installed("open_clip"):
+ run_pip(f"install {openclip_package}", "open_clip")
+
if (not is_installed("xformers") or reinstall_xformers) and xformers:
if platform.system() == "Windows":
if platform.python_version().startswith("3.10"):
@@ -189,15 +229,12 @@ def prepare_enviroment():
elif platform.system() == "Linux":
run_pip("install xformers", "xformers")
- if not is_installed("deepdanbooru") and deepdanbooru:
- run_pip(f"install {deepdanbooru_package}#egg=deepdanbooru[tensorflow] tensorflow==2.10.0 tensorflow-io==0.27.0", "deepdanbooru")
-
if not is_installed("pyngrok") and ngrok:
run_pip("install pyngrok", "ngrok")
os.makedirs(dir_repos, exist_ok=True)
- git_clone(stable_diffusion_repo, repo_dir('stable-diffusion'), "Stable Diffusion", stable_diffusion_commit_hash)
+ git_clone(stable_diffusion_repo, repo_dir('stable-diffusion-stability-ai'), "Stable Diffusion", stable_diffusion_commit_hash)
git_clone(taming_transformers_repo, repo_dir('taming-transformers'), "Taming Transformers", taming_transformers_commit_hash)
git_clone(k_diffusion_repo, repo_dir('k-diffusion'), "K-diffusion", k_diffusion_commit_hash)
git_clone(codeformer_repo, repo_dir('CodeFormer'), "CodeFormer", codeformer_commit_hash)
@@ -208,7 +245,7 @@ def prepare_enviroment():
run_pip(f"install -r {requirements_file}", "requirements for Web UI")
- run_extensions_installers()
+ run_extensions_installers(settings_file=args.ui_settings_file)
if update_check:
version_check(commit)
@@ -218,24 +255,30 @@ def prepare_enviroment():
exit(0)
if run_tests:
- tests(test_argv)
- exit(0)
+ exitcode = tests(test_dir)
+ exit(exitcode)
-def tests(argv):
- if "--api" not in argv:
- argv.append("--api")
+def tests(test_dir):
+ if "--api" not in sys.argv:
+ sys.argv.append("--api")
+ if "--ckpt" not in sys.argv:
+ sys.argv.append("--ckpt")
+ sys.argv.append("./test/test_files/empty.pt")
+ if "--skip-torch-cuda-test" not in sys.argv:
+ sys.argv.append("--skip-torch-cuda-test")
- print(f"Launching Web UI in another process for testing with arguments: {' '.join(argv[1:])}")
+ print(f"Launching Web UI in another process for testing with arguments: {' '.join(sys.argv[1:])}")
with open('test/stdout.txt', "w", encoding="utf8") as stdout, open('test/stderr.txt', "w", encoding="utf8") as stderr:
- proc = subprocess.Popen([sys.executable, *argv], stdout=stdout, stderr=stderr)
+ proc = subprocess.Popen([sys.executable, *sys.argv], stdout=stdout, stderr=stderr)
import test.server_poll
- test.server_poll.run_tests()
+ exitcode = test.server_poll.run_tests(proc, test_dir)
print(f"Stopping Web UI process with id {proc.pid}")
proc.kill()
+ return exitcode
def start():
@@ -248,5 +291,5 @@ def start():
if __name__ == "__main__":
- prepare_enviroment()
+ prepare_environment()
start()
diff --git a/models/VAE-approx/model.pt b/models/VAE-approx/model.pt
new file mode 100644
index 000000000..8bda9d6e9
Binary files /dev/null and b/models/VAE-approx/model.pt differ
diff --git a/modules/api/api.py b/modules/api/api.py
index 688469ad7..48a70a44b 100644
--- a/modules/api/api.py
+++ b/modules/api/api.py
@@ -1,18 +1,27 @@
import base64
import io
import time
+import datetime
import uvicorn
from threading import Lock
-from gradio.processing_utils import encode_pil_to_base64, decode_base64_to_file, decode_base64_to_image
-from fastapi import APIRouter, Depends, FastAPI, HTTPException
+from io import BytesIO
+from gradio.processing_utils import decode_base64_to_file
+from fastapi import APIRouter, Depends, FastAPI, HTTPException, Request, Response
+from fastapi.security import HTTPBasic, HTTPBasicCredentials
+from secrets import compare_digest
+
import modules.shared as shared
+from modules import sd_samplers, deepbooru, sd_hijack
from modules.api.models import *
from modules.processing import StableDiffusionProcessingTxt2Img, StableDiffusionProcessingImg2Img, process_images
-from modules.sd_samplers import all_samplers
from modules.extras import run_extras, run_pnginfo
-from PIL import PngImagePlugin
-from modules.sd_models import checkpoints_list
+from modules.textual_inversion.textual_inversion import create_embedding, train_embedding
+from modules.textual_inversion.preprocess import preprocess
+from modules.hypernetworks.hypernetwork import create_hypernetwork, train_hypernetwork
+from PIL import PngImagePlugin,Image
+from modules.sd_models import checkpoints_list, find_checkpoint_config
from modules.realesrgan_model import get_realesrgan_models
+from modules import devices
from typing import List
def upscaler_to_index(name: str):
@@ -22,8 +31,12 @@ def upscaler_to_index(name: str):
raise HTTPException(status_code=400, detail=f"Invalid upscaler, needs to be on of these: {' , '.join([x.name for x in sd_upscalers])}")
-sampler_to_index = lambda name: next(filter(lambda row: name.lower() == row[1].name.lower(), enumerate(all_samplers)), None)
+def validate_sampler_name(name):
+ config = sd_samplers.all_samplers_map.get(name, None)
+ if config is None:
+ raise HTTPException(status_code=404, detail="Sampler not found")
+ return name
def setUpscalers(req: dict):
reqDict = vars(req)
@@ -33,6 +46,10 @@ def setUpscalers(req: dict):
reqDict.pop('upscaler_2')
return reqDict
+def decode_base64_to_image(encoding):
+ if encoding.startswith("data:image/"):
+ encoding = encoding.split(";")[1].split(",")[1]
+ return Image.open(BytesIO(base64.b64decode(encoding)))
def encode_pil_to_base64(image):
with io.BytesIO() as output_bytes:
@@ -51,67 +68,104 @@ def encode_pil_to_base64(image):
bytes_data = output_bytes.getvalue()
return base64.b64encode(bytes_data)
+def api_middleware(app: FastAPI):
+ @app.middleware("http")
+ async def log_and_time(req: Request, call_next):
+ ts = time.time()
+ res: Response = await call_next(req)
+ duration = str(round(time.time() - ts, 4))
+ res.headers["X-Process-Time"] = duration
+ endpoint = req.scope.get('path', 'err')
+ if shared.cmd_opts.api_log and endpoint.startswith('/sdapi'):
+ print('API {t} {code} {prot}/{ver} {method} {endpoint} {cli} {duration}'.format(
+ t = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S.%f"),
+ code = res.status_code,
+ ver = req.scope.get('http_version', '0.0'),
+ cli = req.scope.get('client', ('0:0.0.0', 0))[0],
+ prot = req.scope.get('scheme', 'err'),
+ method = req.scope.get('method', 'err'),
+ endpoint = endpoint,
+ duration = duration,
+ ))
+ return res
+
class Api:
def __init__(self, app: FastAPI, queue_lock: Lock):
+ if shared.cmd_opts.api_auth:
+ self.credentials = dict()
+ for auth in shared.cmd_opts.api_auth.split(","):
+ user, password = auth.split(":")
+ self.credentials[user] = password
+
self.router = APIRouter()
self.app = app
self.queue_lock = queue_lock
- self.app.add_api_route("/sdapi/v1/txt2img", self.text2imgapi, methods=["POST"], response_model=TextToImageResponse)
- self.app.add_api_route("/sdapi/v1/img2img", self.img2imgapi, methods=["POST"], response_model=ImageToImageResponse)
- self.app.add_api_route("/sdapi/v1/extra-single-image", self.extras_single_image_api, methods=["POST"], response_model=ExtrasSingleImageResponse)
- self.app.add_api_route("/sdapi/v1/extra-batch-images", self.extras_batch_images_api, methods=["POST"], response_model=ExtrasBatchImagesResponse)
- self.app.add_api_route("/sdapi/v1/png-info", self.pnginfoapi, methods=["POST"], response_model=PNGInfoResponse)
- self.app.add_api_route("/sdapi/v1/progress", self.progressapi, methods=["GET"], response_model=ProgressResponse)
- self.app.add_api_route("/sdapi/v1/interrogate", self.interrogateapi, methods=["POST"])
- self.app.add_api_route("/sdapi/v1/interrupt", self.interruptapi, methods=["POST"])
- self.app.add_api_route("/sdapi/v1/options", self.get_config, methods=["GET"], response_model=OptionsModel)
- self.app.add_api_route("/sdapi/v1/options", self.set_config, methods=["POST"])
- self.app.add_api_route("/sdapi/v1/cmd-flags", self.get_cmd_flags, methods=["GET"], response_model=FlagsModel)
- self.app.add_api_route("/sdapi/v1/samplers", self.get_samplers, methods=["GET"], response_model=List[SamplerItem])
- self.app.add_api_route("/sdapi/v1/upscalers", self.get_upscalers, methods=["GET"], response_model=List[UpscalerItem])
- self.app.add_api_route("/sdapi/v1/sd-models", self.get_sd_models, methods=["GET"], response_model=List[SDModelItem])
- self.app.add_api_route("/sdapi/v1/hypernetworks", self.get_hypernetworks, methods=["GET"], response_model=List[HypernetworkItem])
- self.app.add_api_route("/sdapi/v1/face-restorers", self.get_face_restorers, methods=["GET"], response_model=List[FaceRestorerItem])
- self.app.add_api_route("/sdapi/v1/realesrgan-models", self.get_realesrgan_models, methods=["GET"], response_model=List[RealesrganItem])
- self.app.add_api_route("/sdapi/v1/prompt-styles", self.get_promp_styles, methods=["GET"], response_model=List[PromptStyleItem])
- self.app.add_api_route("/sdapi/v1/artist-categories", self.get_artists_categories, methods=["GET"], response_model=List[str])
- self.app.add_api_route("/sdapi/v1/artists", self.get_artists, methods=["GET"], response_model=List[ArtistItem])
+ api_middleware(self.app)
+ self.add_api_route("/sdapi/v1/txt2img", self.text2imgapi, methods=["POST"], response_model=TextToImageResponse)
+ self.add_api_route("/sdapi/v1/img2img", self.img2imgapi, methods=["POST"], response_model=ImageToImageResponse)
+ self.add_api_route("/sdapi/v1/extra-single-image", self.extras_single_image_api, methods=["POST"], response_model=ExtrasSingleImageResponse)
+ self.add_api_route("/sdapi/v1/extra-batch-images", self.extras_batch_images_api, methods=["POST"], response_model=ExtrasBatchImagesResponse)
+ self.add_api_route("/sdapi/v1/png-info", self.pnginfoapi, methods=["POST"], response_model=PNGInfoResponse)
+ self.add_api_route("/sdapi/v1/progress", self.progressapi, methods=["GET"], response_model=ProgressResponse)
+ self.add_api_route("/sdapi/v1/interrogate", self.interrogateapi, methods=["POST"])
+ self.add_api_route("/sdapi/v1/interrupt", self.interruptapi, methods=["POST"])
+ self.add_api_route("/sdapi/v1/skip", self.skip, methods=["POST"])
+ self.add_api_route("/sdapi/v1/options", self.get_config, methods=["GET"], response_model=OptionsModel)
+ self.add_api_route("/sdapi/v1/options", self.set_config, methods=["POST"])
+ self.add_api_route("/sdapi/v1/cmd-flags", self.get_cmd_flags, methods=["GET"], response_model=FlagsModel)
+ self.add_api_route("/sdapi/v1/samplers", self.get_samplers, methods=["GET"], response_model=List[SamplerItem])
+ self.add_api_route("/sdapi/v1/upscalers", self.get_upscalers, methods=["GET"], response_model=List[UpscalerItem])
+ self.add_api_route("/sdapi/v1/sd-models", self.get_sd_models, methods=["GET"], response_model=List[SDModelItem])
+ self.add_api_route("/sdapi/v1/hypernetworks", self.get_hypernetworks, methods=["GET"], response_model=List[HypernetworkItem])
+ self.add_api_route("/sdapi/v1/face-restorers", self.get_face_restorers, methods=["GET"], response_model=List[FaceRestorerItem])
+ self.add_api_route("/sdapi/v1/realesrgan-models", self.get_realesrgan_models, methods=["GET"], response_model=List[RealesrganItem])
+ self.add_api_route("/sdapi/v1/prompt-styles", self.get_prompt_styles, methods=["GET"], response_model=List[PromptStyleItem])
+ self.add_api_route("/sdapi/v1/artist-categories", self.get_artists_categories, methods=["GET"], response_model=List[str])
+ self.add_api_route("/sdapi/v1/artists", self.get_artists, methods=["GET"], response_model=List[ArtistItem])
+ self.add_api_route("/sdapi/v1/embeddings", self.get_embeddings, methods=["GET"], response_model=EmbeddingsResponse)
+ self.add_api_route("/sdapi/v1/refresh-checkpoints", self.refresh_checkpoints, methods=["POST"])
+ self.add_api_route("/sdapi/v1/create/embedding", self.create_embedding, methods=["POST"], response_model=CreateResponse)
+ self.add_api_route("/sdapi/v1/create/hypernetwork", self.create_hypernetwork, methods=["POST"], response_model=CreateResponse)
+ self.add_api_route("/sdapi/v1/preprocess", self.preprocess, methods=["POST"], response_model=PreprocessResponse)
+ self.add_api_route("/sdapi/v1/train/embedding", self.train_embedding, methods=["POST"], response_model=TrainResponse)
+ self.add_api_route("/sdapi/v1/train/hypernetwork", self.train_hypernetwork, methods=["POST"], response_model=TrainResponse)
+
+ def add_api_route(self, path: str, endpoint, **kwargs):
+ if shared.cmd_opts.api_auth:
+ return self.app.add_api_route(path, endpoint, dependencies=[Depends(self.auth)], **kwargs)
+ return self.app.add_api_route(path, endpoint, **kwargs)
+
+ def auth(self, credentials: HTTPBasicCredentials = Depends(HTTPBasic())):
+ if credentials.username in self.credentials:
+ if compare_digest(credentials.password, self.credentials[credentials.username]):
+ return True
+
+ raise HTTPException(status_code=401, detail="Incorrect username or password", headers={"WWW-Authenticate": "Basic"})
def text2imgapi(self, txt2imgreq: StableDiffusionTxt2ImgProcessingAPI):
- sampler_index = sampler_to_index(txt2imgreq.sampler_index)
-
- if sampler_index is None:
- raise HTTPException(status_code=404, detail="Sampler not found")
-
populate = txt2imgreq.copy(update={ # Override __init__ params
- "sd_model": shared.sd_model,
- "sampler_index": sampler_index[0],
+ "sampler_name": validate_sampler_name(txt2imgreq.sampler_name or txt2imgreq.sampler_index),
"do_not_save_samples": True,
"do_not_save_grid": True
}
)
- p = StableDiffusionProcessingTxt2Img(**vars(populate))
- # Override object param
-
- shared.state.begin()
+ if populate.sampler_name:
+ populate.sampler_index = None # prevent a warning later on
with self.queue_lock:
- processed = process_images(p)
+ p = StableDiffusionProcessingTxt2Img(sd_model=shared.sd_model, **vars(populate))
+
+ shared.state.begin()
+ processed = process_images(p)
+ shared.state.end()
- shared.state.end()
b64images = list(map(encode_pil_to_base64, processed.images))
return TextToImageResponse(images=b64images, parameters=vars(txt2imgreq), info=processed.js())
def img2imgapi(self, img2imgreq: StableDiffusionImg2ImgProcessingAPI):
- sampler_index = sampler_to_index(img2imgreq.sampler_index)
-
- if sampler_index is None:
- raise HTTPException(status_code=404, detail="Sampler not found")
-
-
init_images = img2imgreq.init_images
if init_images is None:
raise HTTPException(status_code=404, detail="Init image not found")
@@ -120,34 +174,30 @@ class Api:
if mask:
mask = decode_base64_to_image(mask)
-
populate = img2imgreq.copy(update={ # Override __init__ params
- "sd_model": shared.sd_model,
- "sampler_index": sampler_index[0],
+ "sampler_name": validate_sampler_name(img2imgreq.sampler_name or img2imgreq.sampler_index),
"do_not_save_samples": True,
"do_not_save_grid": True,
"mask": mask
}
)
- p = StableDiffusionProcessingImg2Img(**vars(populate))
+ if populate.sampler_name:
+ populate.sampler_index = None # prevent a warning later on
- imgs = []
- for img in init_images:
- img = decode_base64_to_image(img)
- imgs = [img] * p.batch_size
-
- p.init_images = imgs
-
- shared.state.begin()
+ args = vars(populate)
+ args.pop('include_init_images', None) # this is meant to be done by "exclude": True in model, but it's for a reason that I cannot determine.
with self.queue_lock:
- processed = process_images(p)
+ p = StableDiffusionProcessingImg2Img(sd_model=shared.sd_model, **args)
+ p.init_images = [decode_base64_to_image(x) for x in init_images]
- shared.state.end()
+ shared.state.begin()
+ processed = process_images(p)
+ shared.state.end()
b64images = list(map(encode_pil_to_base64, processed.images))
- if (not img2imgreq.include_init_images):
+ if not img2imgreq.include_init_images:
img2imgreq.init_images = None
img2imgreq.mask = None
@@ -159,7 +209,7 @@ class Api:
reqDict['image'] = decode_base64_to_image(reqDict['image'])
with self.queue_lock:
- result = run_extras(extras_mode=0, image_folder="", input_dir="", output_dir="", **reqDict)
+ result = run_extras(extras_mode=0, image_folder="", input_dir="", output_dir="", save_output=False, **reqDict)
return ExtrasSingleImageResponse(image=encode_pil_to_base64(result[0][0]), html_info=result[1])
@@ -175,7 +225,7 @@ class Api:
reqDict.pop('imageList')
with self.queue_lock:
- result = run_extras(extras_mode=1, image="", input_dir="", output_dir="", **reqDict)
+ result = run_extras(extras_mode=1, image="", input_dir="", output_dir="", save_output=False, **reqDict)
return ExtrasBatchImagesResponse(images=list(map(encode_pil_to_base64, result[0])), html_info=result[1])
@@ -218,14 +268,20 @@ class Api:
def interrogateapi(self, interrogatereq: InterrogateRequest):
image_b64 = interrogatereq.image
if image_b64 is None:
- raise HTTPException(status_code=404, detail="Image not found")
+ raise HTTPException(status_code=404, detail="Image not found")
- img = self.__base64_to_image(image_b64)
+ img = decode_base64_to_image(image_b64)
+ img = img.convert('RGB')
# Override object param
with self.queue_lock:
- processed = shared.interrogator.interrogate(img)
-
+ if interrogatereq.model == "clip":
+ processed = shared.interrogator.interrogate(img)
+ elif interrogatereq.model == "deepdanbooru":
+ processed = deepbooru.model.tag(img)
+ else:
+ raise HTTPException(status_code=404, detail="Model not found")
+
return InterrogateResponse(caption=processed)
def interruptapi(self):
@@ -233,6 +289,9 @@ class Api:
return {}
+ def skip(self):
+ shared.state.skip()
+
def get_config(self):
options = {}
for key in shared.opts.data.keys():
@@ -244,14 +303,9 @@ class Api:
return options
- def set_config(self, req: OptionsModel):
- # currently req has all options fields even if you send a dict like { "send_seed": false }, which means it will
- # overwrite all options with default values.
- raise RuntimeError('Setting options via API is not supported')
-
- reqDict = vars(req)
- for o in reqDict:
- setattr(shared.opts, o, reqDict[o])
+ def set_config(self, req: Dict[str, Any]):
+ for k, v in req.items():
+ shared.opts.set(k, v)
shared.opts.save(shared.config_filename)
return
@@ -260,7 +314,7 @@ class Api:
return vars(shared.cmd_opts)
def get_samplers(self):
- return [{"name":sampler[0], "aliases":sampler[2], "options":sampler[3]} for sampler in all_samplers]
+ return [{"name": sampler[0], "aliases":sampler[2], "options":sampler[3]} for sampler in sd_samplers.all_samplers]
def get_upscalers(self):
upscalers = []
@@ -272,7 +326,7 @@ class Api:
return upscalers
def get_sd_models(self):
- return [{"title":x.title, "model_name":x.model_name, "hash":x.hash, "filename": x.filename, "config": x.config} for x in checkpoints_list.values()]
+ return [{"title":x.title, "model_name":x.model_name, "hash":x.hash, "filename": x.filename, "config": find_checkpoint_config(x)} for x in checkpoints_list.values()]
def get_hypernetworks(self):
return [{"name": name, "path": shared.hypernetworks[name]} for name in shared.hypernetworks]
@@ -283,11 +337,11 @@ class Api:
def get_realesrgan_models(self):
return [{"name":x.name,"path":x.data_path, "scale":x.scale} for x in get_realesrgan_models(None)]
- def get_promp_styles(self):
+ def get_prompt_styles(self):
styleList = []
for k in shared.prompt_styles.styles:
style = shared.prompt_styles.styles[k]
- styleList.append({"name":style[0], "prompt": style[1], "negative_prompr": style[2]})
+ styleList.append({"name":style[0], "prompt": style[1], "negative_prompt": style[2]})
return styleList
@@ -297,6 +351,112 @@ class Api:
def get_artists(self):
return [{"name":x[0], "score":x[1], "category":x[2]} for x in shared.artist_db.artists]
+ def get_embeddings(self):
+ db = sd_hijack.model_hijack.embedding_db
+
+ def convert_embedding(embedding):
+ return {
+ "step": embedding.step,
+ "sd_checkpoint": embedding.sd_checkpoint,
+ "sd_checkpoint_name": embedding.sd_checkpoint_name,
+ "shape": embedding.shape,
+ "vectors": embedding.vectors,
+ }
+
+ def convert_embeddings(embeddings):
+ return {embedding.name: convert_embedding(embedding) for embedding in embeddings.values()}
+
+ return {
+ "loaded": convert_embeddings(db.word_embeddings),
+ "skipped": convert_embeddings(db.skipped_embeddings),
+ }
+
+ def refresh_checkpoints(self):
+ shared.refresh_checkpoints()
+
+ def create_embedding(self, args: dict):
+ try:
+ shared.state.begin()
+ filename = create_embedding(**args) # create empty embedding
+ sd_hijack.model_hijack.embedding_db.load_textual_inversion_embeddings() # reload embeddings so new one can be immediately used
+ shared.state.end()
+ return CreateResponse(info = "create embedding filename: {filename}".format(filename = filename))
+ except AssertionError as e:
+ shared.state.end()
+ return TrainResponse(info = "create embedding error: {error}".format(error = e))
+
+ def create_hypernetwork(self, args: dict):
+ try:
+ shared.state.begin()
+ filename = create_hypernetwork(**args) # create empty embedding
+ shared.state.end()
+ return CreateResponse(info = "create hypernetwork filename: {filename}".format(filename = filename))
+ except AssertionError as e:
+ shared.state.end()
+ return TrainResponse(info = "create hypernetwork error: {error}".format(error = e))
+
+ def preprocess(self, args: dict):
+ try:
+ shared.state.begin()
+ preprocess(**args) # quick operation unless blip/booru interrogation is enabled
+ shared.state.end()
+ return PreprocessResponse(info = 'preprocess complete')
+ except KeyError as e:
+ shared.state.end()
+ return PreprocessResponse(info = "preprocess error: invalid token: {error}".format(error = e))
+ except AssertionError as e:
+ shared.state.end()
+ return PreprocessResponse(info = "preprocess error: {error}".format(error = e))
+ except FileNotFoundError as e:
+ shared.state.end()
+ return PreprocessResponse(info = 'preprocess error: {error}'.format(error = e))
+
+ def train_embedding(self, args: dict):
+ try:
+ shared.state.begin()
+ apply_optimizations = shared.opts.training_xattention_optimizations
+ error = None
+ filename = ''
+ if not apply_optimizations:
+ sd_hijack.undo_optimizations()
+ try:
+ embedding, filename = train_embedding(**args) # can take a long time to complete
+ except Exception as e:
+ error = e
+ finally:
+ if not apply_optimizations:
+ sd_hijack.apply_optimizations()
+ shared.state.end()
+ return TrainResponse(info = "train embedding complete: filename: {filename} error: {error}".format(filename = filename, error = error))
+ except AssertionError as msg:
+ shared.state.end()
+ return TrainResponse(info = "train embedding error: {msg}".format(msg = msg))
+
+ def train_hypernetwork(self, args: dict):
+ try:
+ shared.state.begin()
+ initial_hypernetwork = shared.loaded_hypernetwork
+ apply_optimizations = shared.opts.training_xattention_optimizations
+ error = None
+ filename = ''
+ if not apply_optimizations:
+ sd_hijack.undo_optimizations()
+ try:
+ hypernetwork, filename = train_hypernetwork(*args)
+ except Exception as e:
+ error = e
+ finally:
+ shared.loaded_hypernetwork = initial_hypernetwork
+ shared.sd_model.cond_stage_model.to(devices.device)
+ shared.sd_model.first_stage_model.to(devices.device)
+ if not apply_optimizations:
+ sd_hijack.apply_optimizations()
+ shared.state.end()
+ return TrainResponse(info = "train embedding complete: filename: {filename} error: {error}".format(filename = filename, error = error))
+ except AssertionError as msg:
+ shared.state.end()
+ return TrainResponse(info = "train embedding error: {error}".format(error = error))
+
def launch(self, server_name, port):
self.app.include_router(self.router)
uvicorn.run(self.app, host=server_name, port=port)
diff --git a/modules/api/models.py b/modules/api/models.py
index 34dbfa163..4a632c685 100644
--- a/modules/api/models.py
+++ b/modules/api/models.py
@@ -128,7 +128,7 @@ class ExtrasBaseRequest(BaseModel):
upscaling_resize: float = Field(default=2, title="Upscaling Factor", ge=1, le=4, description="By how much to upscale the image, only used when resize_mode=0.")
upscaling_resize_w: int = Field(default=512, title="Target Width", ge=1, description="Target width for the upscaler to hit. Only used when resize_mode=1.")
upscaling_resize_h: int = Field(default=512, title="Target Height", ge=1, description="Target height for the upscaler to hit. Only used when resize_mode=1.")
- upscaling_crop: bool = Field(default=True, title="Crop to fit", description="Should the upscaler crop the image to fit in the choosen size?")
+ upscaling_crop: bool = Field(default=True, title="Crop to fit", description="Should the upscaler crop the image to fit in the chosen size?")
upscaler_1: str = Field(default="None", title="Main upscaler", description=f"The name of the main upscaler to use, it has to be one of this list: {' , '.join([x.name for x in sd_upscalers])}")
upscaler_2: str = Field(default="None", title="Secondary upscaler", description=f"The name of the secondary upscaler to use, it has to be one of this list: {' , '.join([x.name for x in sd_upscalers])}")
extras_upscaler_2_visibility: float = Field(default=0, title="Secondary upscaler visibility", ge=0, le=1, allow_inf_nan=False, description="Sets the visibility of secondary upscaler, values should be between 0 and 1.")
@@ -170,14 +170,24 @@ class ProgressResponse(BaseModel):
class InterrogateRequest(BaseModel):
image: str = Field(default="", title="Image", description="Image to work on, must be a Base64 string containing the image's data.")
+ model: str = Field(default="clip", title="Model", description="The interrogate model used.")
class InterrogateResponse(BaseModel):
caption: str = Field(default=None, title="Caption", description="The generated caption for the image.")
+class TrainResponse(BaseModel):
+ info: str = Field(title="Train info", description="Response string from train embedding or hypernetwork task.")
+
+class CreateResponse(BaseModel):
+ info: str = Field(title="Create info", description="Response string from create embedding or hypernetwork task.")
+
+class PreprocessResponse(BaseModel):
+ info: str = Field(title="Preprocess info", description="Response string from preprocessing task.")
+
fields = {}
-for key, value in opts.data.items():
- metadata = opts.data_labels.get(key)
- optType = opts.typemap.get(type(value), type(value))
+for key, metadata in opts.data_labels.items():
+ value = opts.data.get(key)
+ optType = opts.typemap.get(type(metadata.default), type(value))
if (metadata is not None):
fields.update({key: (Optional[optType], Field(
@@ -239,3 +249,13 @@ class ArtistItem(BaseModel):
score: float = Field(title="Score")
category: str = Field(title="Category")
+class EmbeddingItem(BaseModel):
+ step: Optional[int] = Field(title="Step", description="The number of steps that were used to train this embedding, if available")
+ sd_checkpoint: Optional[str] = Field(title="SD Checkpoint", description="The hash of the checkpoint this embedding was trained on, if available")
+ sd_checkpoint_name: Optional[str] = Field(title="SD Checkpoint Name", description="The name of the checkpoint this embedding was trained on, if available. Note that this is the name that was used by the trainer; for a stable identifier, use `sd_checkpoint` instead")
+ shape: int = Field(title="Shape", description="The length of each individual vector in the embedding")
+ vectors: int = Field(title="Vectors", description="The number of vectors in the embedding")
+
+class EmbeddingsResponse(BaseModel):
+ loaded: Dict[str, EmbeddingItem] = Field(title="Loaded", description="Embeddings loaded for the current model")
+ skipped: Dict[str, EmbeddingItem] = Field(title="Skipped", description="Embeddings skipped for the current model (likely due to architecture incompatibility)")
\ No newline at end of file
diff --git a/modules/call_queue.py b/modules/call_queue.py
new file mode 100644
index 000000000..4cd495333
--- /dev/null
+++ b/modules/call_queue.py
@@ -0,0 +1,98 @@
+import html
+import sys
+import threading
+import traceback
+import time
+
+from modules import shared
+
+queue_lock = threading.Lock()
+
+
+def wrap_queued_call(func):
+ def f(*args, **kwargs):
+ with queue_lock:
+ res = func(*args, **kwargs)
+
+ return res
+
+ return f
+
+
+def wrap_gradio_gpu_call(func, extra_outputs=None):
+ def f(*args, **kwargs):
+
+ shared.state.begin()
+
+ with queue_lock:
+ res = func(*args, **kwargs)
+
+ shared.state.end()
+
+ return res
+
+ return wrap_gradio_call(f, extra_outputs=extra_outputs, add_stats=True)
+
+
+def wrap_gradio_call(func, extra_outputs=None, add_stats=False):
+ def f(*args, extra_outputs_array=extra_outputs, **kwargs):
+ run_memmon = shared.opts.memmon_poll_rate > 0 and not shared.mem_mon.disabled and add_stats
+ if run_memmon:
+ shared.mem_mon.monitor()
+ t = time.perf_counter()
+
+ try:
+ res = list(func(*args, **kwargs))
+ except Exception as e:
+ # When printing out our debug argument list, do not print out more than a MB of text
+ max_debug_str_len = 131072 # (1024*1024)/8
+
+ print("Error completing request", file=sys.stderr)
+ argStr = f"Arguments: {str(args)} {str(kwargs)}"
+ print(argStr[:max_debug_str_len], file=sys.stderr)
+ if len(argStr) > max_debug_str_len:
+ print(f"(Argument list truncated at {max_debug_str_len}/{len(argStr)} characters)", file=sys.stderr)
+
+ print(traceback.format_exc(), file=sys.stderr)
+
+ shared.state.job = ""
+ shared.state.job_count = 0
+
+ if extra_outputs_array is None:
+ extra_outputs_array = [None, '']
+
+ res = extra_outputs_array + [f"{html.escape(type(e).__name__+': '+str(e))}
"]
+
+ shared.state.skipped = False
+ shared.state.interrupted = False
+ shared.state.job_count = 0
+
+ if not add_stats:
+ return tuple(res)
+
+ elapsed = time.perf_counter() - t
+ elapsed_m = int(elapsed // 60)
+ elapsed_s = elapsed % 60
+ elapsed_text = f"{elapsed_s:.2f}s"
+ if elapsed_m > 0:
+ elapsed_text = f"{elapsed_m}m "+elapsed_text
+
+ if run_memmon:
+ mem_stats = {k: -(v//-(1024*1024)) for k, v in shared.mem_mon.stop().items()}
+ active_peak = mem_stats['active_peak']
+ reserved_peak = mem_stats['reserved_peak']
+ sys_peak = mem_stats['system_peak']
+ sys_total = mem_stats['total']
+ sys_pct = round(sys_peak/max(sys_total, 1) * 100, 2)
+
+ vram_html = f"Torch active/reserved: {active_peak}/{reserved_peak} MiB, Sys VRAM: {sys_peak}/{sys_total} MiB ({sys_pct}%)
"
+ else:
+ vram_html = ''
+
+ # last item is always HTML
+ res[-1] += f""
+
+ return tuple(res)
+
+ return f
+
diff --git a/modules/codeformer/vqgan_arch.py b/modules/codeformer/vqgan_arch.py
index c06c590ca..e72936838 100644
--- a/modules/codeformer/vqgan_arch.py
+++ b/modules/codeformer/vqgan_arch.py
@@ -382,7 +382,7 @@ class VQAutoEncoder(nn.Module):
self.load_state_dict(torch.load(model_path, map_location='cpu')['params'])
logger.info(f'vqgan is loaded from: {model_path} [params]')
else:
- raise ValueError(f'Wrong params!')
+ raise ValueError('Wrong params!')
def forward(self, x):
@@ -431,7 +431,7 @@ class VQGANDiscriminator(nn.Module):
elif 'params' in chkpt:
self.load_state_dict(torch.load(model_path, map_location='cpu')['params'])
else:
- raise ValueError(f'Wrong params!')
+ raise ValueError('Wrong params!')
def forward(self, x):
return self.main(x)
\ No newline at end of file
diff --git a/modules/codeformer_model.py b/modules/codeformer_model.py
index e6d9fa4f4..ab40d842c 100644
--- a/modules/codeformer_model.py
+++ b/modules/codeformer_model.py
@@ -36,6 +36,7 @@ def setup_model(dirname):
from basicsr.utils.download_util import load_file_from_url
from basicsr.utils import imwrite, img2tensor, tensor2img
from facelib.utils.face_restoration_helper import FaceRestoreHelper
+ from facelib.detection.retinaface import retinaface
from modules.shared import cmd_opts
net_class = CodeFormer
@@ -65,6 +66,8 @@ def setup_model(dirname):
net.load_state_dict(checkpoint)
net.eval()
+ if hasattr(retinaface, 'device'):
+ retinaface.device = devices.device_codeformer
face_helper = FaceRestoreHelper(1, face_size=512, crop_ratio=(1, 1), det_model='retinaface_resnet50', save_ext='png', use_parse=True, device=devices.device_codeformer)
self.net = net
diff --git a/modules/deepbooru.py b/modules/deepbooru.py
index 8bbc90a4f..122fce7f5 100644
--- a/modules/deepbooru.py
+++ b/modules/deepbooru.py
@@ -1,173 +1,99 @@
-import os.path
-from concurrent.futures import ProcessPoolExecutor
-import multiprocessing
-import time
+import os
import re
+import torch
+from PIL import Image
+import numpy as np
+
+from modules import modelloader, paths, deepbooru_model, devices, images, shared
+
re_special = re.compile(r'([\\()])')
-def get_deepbooru_tags(pil_image):
- """
- This method is for running only one image at a time for simple use. Used to the img2img interrogate.
- """
- from modules import shared # prevents circular reference
- try:
- create_deepbooru_process(shared.opts.interrogate_deepbooru_score_threshold, create_deepbooru_opts())
- return get_tags_from_process(pil_image)
- finally:
- release_process()
+class DeepDanbooru:
+ def __init__(self):
+ self.model = None
+ def load(self):
+ if self.model is not None:
+ return
-OPT_INCLUDE_RANKS = "include_ranks"
-def create_deepbooru_opts():
- from modules import shared
+ files = modelloader.load_models(
+ model_path=os.path.join(paths.models_path, "torch_deepdanbooru"),
+ model_url='https://github.com/AUTOMATIC1111/TorchDeepDanbooru/releases/download/v1/model-resnet_custom_v3.pt',
+ ext_filter=[".pt"],
+ download_name='model-resnet_custom_v3.pt',
+ )
- return {
- "use_spaces": shared.opts.deepbooru_use_spaces,
- "use_escape": shared.opts.deepbooru_escape,
- "alpha_sort": shared.opts.deepbooru_sort_alpha,
- OPT_INCLUDE_RANKS: shared.opts.interrogate_return_ranks,
- }
+ self.model = deepbooru_model.DeepDanbooruModel()
+ self.model.load_state_dict(torch.load(files[0], map_location="cpu"))
+ self.model.eval()
+ self.model.to(devices.cpu, devices.dtype)
-def deepbooru_process(queue, deepbooru_process_return, threshold, deepbooru_opts):
- model, tags = get_deepbooru_tags_model()
- while True: # while process is running, keep monitoring queue for new image
- pil_image = queue.get()
- if pil_image == "QUIT":
- break
- else:
- deepbooru_process_return["value"] = get_deepbooru_tags_from_model(model, tags, pil_image, threshold, deepbooru_opts)
+ def start(self):
+ self.load()
+ self.model.to(devices.device)
+ def stop(self):
+ if not shared.opts.interrogate_keep_models_in_memory:
+ self.model.to(devices.cpu)
+ devices.torch_gc()
-def create_deepbooru_process(threshold, deepbooru_opts):
- """
- Creates deepbooru process. A queue is created to send images into the process. This enables multiple images
- to be processed in a row without reloading the model or creating a new process. To return the data, a shared
- dictionary is created to hold the tags created. To wait for tags to be returned, a value of -1 is assigned
- to the dictionary and the method adding the image to the queue should wait for this value to be updated with
- the tags.
- """
- from modules import shared # prevents circular reference
- context = multiprocessing.get_context("spawn")
- shared.deepbooru_process_manager = context.Manager()
- shared.deepbooru_process_queue = shared.deepbooru_process_manager.Queue()
- shared.deepbooru_process_return = shared.deepbooru_process_manager.dict()
- shared.deepbooru_process_return["value"] = -1
- shared.deepbooru_process = context.Process(target=deepbooru_process, args=(shared.deepbooru_process_queue, shared.deepbooru_process_return, threshold, deepbooru_opts))
- shared.deepbooru_process.start()
+ def tag(self, pil_image):
+ self.start()
+ res = self.tag_multi(pil_image)
+ self.stop()
+ return res
-def get_tags_from_process(image):
- from modules import shared
+ def tag_multi(self, pil_image, force_disable_ranks=False):
+ threshold = shared.opts.interrogate_deepbooru_score_threshold
+ use_spaces = shared.opts.deepbooru_use_spaces
+ use_escape = shared.opts.deepbooru_escape
+ alpha_sort = shared.opts.deepbooru_sort_alpha
+ include_ranks = shared.opts.interrogate_return_ranks and not force_disable_ranks
- shared.deepbooru_process_return["value"] = -1
- shared.deepbooru_process_queue.put(image)
- while shared.deepbooru_process_return["value"] == -1:
- time.sleep(0.2)
- caption = shared.deepbooru_process_return["value"]
- shared.deepbooru_process_return["value"] = -1
+ pic = images.resize_image(2, pil_image.convert("RGB"), 512, 512)
+ a = np.expand_dims(np.array(pic, dtype=np.float32), 0) / 255
- return caption
+ with torch.no_grad(), devices.autocast():
+ x = torch.from_numpy(a).to(devices.device)
+ y = self.model(x)[0].detach().cpu().numpy()
+ probability_dict = {}
-def release_process():
- """
- Stops the deepbooru process to return used memory
- """
- from modules import shared # prevents circular reference
- shared.deepbooru_process_queue.put("QUIT")
- shared.deepbooru_process.join()
- shared.deepbooru_process_queue = None
- shared.deepbooru_process = None
- shared.deepbooru_process_return = None
- shared.deepbooru_process_manager = None
+ for tag, probability in zip(self.model.tags, y):
+ if probability < threshold:
+ continue
-def get_deepbooru_tags_model():
- import deepdanbooru as dd
- import tensorflow as tf
- import numpy as np
- this_folder = os.path.dirname(__file__)
- model_path = os.path.abspath(os.path.join(this_folder, '..', 'models', 'deepbooru'))
- if not os.path.exists(os.path.join(model_path, 'project.json')):
- # there is no point importing these every time
- import zipfile
- from basicsr.utils.download_util import load_file_from_url
- load_file_from_url(
- r"https://github.com/KichangKim/DeepDanbooru/releases/download/v3-20211112-sgd-e28/deepdanbooru-v3-20211112-sgd-e28.zip",
- model_path)
- with zipfile.ZipFile(os.path.join(model_path, "deepdanbooru-v3-20211112-sgd-e28.zip"), "r") as zip_ref:
- zip_ref.extractall(model_path)
- os.remove(os.path.join(model_path, "deepdanbooru-v3-20211112-sgd-e28.zip"))
-
- tags = dd.project.load_tags_from_project(model_path)
- model = dd.project.load_model_from_project(
- model_path, compile_model=False
- )
- return model, tags
-
-
-def get_deepbooru_tags_from_model(model, tags, pil_image, threshold, deepbooru_opts):
- import deepdanbooru as dd
- import tensorflow as tf
- import numpy as np
-
- alpha_sort = deepbooru_opts['alpha_sort']
- use_spaces = deepbooru_opts['use_spaces']
- use_escape = deepbooru_opts['use_escape']
- include_ranks = deepbooru_opts['include_ranks']
-
- width = model.input_shape[2]
- height = model.input_shape[1]
- image = np.array(pil_image)
- image = tf.image.resize(
- image,
- size=(height, width),
- method=tf.image.ResizeMethod.AREA,
- preserve_aspect_ratio=True,
- )
- image = image.numpy() # EagerTensor to np.array
- image = dd.image.transform_and_pad_image(image, width, height)
- image = image / 255.0
- image_shape = image.shape
- image = image.reshape((1, image_shape[0], image_shape[1], image_shape[2]))
-
- y = model.predict(image)[0]
-
- result_dict = {}
-
- for i, tag in enumerate(tags):
- result_dict[tag] = y[i]
-
- unsorted_tags_in_theshold = []
- result_tags_print = []
- for tag in tags:
- if result_dict[tag] >= threshold:
if tag.startswith("rating:"):
continue
- unsorted_tags_in_theshold.append((result_dict[tag], tag))
- result_tags_print.append(f'{result_dict[tag]} {tag}')
- # sort tags
- result_tags_out = []
- sort_ndx = 0
- if alpha_sort:
- sort_ndx = 1
+ probability_dict[tag] = probability
- # sort by reverse by likelihood and normal for alpha, and format tag text as requested
- unsorted_tags_in_theshold.sort(key=lambda y: y[sort_ndx], reverse=(not alpha_sort))
- for weight, tag in unsorted_tags_in_theshold:
- tag_outformat = tag
- if use_spaces:
- tag_outformat = tag_outformat.replace('_', ' ')
- if use_escape:
- tag_outformat = re.sub(re_special, r'\\\1', tag_outformat)
- if include_ranks:
- tag_outformat = f"({tag_outformat}:{weight:.3f})"
+ if alpha_sort:
+ tags = sorted(probability_dict)
+ else:
+ tags = [tag for tag, _ in sorted(probability_dict.items(), key=lambda x: -x[1])]
- result_tags_out.append(tag_outformat)
+ res = []
- print('\n'.join(sorted(result_tags_print, reverse=True)))
+ filtertags = set([x.strip().replace(' ', '_') for x in shared.opts.deepbooru_filter_tags.split(",")])
- return ', '.join(result_tags_out)
+ for tag in [x for x in tags if x not in filtertags]:
+ probability = probability_dict[tag]
+ tag_outformat = tag
+ if use_spaces:
+ tag_outformat = tag_outformat.replace('_', ' ')
+ if use_escape:
+ tag_outformat = re.sub(re_special, r'\\\1', tag_outformat)
+ if include_ranks:
+ tag_outformat = f"({tag_outformat}:{probability:.3f})"
+
+ res.append(tag_outformat)
+
+ return ", ".join(res)
+
+
+model = DeepDanbooru()
diff --git a/modules/deepbooru_model.py b/modules/deepbooru_model.py
new file mode 100644
index 000000000..edd40c81f
--- /dev/null
+++ b/modules/deepbooru_model.py
@@ -0,0 +1,676 @@
+import torch
+import torch.nn as nn
+import torch.nn.functional as F
+
+# see https://github.com/AUTOMATIC1111/TorchDeepDanbooru for more
+
+
+class DeepDanbooruModel(nn.Module):
+ def __init__(self):
+ super(DeepDanbooruModel, self).__init__()
+
+ self.tags = []
+
+ self.n_Conv_0 = nn.Conv2d(kernel_size=(7, 7), in_channels=3, out_channels=64, stride=(2, 2))
+ self.n_MaxPool_0 = nn.MaxPool2d(kernel_size=(3, 3), stride=(2, 2))
+ self.n_Conv_1 = nn.Conv2d(kernel_size=(1, 1), in_channels=64, out_channels=256)
+ self.n_Conv_2 = nn.Conv2d(kernel_size=(1, 1), in_channels=64, out_channels=64)
+ self.n_Conv_3 = nn.Conv2d(kernel_size=(3, 3), in_channels=64, out_channels=64)
+ self.n_Conv_4 = nn.Conv2d(kernel_size=(1, 1), in_channels=64, out_channels=256)
+ self.n_Conv_5 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=64)
+ self.n_Conv_6 = nn.Conv2d(kernel_size=(3, 3), in_channels=64, out_channels=64)
+ self.n_Conv_7 = nn.Conv2d(kernel_size=(1, 1), in_channels=64, out_channels=256)
+ self.n_Conv_8 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=64)
+ self.n_Conv_9 = nn.Conv2d(kernel_size=(3, 3), in_channels=64, out_channels=64)
+ self.n_Conv_10 = nn.Conv2d(kernel_size=(1, 1), in_channels=64, out_channels=256)
+ self.n_Conv_11 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=512, stride=(2, 2))
+ self.n_Conv_12 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=128)
+ self.n_Conv_13 = nn.Conv2d(kernel_size=(3, 3), in_channels=128, out_channels=128, stride=(2, 2))
+ self.n_Conv_14 = nn.Conv2d(kernel_size=(1, 1), in_channels=128, out_channels=512)
+ self.n_Conv_15 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=128)
+ self.n_Conv_16 = nn.Conv2d(kernel_size=(3, 3), in_channels=128, out_channels=128)
+ self.n_Conv_17 = nn.Conv2d(kernel_size=(1, 1), in_channels=128, out_channels=512)
+ self.n_Conv_18 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=128)
+ self.n_Conv_19 = nn.Conv2d(kernel_size=(3, 3), in_channels=128, out_channels=128)
+ self.n_Conv_20 = nn.Conv2d(kernel_size=(1, 1), in_channels=128, out_channels=512)
+ self.n_Conv_21 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=128)
+ self.n_Conv_22 = nn.Conv2d(kernel_size=(3, 3), in_channels=128, out_channels=128)
+ self.n_Conv_23 = nn.Conv2d(kernel_size=(1, 1), in_channels=128, out_channels=512)
+ self.n_Conv_24 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=128)
+ self.n_Conv_25 = nn.Conv2d(kernel_size=(3, 3), in_channels=128, out_channels=128)
+ self.n_Conv_26 = nn.Conv2d(kernel_size=(1, 1), in_channels=128, out_channels=512)
+ self.n_Conv_27 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=128)
+ self.n_Conv_28 = nn.Conv2d(kernel_size=(3, 3), in_channels=128, out_channels=128)
+ self.n_Conv_29 = nn.Conv2d(kernel_size=(1, 1), in_channels=128, out_channels=512)
+ self.n_Conv_30 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=128)
+ self.n_Conv_31 = nn.Conv2d(kernel_size=(3, 3), in_channels=128, out_channels=128)
+ self.n_Conv_32 = nn.Conv2d(kernel_size=(1, 1), in_channels=128, out_channels=512)
+ self.n_Conv_33 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=128)
+ self.n_Conv_34 = nn.Conv2d(kernel_size=(3, 3), in_channels=128, out_channels=128)
+ self.n_Conv_35 = nn.Conv2d(kernel_size=(1, 1), in_channels=128, out_channels=512)
+ self.n_Conv_36 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=1024, stride=(2, 2))
+ self.n_Conv_37 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=256)
+ self.n_Conv_38 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256, stride=(2, 2))
+ self.n_Conv_39 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
+ self.n_Conv_40 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
+ self.n_Conv_41 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
+ self.n_Conv_42 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
+ self.n_Conv_43 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
+ self.n_Conv_44 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
+ self.n_Conv_45 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
+ self.n_Conv_46 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
+ self.n_Conv_47 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
+ self.n_Conv_48 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
+ self.n_Conv_49 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
+ self.n_Conv_50 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
+ self.n_Conv_51 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
+ self.n_Conv_52 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
+ self.n_Conv_53 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
+ self.n_Conv_54 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
+ self.n_Conv_55 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
+ self.n_Conv_56 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
+ self.n_Conv_57 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
+ self.n_Conv_58 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
+ self.n_Conv_59 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
+ self.n_Conv_60 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
+ self.n_Conv_61 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
+ self.n_Conv_62 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
+ self.n_Conv_63 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
+ self.n_Conv_64 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
+ self.n_Conv_65 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
+ self.n_Conv_66 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
+ self.n_Conv_67 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
+ self.n_Conv_68 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
+ self.n_Conv_69 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
+ self.n_Conv_70 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
+ self.n_Conv_71 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
+ self.n_Conv_72 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
+ self.n_Conv_73 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
+ self.n_Conv_74 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
+ self.n_Conv_75 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
+ self.n_Conv_76 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
+ self.n_Conv_77 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
+ self.n_Conv_78 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
+ self.n_Conv_79 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
+ self.n_Conv_80 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
+ self.n_Conv_81 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
+ self.n_Conv_82 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
+ self.n_Conv_83 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
+ self.n_Conv_84 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
+ self.n_Conv_85 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
+ self.n_Conv_86 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
+ self.n_Conv_87 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
+ self.n_Conv_88 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
+ self.n_Conv_89 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
+ self.n_Conv_90 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
+ self.n_Conv_91 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
+ self.n_Conv_92 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
+ self.n_Conv_93 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
+ self.n_Conv_94 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
+ self.n_Conv_95 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
+ self.n_Conv_96 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
+ self.n_Conv_97 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
+ self.n_Conv_98 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256, stride=(2, 2))
+ self.n_Conv_99 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
+ self.n_Conv_100 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=1024, stride=(2, 2))
+ self.n_Conv_101 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
+ self.n_Conv_102 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
+ self.n_Conv_103 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
+ self.n_Conv_104 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
+ self.n_Conv_105 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
+ self.n_Conv_106 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
+ self.n_Conv_107 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
+ self.n_Conv_108 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
+ self.n_Conv_109 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
+ self.n_Conv_110 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
+ self.n_Conv_111 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
+ self.n_Conv_112 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
+ self.n_Conv_113 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
+ self.n_Conv_114 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
+ self.n_Conv_115 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
+ self.n_Conv_116 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
+ self.n_Conv_117 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
+ self.n_Conv_118 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
+ self.n_Conv_119 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
+ self.n_Conv_120 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
+ self.n_Conv_121 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
+ self.n_Conv_122 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
+ self.n_Conv_123 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
+ self.n_Conv_124 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
+ self.n_Conv_125 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
+ self.n_Conv_126 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
+ self.n_Conv_127 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
+ self.n_Conv_128 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
+ self.n_Conv_129 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
+ self.n_Conv_130 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
+ self.n_Conv_131 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
+ self.n_Conv_132 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
+ self.n_Conv_133 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
+ self.n_Conv_134 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
+ self.n_Conv_135 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
+ self.n_Conv_136 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
+ self.n_Conv_137 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
+ self.n_Conv_138 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
+ self.n_Conv_139 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
+ self.n_Conv_140 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
+ self.n_Conv_141 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
+ self.n_Conv_142 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
+ self.n_Conv_143 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
+ self.n_Conv_144 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
+ self.n_Conv_145 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
+ self.n_Conv_146 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
+ self.n_Conv_147 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
+ self.n_Conv_148 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
+ self.n_Conv_149 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
+ self.n_Conv_150 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
+ self.n_Conv_151 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
+ self.n_Conv_152 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
+ self.n_Conv_153 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
+ self.n_Conv_154 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
+ self.n_Conv_155 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
+ self.n_Conv_156 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
+ self.n_Conv_157 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
+ self.n_Conv_158 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=2048, stride=(2, 2))
+ self.n_Conv_159 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=512)
+ self.n_Conv_160 = nn.Conv2d(kernel_size=(3, 3), in_channels=512, out_channels=512, stride=(2, 2))
+ self.n_Conv_161 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=2048)
+ self.n_Conv_162 = nn.Conv2d(kernel_size=(1, 1), in_channels=2048, out_channels=512)
+ self.n_Conv_163 = nn.Conv2d(kernel_size=(3, 3), in_channels=512, out_channels=512)
+ self.n_Conv_164 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=2048)
+ self.n_Conv_165 = nn.Conv2d(kernel_size=(1, 1), in_channels=2048, out_channels=512)
+ self.n_Conv_166 = nn.Conv2d(kernel_size=(3, 3), in_channels=512, out_channels=512)
+ self.n_Conv_167 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=2048)
+ self.n_Conv_168 = nn.Conv2d(kernel_size=(1, 1), in_channels=2048, out_channels=4096, stride=(2, 2))
+ self.n_Conv_169 = nn.Conv2d(kernel_size=(1, 1), in_channels=2048, out_channels=1024)
+ self.n_Conv_170 = nn.Conv2d(kernel_size=(3, 3), in_channels=1024, out_channels=1024, stride=(2, 2))
+ self.n_Conv_171 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=4096)
+ self.n_Conv_172 = nn.Conv2d(kernel_size=(1, 1), in_channels=4096, out_channels=1024)
+ self.n_Conv_173 = nn.Conv2d(kernel_size=(3, 3), in_channels=1024, out_channels=1024)
+ self.n_Conv_174 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=4096)
+ self.n_Conv_175 = nn.Conv2d(kernel_size=(1, 1), in_channels=4096, out_channels=1024)
+ self.n_Conv_176 = nn.Conv2d(kernel_size=(3, 3), in_channels=1024, out_channels=1024)
+ self.n_Conv_177 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=4096)
+ self.n_Conv_178 = nn.Conv2d(kernel_size=(1, 1), in_channels=4096, out_channels=9176, bias=False)
+
+ def forward(self, *inputs):
+ t_358, = inputs
+ t_359 = t_358.permute(*[0, 3, 1, 2])
+ t_359_padded = F.pad(t_359, [2, 3, 2, 3], value=0)
+ t_360 = self.n_Conv_0(t_359_padded)
+ t_361 = F.relu(t_360)
+ t_361 = F.pad(t_361, [0, 1, 0, 1], value=float('-inf'))
+ t_362 = self.n_MaxPool_0(t_361)
+ t_363 = self.n_Conv_1(t_362)
+ t_364 = self.n_Conv_2(t_362)
+ t_365 = F.relu(t_364)
+ t_365_padded = F.pad(t_365, [1, 1, 1, 1], value=0)
+ t_366 = self.n_Conv_3(t_365_padded)
+ t_367 = F.relu(t_366)
+ t_368 = self.n_Conv_4(t_367)
+ t_369 = torch.add(t_368, t_363)
+ t_370 = F.relu(t_369)
+ t_371 = self.n_Conv_5(t_370)
+ t_372 = F.relu(t_371)
+ t_372_padded = F.pad(t_372, [1, 1, 1, 1], value=0)
+ t_373 = self.n_Conv_6(t_372_padded)
+ t_374 = F.relu(t_373)
+ t_375 = self.n_Conv_7(t_374)
+ t_376 = torch.add(t_375, t_370)
+ t_377 = F.relu(t_376)
+ t_378 = self.n_Conv_8(t_377)
+ t_379 = F.relu(t_378)
+ t_379_padded = F.pad(t_379, [1, 1, 1, 1], value=0)
+ t_380 = self.n_Conv_9(t_379_padded)
+ t_381 = F.relu(t_380)
+ t_382 = self.n_Conv_10(t_381)
+ t_383 = torch.add(t_382, t_377)
+ t_384 = F.relu(t_383)
+ t_385 = self.n_Conv_11(t_384)
+ t_386 = self.n_Conv_12(t_384)
+ t_387 = F.relu(t_386)
+ t_387_padded = F.pad(t_387, [0, 1, 0, 1], value=0)
+ t_388 = self.n_Conv_13(t_387_padded)
+ t_389 = F.relu(t_388)
+ t_390 = self.n_Conv_14(t_389)
+ t_391 = torch.add(t_390, t_385)
+ t_392 = F.relu(t_391)
+ t_393 = self.n_Conv_15(t_392)
+ t_394 = F.relu(t_393)
+ t_394_padded = F.pad(t_394, [1, 1, 1, 1], value=0)
+ t_395 = self.n_Conv_16(t_394_padded)
+ t_396 = F.relu(t_395)
+ t_397 = self.n_Conv_17(t_396)
+ t_398 = torch.add(t_397, t_392)
+ t_399 = F.relu(t_398)
+ t_400 = self.n_Conv_18(t_399)
+ t_401 = F.relu(t_400)
+ t_401_padded = F.pad(t_401, [1, 1, 1, 1], value=0)
+ t_402 = self.n_Conv_19(t_401_padded)
+ t_403 = F.relu(t_402)
+ t_404 = self.n_Conv_20(t_403)
+ t_405 = torch.add(t_404, t_399)
+ t_406 = F.relu(t_405)
+ t_407 = self.n_Conv_21(t_406)
+ t_408 = F.relu(t_407)
+ t_408_padded = F.pad(t_408, [1, 1, 1, 1], value=0)
+ t_409 = self.n_Conv_22(t_408_padded)
+ t_410 = F.relu(t_409)
+ t_411 = self.n_Conv_23(t_410)
+ t_412 = torch.add(t_411, t_406)
+ t_413 = F.relu(t_412)
+ t_414 = self.n_Conv_24(t_413)
+ t_415 = F.relu(t_414)
+ t_415_padded = F.pad(t_415, [1, 1, 1, 1], value=0)
+ t_416 = self.n_Conv_25(t_415_padded)
+ t_417 = F.relu(t_416)
+ t_418 = self.n_Conv_26(t_417)
+ t_419 = torch.add(t_418, t_413)
+ t_420 = F.relu(t_419)
+ t_421 = self.n_Conv_27(t_420)
+ t_422 = F.relu(t_421)
+ t_422_padded = F.pad(t_422, [1, 1, 1, 1], value=0)
+ t_423 = self.n_Conv_28(t_422_padded)
+ t_424 = F.relu(t_423)
+ t_425 = self.n_Conv_29(t_424)
+ t_426 = torch.add(t_425, t_420)
+ t_427 = F.relu(t_426)
+ t_428 = self.n_Conv_30(t_427)
+ t_429 = F.relu(t_428)
+ t_429_padded = F.pad(t_429, [1, 1, 1, 1], value=0)
+ t_430 = self.n_Conv_31(t_429_padded)
+ t_431 = F.relu(t_430)
+ t_432 = self.n_Conv_32(t_431)
+ t_433 = torch.add(t_432, t_427)
+ t_434 = F.relu(t_433)
+ t_435 = self.n_Conv_33(t_434)
+ t_436 = F.relu(t_435)
+ t_436_padded = F.pad(t_436, [1, 1, 1, 1], value=0)
+ t_437 = self.n_Conv_34(t_436_padded)
+ t_438 = F.relu(t_437)
+ t_439 = self.n_Conv_35(t_438)
+ t_440 = torch.add(t_439, t_434)
+ t_441 = F.relu(t_440)
+ t_442 = self.n_Conv_36(t_441)
+ t_443 = self.n_Conv_37(t_441)
+ t_444 = F.relu(t_443)
+ t_444_padded = F.pad(t_444, [0, 1, 0, 1], value=0)
+ t_445 = self.n_Conv_38(t_444_padded)
+ t_446 = F.relu(t_445)
+ t_447 = self.n_Conv_39(t_446)
+ t_448 = torch.add(t_447, t_442)
+ t_449 = F.relu(t_448)
+ t_450 = self.n_Conv_40(t_449)
+ t_451 = F.relu(t_450)
+ t_451_padded = F.pad(t_451, [1, 1, 1, 1], value=0)
+ t_452 = self.n_Conv_41(t_451_padded)
+ t_453 = F.relu(t_452)
+ t_454 = self.n_Conv_42(t_453)
+ t_455 = torch.add(t_454, t_449)
+ t_456 = F.relu(t_455)
+ t_457 = self.n_Conv_43(t_456)
+ t_458 = F.relu(t_457)
+ t_458_padded = F.pad(t_458, [1, 1, 1, 1], value=0)
+ t_459 = self.n_Conv_44(t_458_padded)
+ t_460 = F.relu(t_459)
+ t_461 = self.n_Conv_45(t_460)
+ t_462 = torch.add(t_461, t_456)
+ t_463 = F.relu(t_462)
+ t_464 = self.n_Conv_46(t_463)
+ t_465 = F.relu(t_464)
+ t_465_padded = F.pad(t_465, [1, 1, 1, 1], value=0)
+ t_466 = self.n_Conv_47(t_465_padded)
+ t_467 = F.relu(t_466)
+ t_468 = self.n_Conv_48(t_467)
+ t_469 = torch.add(t_468, t_463)
+ t_470 = F.relu(t_469)
+ t_471 = self.n_Conv_49(t_470)
+ t_472 = F.relu(t_471)
+ t_472_padded = F.pad(t_472, [1, 1, 1, 1], value=0)
+ t_473 = self.n_Conv_50(t_472_padded)
+ t_474 = F.relu(t_473)
+ t_475 = self.n_Conv_51(t_474)
+ t_476 = torch.add(t_475, t_470)
+ t_477 = F.relu(t_476)
+ t_478 = self.n_Conv_52(t_477)
+ t_479 = F.relu(t_478)
+ t_479_padded = F.pad(t_479, [1, 1, 1, 1], value=0)
+ t_480 = self.n_Conv_53(t_479_padded)
+ t_481 = F.relu(t_480)
+ t_482 = self.n_Conv_54(t_481)
+ t_483 = torch.add(t_482, t_477)
+ t_484 = F.relu(t_483)
+ t_485 = self.n_Conv_55(t_484)
+ t_486 = F.relu(t_485)
+ t_486_padded = F.pad(t_486, [1, 1, 1, 1], value=0)
+ t_487 = self.n_Conv_56(t_486_padded)
+ t_488 = F.relu(t_487)
+ t_489 = self.n_Conv_57(t_488)
+ t_490 = torch.add(t_489, t_484)
+ t_491 = F.relu(t_490)
+ t_492 = self.n_Conv_58(t_491)
+ t_493 = F.relu(t_492)
+ t_493_padded = F.pad(t_493, [1, 1, 1, 1], value=0)
+ t_494 = self.n_Conv_59(t_493_padded)
+ t_495 = F.relu(t_494)
+ t_496 = self.n_Conv_60(t_495)
+ t_497 = torch.add(t_496, t_491)
+ t_498 = F.relu(t_497)
+ t_499 = self.n_Conv_61(t_498)
+ t_500 = F.relu(t_499)
+ t_500_padded = F.pad(t_500, [1, 1, 1, 1], value=0)
+ t_501 = self.n_Conv_62(t_500_padded)
+ t_502 = F.relu(t_501)
+ t_503 = self.n_Conv_63(t_502)
+ t_504 = torch.add(t_503, t_498)
+ t_505 = F.relu(t_504)
+ t_506 = self.n_Conv_64(t_505)
+ t_507 = F.relu(t_506)
+ t_507_padded = F.pad(t_507, [1, 1, 1, 1], value=0)
+ t_508 = self.n_Conv_65(t_507_padded)
+ t_509 = F.relu(t_508)
+ t_510 = self.n_Conv_66(t_509)
+ t_511 = torch.add(t_510, t_505)
+ t_512 = F.relu(t_511)
+ t_513 = self.n_Conv_67(t_512)
+ t_514 = F.relu(t_513)
+ t_514_padded = F.pad(t_514, [1, 1, 1, 1], value=0)
+ t_515 = self.n_Conv_68(t_514_padded)
+ t_516 = F.relu(t_515)
+ t_517 = self.n_Conv_69(t_516)
+ t_518 = torch.add(t_517, t_512)
+ t_519 = F.relu(t_518)
+ t_520 = self.n_Conv_70(t_519)
+ t_521 = F.relu(t_520)
+ t_521_padded = F.pad(t_521, [1, 1, 1, 1], value=0)
+ t_522 = self.n_Conv_71(t_521_padded)
+ t_523 = F.relu(t_522)
+ t_524 = self.n_Conv_72(t_523)
+ t_525 = torch.add(t_524, t_519)
+ t_526 = F.relu(t_525)
+ t_527 = self.n_Conv_73(t_526)
+ t_528 = F.relu(t_527)
+ t_528_padded = F.pad(t_528, [1, 1, 1, 1], value=0)
+ t_529 = self.n_Conv_74(t_528_padded)
+ t_530 = F.relu(t_529)
+ t_531 = self.n_Conv_75(t_530)
+ t_532 = torch.add(t_531, t_526)
+ t_533 = F.relu(t_532)
+ t_534 = self.n_Conv_76(t_533)
+ t_535 = F.relu(t_534)
+ t_535_padded = F.pad(t_535, [1, 1, 1, 1], value=0)
+ t_536 = self.n_Conv_77(t_535_padded)
+ t_537 = F.relu(t_536)
+ t_538 = self.n_Conv_78(t_537)
+ t_539 = torch.add(t_538, t_533)
+ t_540 = F.relu(t_539)
+ t_541 = self.n_Conv_79(t_540)
+ t_542 = F.relu(t_541)
+ t_542_padded = F.pad(t_542, [1, 1, 1, 1], value=0)
+ t_543 = self.n_Conv_80(t_542_padded)
+ t_544 = F.relu(t_543)
+ t_545 = self.n_Conv_81(t_544)
+ t_546 = torch.add(t_545, t_540)
+ t_547 = F.relu(t_546)
+ t_548 = self.n_Conv_82(t_547)
+ t_549 = F.relu(t_548)
+ t_549_padded = F.pad(t_549, [1, 1, 1, 1], value=0)
+ t_550 = self.n_Conv_83(t_549_padded)
+ t_551 = F.relu(t_550)
+ t_552 = self.n_Conv_84(t_551)
+ t_553 = torch.add(t_552, t_547)
+ t_554 = F.relu(t_553)
+ t_555 = self.n_Conv_85(t_554)
+ t_556 = F.relu(t_555)
+ t_556_padded = F.pad(t_556, [1, 1, 1, 1], value=0)
+ t_557 = self.n_Conv_86(t_556_padded)
+ t_558 = F.relu(t_557)
+ t_559 = self.n_Conv_87(t_558)
+ t_560 = torch.add(t_559, t_554)
+ t_561 = F.relu(t_560)
+ t_562 = self.n_Conv_88(t_561)
+ t_563 = F.relu(t_562)
+ t_563_padded = F.pad(t_563, [1, 1, 1, 1], value=0)
+ t_564 = self.n_Conv_89(t_563_padded)
+ t_565 = F.relu(t_564)
+ t_566 = self.n_Conv_90(t_565)
+ t_567 = torch.add(t_566, t_561)
+ t_568 = F.relu(t_567)
+ t_569 = self.n_Conv_91(t_568)
+ t_570 = F.relu(t_569)
+ t_570_padded = F.pad(t_570, [1, 1, 1, 1], value=0)
+ t_571 = self.n_Conv_92(t_570_padded)
+ t_572 = F.relu(t_571)
+ t_573 = self.n_Conv_93(t_572)
+ t_574 = torch.add(t_573, t_568)
+ t_575 = F.relu(t_574)
+ t_576 = self.n_Conv_94(t_575)
+ t_577 = F.relu(t_576)
+ t_577_padded = F.pad(t_577, [1, 1, 1, 1], value=0)
+ t_578 = self.n_Conv_95(t_577_padded)
+ t_579 = F.relu(t_578)
+ t_580 = self.n_Conv_96(t_579)
+ t_581 = torch.add(t_580, t_575)
+ t_582 = F.relu(t_581)
+ t_583 = self.n_Conv_97(t_582)
+ t_584 = F.relu(t_583)
+ t_584_padded = F.pad(t_584, [0, 1, 0, 1], value=0)
+ t_585 = self.n_Conv_98(t_584_padded)
+ t_586 = F.relu(t_585)
+ t_587 = self.n_Conv_99(t_586)
+ t_588 = self.n_Conv_100(t_582)
+ t_589 = torch.add(t_587, t_588)
+ t_590 = F.relu(t_589)
+ t_591 = self.n_Conv_101(t_590)
+ t_592 = F.relu(t_591)
+ t_592_padded = F.pad(t_592, [1, 1, 1, 1], value=0)
+ t_593 = self.n_Conv_102(t_592_padded)
+ t_594 = F.relu(t_593)
+ t_595 = self.n_Conv_103(t_594)
+ t_596 = torch.add(t_595, t_590)
+ t_597 = F.relu(t_596)
+ t_598 = self.n_Conv_104(t_597)
+ t_599 = F.relu(t_598)
+ t_599_padded = F.pad(t_599, [1, 1, 1, 1], value=0)
+ t_600 = self.n_Conv_105(t_599_padded)
+ t_601 = F.relu(t_600)
+ t_602 = self.n_Conv_106(t_601)
+ t_603 = torch.add(t_602, t_597)
+ t_604 = F.relu(t_603)
+ t_605 = self.n_Conv_107(t_604)
+ t_606 = F.relu(t_605)
+ t_606_padded = F.pad(t_606, [1, 1, 1, 1], value=0)
+ t_607 = self.n_Conv_108(t_606_padded)
+ t_608 = F.relu(t_607)
+ t_609 = self.n_Conv_109(t_608)
+ t_610 = torch.add(t_609, t_604)
+ t_611 = F.relu(t_610)
+ t_612 = self.n_Conv_110(t_611)
+ t_613 = F.relu(t_612)
+ t_613_padded = F.pad(t_613, [1, 1, 1, 1], value=0)
+ t_614 = self.n_Conv_111(t_613_padded)
+ t_615 = F.relu(t_614)
+ t_616 = self.n_Conv_112(t_615)
+ t_617 = torch.add(t_616, t_611)
+ t_618 = F.relu(t_617)
+ t_619 = self.n_Conv_113(t_618)
+ t_620 = F.relu(t_619)
+ t_620_padded = F.pad(t_620, [1, 1, 1, 1], value=0)
+ t_621 = self.n_Conv_114(t_620_padded)
+ t_622 = F.relu(t_621)
+ t_623 = self.n_Conv_115(t_622)
+ t_624 = torch.add(t_623, t_618)
+ t_625 = F.relu(t_624)
+ t_626 = self.n_Conv_116(t_625)
+ t_627 = F.relu(t_626)
+ t_627_padded = F.pad(t_627, [1, 1, 1, 1], value=0)
+ t_628 = self.n_Conv_117(t_627_padded)
+ t_629 = F.relu(t_628)
+ t_630 = self.n_Conv_118(t_629)
+ t_631 = torch.add(t_630, t_625)
+ t_632 = F.relu(t_631)
+ t_633 = self.n_Conv_119(t_632)
+ t_634 = F.relu(t_633)
+ t_634_padded = F.pad(t_634, [1, 1, 1, 1], value=0)
+ t_635 = self.n_Conv_120(t_634_padded)
+ t_636 = F.relu(t_635)
+ t_637 = self.n_Conv_121(t_636)
+ t_638 = torch.add(t_637, t_632)
+ t_639 = F.relu(t_638)
+ t_640 = self.n_Conv_122(t_639)
+ t_641 = F.relu(t_640)
+ t_641_padded = F.pad(t_641, [1, 1, 1, 1], value=0)
+ t_642 = self.n_Conv_123(t_641_padded)
+ t_643 = F.relu(t_642)
+ t_644 = self.n_Conv_124(t_643)
+ t_645 = torch.add(t_644, t_639)
+ t_646 = F.relu(t_645)
+ t_647 = self.n_Conv_125(t_646)
+ t_648 = F.relu(t_647)
+ t_648_padded = F.pad(t_648, [1, 1, 1, 1], value=0)
+ t_649 = self.n_Conv_126(t_648_padded)
+ t_650 = F.relu(t_649)
+ t_651 = self.n_Conv_127(t_650)
+ t_652 = torch.add(t_651, t_646)
+ t_653 = F.relu(t_652)
+ t_654 = self.n_Conv_128(t_653)
+ t_655 = F.relu(t_654)
+ t_655_padded = F.pad(t_655, [1, 1, 1, 1], value=0)
+ t_656 = self.n_Conv_129(t_655_padded)
+ t_657 = F.relu(t_656)
+ t_658 = self.n_Conv_130(t_657)
+ t_659 = torch.add(t_658, t_653)
+ t_660 = F.relu(t_659)
+ t_661 = self.n_Conv_131(t_660)
+ t_662 = F.relu(t_661)
+ t_662_padded = F.pad(t_662, [1, 1, 1, 1], value=0)
+ t_663 = self.n_Conv_132(t_662_padded)
+ t_664 = F.relu(t_663)
+ t_665 = self.n_Conv_133(t_664)
+ t_666 = torch.add(t_665, t_660)
+ t_667 = F.relu(t_666)
+ t_668 = self.n_Conv_134(t_667)
+ t_669 = F.relu(t_668)
+ t_669_padded = F.pad(t_669, [1, 1, 1, 1], value=0)
+ t_670 = self.n_Conv_135(t_669_padded)
+ t_671 = F.relu(t_670)
+ t_672 = self.n_Conv_136(t_671)
+ t_673 = torch.add(t_672, t_667)
+ t_674 = F.relu(t_673)
+ t_675 = self.n_Conv_137(t_674)
+ t_676 = F.relu(t_675)
+ t_676_padded = F.pad(t_676, [1, 1, 1, 1], value=0)
+ t_677 = self.n_Conv_138(t_676_padded)
+ t_678 = F.relu(t_677)
+ t_679 = self.n_Conv_139(t_678)
+ t_680 = torch.add(t_679, t_674)
+ t_681 = F.relu(t_680)
+ t_682 = self.n_Conv_140(t_681)
+ t_683 = F.relu(t_682)
+ t_683_padded = F.pad(t_683, [1, 1, 1, 1], value=0)
+ t_684 = self.n_Conv_141(t_683_padded)
+ t_685 = F.relu(t_684)
+ t_686 = self.n_Conv_142(t_685)
+ t_687 = torch.add(t_686, t_681)
+ t_688 = F.relu(t_687)
+ t_689 = self.n_Conv_143(t_688)
+ t_690 = F.relu(t_689)
+ t_690_padded = F.pad(t_690, [1, 1, 1, 1], value=0)
+ t_691 = self.n_Conv_144(t_690_padded)
+ t_692 = F.relu(t_691)
+ t_693 = self.n_Conv_145(t_692)
+ t_694 = torch.add(t_693, t_688)
+ t_695 = F.relu(t_694)
+ t_696 = self.n_Conv_146(t_695)
+ t_697 = F.relu(t_696)
+ t_697_padded = F.pad(t_697, [1, 1, 1, 1], value=0)
+ t_698 = self.n_Conv_147(t_697_padded)
+ t_699 = F.relu(t_698)
+ t_700 = self.n_Conv_148(t_699)
+ t_701 = torch.add(t_700, t_695)
+ t_702 = F.relu(t_701)
+ t_703 = self.n_Conv_149(t_702)
+ t_704 = F.relu(t_703)
+ t_704_padded = F.pad(t_704, [1, 1, 1, 1], value=0)
+ t_705 = self.n_Conv_150(t_704_padded)
+ t_706 = F.relu(t_705)
+ t_707 = self.n_Conv_151(t_706)
+ t_708 = torch.add(t_707, t_702)
+ t_709 = F.relu(t_708)
+ t_710 = self.n_Conv_152(t_709)
+ t_711 = F.relu(t_710)
+ t_711_padded = F.pad(t_711, [1, 1, 1, 1], value=0)
+ t_712 = self.n_Conv_153(t_711_padded)
+ t_713 = F.relu(t_712)
+ t_714 = self.n_Conv_154(t_713)
+ t_715 = torch.add(t_714, t_709)
+ t_716 = F.relu(t_715)
+ t_717 = self.n_Conv_155(t_716)
+ t_718 = F.relu(t_717)
+ t_718_padded = F.pad(t_718, [1, 1, 1, 1], value=0)
+ t_719 = self.n_Conv_156(t_718_padded)
+ t_720 = F.relu(t_719)
+ t_721 = self.n_Conv_157(t_720)
+ t_722 = torch.add(t_721, t_716)
+ t_723 = F.relu(t_722)
+ t_724 = self.n_Conv_158(t_723)
+ t_725 = self.n_Conv_159(t_723)
+ t_726 = F.relu(t_725)
+ t_726_padded = F.pad(t_726, [0, 1, 0, 1], value=0)
+ t_727 = self.n_Conv_160(t_726_padded)
+ t_728 = F.relu(t_727)
+ t_729 = self.n_Conv_161(t_728)
+ t_730 = torch.add(t_729, t_724)
+ t_731 = F.relu(t_730)
+ t_732 = self.n_Conv_162(t_731)
+ t_733 = F.relu(t_732)
+ t_733_padded = F.pad(t_733, [1, 1, 1, 1], value=0)
+ t_734 = self.n_Conv_163(t_733_padded)
+ t_735 = F.relu(t_734)
+ t_736 = self.n_Conv_164(t_735)
+ t_737 = torch.add(t_736, t_731)
+ t_738 = F.relu(t_737)
+ t_739 = self.n_Conv_165(t_738)
+ t_740 = F.relu(t_739)
+ t_740_padded = F.pad(t_740, [1, 1, 1, 1], value=0)
+ t_741 = self.n_Conv_166(t_740_padded)
+ t_742 = F.relu(t_741)
+ t_743 = self.n_Conv_167(t_742)
+ t_744 = torch.add(t_743, t_738)
+ t_745 = F.relu(t_744)
+ t_746 = self.n_Conv_168(t_745)
+ t_747 = self.n_Conv_169(t_745)
+ t_748 = F.relu(t_747)
+ t_748_padded = F.pad(t_748, [0, 1, 0, 1], value=0)
+ t_749 = self.n_Conv_170(t_748_padded)
+ t_750 = F.relu(t_749)
+ t_751 = self.n_Conv_171(t_750)
+ t_752 = torch.add(t_751, t_746)
+ t_753 = F.relu(t_752)
+ t_754 = self.n_Conv_172(t_753)
+ t_755 = F.relu(t_754)
+ t_755_padded = F.pad(t_755, [1, 1, 1, 1], value=0)
+ t_756 = self.n_Conv_173(t_755_padded)
+ t_757 = F.relu(t_756)
+ t_758 = self.n_Conv_174(t_757)
+ t_759 = torch.add(t_758, t_753)
+ t_760 = F.relu(t_759)
+ t_761 = self.n_Conv_175(t_760)
+ t_762 = F.relu(t_761)
+ t_762_padded = F.pad(t_762, [1, 1, 1, 1], value=0)
+ t_763 = self.n_Conv_176(t_762_padded)
+ t_764 = F.relu(t_763)
+ t_765 = self.n_Conv_177(t_764)
+ t_766 = torch.add(t_765, t_760)
+ t_767 = F.relu(t_766)
+ t_768 = self.n_Conv_178(t_767)
+ t_769 = F.avg_pool2d(t_768, kernel_size=t_768.shape[-2:])
+ t_770 = torch.squeeze(t_769, 3)
+ t_770 = torch.squeeze(t_770, 2)
+ t_771 = torch.sigmoid(t_770)
+ return t_771
+
+ def load_state_dict(self, state_dict, **kwargs):
+ self.tags = state_dict.get('tags', [])
+
+ super(DeepDanbooruModel, self).load_state_dict({k: v for k, v in state_dict.items() if k != 'tags'})
+
diff --git a/modules/devices.py b/modules/devices.py
index 7511e1dc3..800510b7c 100644
--- a/modules/devices.py
+++ b/modules/devices.py
@@ -2,72 +2,95 @@ import sys, os, shlex
import contextlib
import torch
from modules import errors
+from packaging import version
-# has_mps is only available in nightly pytorch (for now), `getattr` for compatibility
-has_mps = getattr(torch, 'has_mps', False)
-cpu = torch.device("cpu")
+# has_mps is only available in nightly pytorch (for now) and macOS 12.3+.
+# check `getattr` and try it for compatibility
+def has_mps() -> bool:
+ if not getattr(torch, 'has_mps', False):
+ return False
+ try:
+ torch.zeros(1).to(torch.device("mps"))
+ return True
+ except Exception:
+ return False
+
def extract_device_id(args, name):
for x in range(len(args)):
- if name in args[x]: return args[x+1]
+ if name in args[x]:
+ return args[x + 1]
+
return None
+
+def get_cuda_device_string():
+ from modules import shared
+
+ if shared.cmd_opts.device_id is not None:
+ return f"cuda:{shared.cmd_opts.device_id}"
+
+ return "cuda"
+
+
def get_optimal_device():
if torch.cuda.is_available():
- from modules import shared
+ return torch.device(get_cuda_device_string())
- device_id = shared.cmd_opts.device_id
-
- if device_id is not None:
- cuda_device = f"cuda:{device_id}"
- return torch.device(cuda_device)
- else:
- return torch.device("cuda")
-
- if has_mps:
+ if has_mps():
return torch.device("mps")
return cpu
+def get_device_for(task):
+ from modules import shared
+
+ if task in shared.cmd_opts.use_cpu:
+ return cpu
+
+ return get_optimal_device()
+
+
def torch_gc():
if torch.cuda.is_available():
- torch.cuda.empty_cache()
- torch.cuda.ipc_collect()
+ with torch.cuda.device(get_cuda_device_string()):
+ torch.cuda.empty_cache()
+ torch.cuda.ipc_collect()
def enable_tf32():
if torch.cuda.is_available():
+
+ # enabling benchmark option seems to enable a range of cards to do fp16 when they otherwise can't
+ # see https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/4407
+ if any([torch.cuda.get_device_capability(devid) == (7, 5) for devid in range(0, torch.cuda.device_count())]):
+ torch.backends.cudnn.benchmark = True
+
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
+
errors.run(enable_tf32, "Enabling TF32")
-device = device_interrogate = device_gfpgan = device_swinir = device_esrgan = device_scunet = device_codeformer = None
+cpu = torch.device("cpu")
+device = device_interrogate = device_gfpgan = device_esrgan = device_codeformer = None
dtype = torch.float16
dtype_vae = torch.float16
-def randn(seed, shape):
- # Pytorch currently doesn't handle setting randomness correctly when the metal backend is used.
- if device.type == 'mps':
- generator = torch.Generator(device=cpu)
- generator.manual_seed(seed)
- noise = torch.randn(shape, generator=generator, device=cpu).to(device)
- return noise
+def randn(seed, shape):
torch.manual_seed(seed)
+ if device.type == 'mps':
+ return torch.randn(shape, device=cpu).to(device)
return torch.randn(shape, device=device)
def randn_without_seed(shape):
- # Pytorch currently doesn't handle setting randomness correctly when the metal backend is used.
if device.type == 'mps':
- generator = torch.Generator(device=cpu)
- noise = torch.randn(shape, generator=generator, device=cpu).to(device)
- return noise
-
+ return torch.randn(shape, device=cpu).to(device)
return torch.randn(shape, device=device)
@@ -82,6 +105,36 @@ def autocast(disable=False):
return torch.autocast("cuda")
+
# MPS workaround for https://github.com/pytorch/pytorch/issues/79383
-def mps_contiguous(input_tensor, device): return input_tensor.contiguous() if device.type == 'mps' else input_tensor
-def mps_contiguous_to(input_tensor, device): return mps_contiguous(input_tensor, device).to(device)
+orig_tensor_to = torch.Tensor.to
+def tensor_to_fix(self, *args, **kwargs):
+ if self.device.type != 'mps' and \
+ ((len(args) > 0 and isinstance(args[0], torch.device) and args[0].type == 'mps') or \
+ (isinstance(kwargs.get('device'), torch.device) and kwargs['device'].type == 'mps')):
+ self = self.contiguous()
+ return orig_tensor_to(self, *args, **kwargs)
+
+
+# MPS workaround for https://github.com/pytorch/pytorch/issues/80800
+orig_layer_norm = torch.nn.functional.layer_norm
+def layer_norm_fix(*args, **kwargs):
+ if len(args) > 0 and isinstance(args[0], torch.Tensor) and args[0].device.type == 'mps':
+ args = list(args)
+ args[0] = args[0].contiguous()
+ return orig_layer_norm(*args, **kwargs)
+
+
+# MPS workaround for https://github.com/pytorch/pytorch/issues/90532
+orig_tensor_numpy = torch.Tensor.numpy
+def numpy_fix(self, *args, **kwargs):
+ if self.requires_grad:
+ self = self.detach()
+ return orig_tensor_numpy(self, *args, **kwargs)
+
+
+# PyTorch 1.13 doesn't need these fixes but unfortunately is slower and has regressions that prevent training from working
+if has_mps() and version.parse(torch.__version__) < version.parse("1.13"):
+ torch.Tensor.to = tensor_to_fix
+ torch.nn.functional.layer_norm = layer_norm_fix
+ torch.Tensor.numpy = numpy_fix
diff --git a/modules/errors.py b/modules/errors.py
index 372dc51a0..a668c0147 100644
--- a/modules/errors.py
+++ b/modules/errors.py
@@ -2,9 +2,30 @@ import sys
import traceback
+def print_error_explanation(message):
+ lines = message.strip().split("\n")
+ max_len = max([len(x) for x in lines])
+
+ print('=' * max_len, file=sys.stderr)
+ for line in lines:
+ print(line, file=sys.stderr)
+ print('=' * max_len, file=sys.stderr)
+
+
+def display(e: Exception, task):
+ print(f"{task or 'error'}: {type(e).__name__}", file=sys.stderr)
+ print(traceback.format_exc(), file=sys.stderr)
+
+ message = str(e)
+ if "copying a param with shape torch.Size([640, 1024]) from checkpoint, the shape in current model is torch.Size([640, 768])" in message:
+ print_error_explanation("""
+The most likely cause of this is you are trying to load Stable Diffusion 2.0 model without specifying its connfig file.
+See https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Features#stable-diffusion-20 for how to solve this.
+ """)
+
+
def run(code, task):
try:
code()
except Exception as e:
- print(f"{task}: {type(e).__name__}", file=sys.stderr)
- print(traceback.format_exc(), file=sys.stderr)
+ display(task, e)
diff --git a/modules/esrgan_model.py b/modules/esrgan_model.py
index c61669b46..9a9c38f1f 100644
--- a/modules/esrgan_model.py
+++ b/modules/esrgan_model.py
@@ -199,7 +199,7 @@ def upscale_without_tiling(model, img):
img = img[:, :, ::-1]
img = np.ascontiguousarray(np.transpose(img, (2, 0, 1))) / 255
img = torch.from_numpy(img).float()
- img = devices.mps_contiguous_to(img.unsqueeze(0), devices.device_esrgan)
+ img = img.unsqueeze(0).to(devices.device_esrgan)
with torch.no_grad():
output = model(img)
output = output.squeeze().float().cpu().clamp_(0, 1).numpy()
diff --git a/modules/extensions.py b/modules/extensions.py
index 8e0977fdf..b522125c6 100644
--- a/modules/extensions.py
+++ b/modules/extensions.py
@@ -6,9 +6,9 @@ import git
from modules import paths, shared
-
extensions = []
extensions_dir = os.path.join(paths.script_path, "extensions")
+extensions_builtin_dir = os.path.join(paths.script_path, "extensions-builtin")
def active():
@@ -16,12 +16,13 @@ def active():
class Extension:
- def __init__(self, name, path, enabled=True):
+ def __init__(self, name, path, enabled=True, is_builtin=False):
self.name = name
self.path = path
self.enabled = enabled
self.status = ''
self.can_update = False
+ self.is_builtin = is_builtin
repo = None
try:
@@ -66,9 +67,12 @@ class Extension:
self.can_update = False
self.status = "latest"
- def pull(self):
+ def fetch_and_reset_hard(self):
repo = git.Repo(self.path)
- repo.remotes.origin.pull()
+ # Fix: `error: Your local changes to the following files would be overwritten by merge`,
+ # because WSL2 Docker set 755 file permissions instead of 644, this results to the error.
+ repo.git.fetch('--all')
+ repo.git.reset('--hard', 'origin')
def list_extensions():
@@ -77,10 +81,19 @@ def list_extensions():
if not os.path.isdir(extensions_dir):
return
- for dirname in sorted(os.listdir(extensions_dir)):
- path = os.path.join(extensions_dir, dirname)
- if not os.path.isdir(path):
- continue
+ paths = []
+ for dirname in [extensions_dir, extensions_builtin_dir]:
+ if not os.path.isdir(dirname):
+ return
- extension = Extension(name=dirname, path=path, enabled=dirname not in shared.opts.disabled_extensions)
+ for extension_dirname in sorted(os.listdir(dirname)):
+ path = os.path.join(dirname, extension_dirname)
+ if not os.path.isdir(path):
+ continue
+
+ paths.append((extension_dirname, path, dirname == extensions_builtin_dir))
+
+ for dirname, path, is_builtin in paths:
+ extension = Extension(name=dirname, path=path, enabled=dirname not in shared.opts.disabled_extensions, is_builtin=is_builtin)
extensions.append(extension)
+
diff --git a/modules/extras.py b/modules/extras.py
index 71b93a068..7407bfe31 100644
--- a/modules/extras.py
+++ b/modules/extras.py
@@ -1,6 +1,8 @@
from __future__ import annotations
import math
import os
+import sys
+import traceback
import numpy as np
from PIL import Image
@@ -12,15 +14,13 @@ from typing import Callable, List, OrderedDict, Tuple
from functools import partial
from dataclasses import dataclass
-from modules import processing, shared, images, devices, sd_models
+from modules import processing, shared, images, devices, sd_models, sd_samplers
from modules.shared import opts
import modules.gfpgan_model
from modules.ui import plaintext_to_html
import modules.codeformer_model
-import piexif
-import piexif.helper
import gradio as gr
-
+import safetensors.torch
class LruCache(OrderedDict):
@dataclass(frozen=True)
@@ -53,14 +53,17 @@ class LruCache(OrderedDict):
cached_images: LruCache = LruCache(max_size=5)
-def run_extras(extras_mode, resize_mode, image, image_folder, input_dir, output_dir, show_extras_results, gfpgan_visibility, codeformer_visibility, codeformer_weight, upscaling_resize, upscaling_resize_w, upscaling_resize_h, upscaling_crop, extras_upscaler_1, extras_upscaler_2, extras_upscaler_2_visibility, upscale_first: bool):
+def run_extras(extras_mode, resize_mode, image, image_folder, input_dir, output_dir, show_extras_results, gfpgan_visibility, codeformer_visibility, codeformer_weight, upscaling_resize, upscaling_resize_w, upscaling_resize_h, upscaling_crop, extras_upscaler_1, extras_upscaler_2, extras_upscaler_2_visibility, upscale_first: bool, save_output: bool = True):
devices.torch_gc()
+ shared.state.begin()
+ shared.state.job = 'extras'
+
imageArr = []
# Also keep track of original file names
imageNameArr = []
outputs = []
-
+
if extras_mode == 1:
#convert file to pillow image
for img in image_folder:
@@ -92,6 +95,7 @@ def run_extras(extras_mode, resize_mode, image, image_folder, input_dir, output_
# Extra operation definitions
def run_gfpgan(image: Image.Image, info: str) -> Tuple[Image.Image, str]:
+ shared.state.job = 'extras-gfpgan'
restored_img = modules.gfpgan_model.gfpgan_fix_faces(np.array(image, dtype=np.uint8))
res = Image.fromarray(restored_img)
@@ -102,6 +106,7 @@ def run_extras(extras_mode, resize_mode, image, image_folder, input_dir, output_
return (res, info)
def run_codeformer(image: Image.Image, info: str) -> Tuple[Image.Image, str]:
+ shared.state.job = 'extras-codeformer'
restored_img = modules.codeformer_model.codeformer.restore(np.array(image, dtype=np.uint8), w=codeformer_weight)
res = Image.fromarray(restored_img)
@@ -112,6 +117,7 @@ def run_extras(extras_mode, resize_mode, image, image_folder, input_dir, output_
return (res, info)
def upscale(image, scaler_index, resize, mode, resize_w, resize_h, crop):
+ shared.state.job = 'extras-upscale'
upscaler = shared.sd_upscalers[scaler_index]
res = upscaler.scaler.upscale(image, resize, upscaler.data_path)
if mode == 1 and crop:
@@ -178,6 +184,9 @@ def run_extras(extras_mode, resize_mode, image, image_folder, input_dir, output_
for image, image_name in zip(imageArr, imageNameArr):
if image is None:
return outputs, "Please select an input image.", ''
+
+ shared.state.textinfo = f'Processing image {image_name}'
+
existing_pnginfo = image.info or {}
image = image.convert("RGB")
@@ -186,18 +195,25 @@ def run_extras(extras_mode, resize_mode, image, image_folder, input_dir, output_
for op in extras_ops:
image, info = op(image, info)
- if opts.use_original_name_batch and image_name != None:
+ if opts.use_original_name_batch and image_name is not None:
basename = os.path.splitext(os.path.basename(image_name))[0]
else:
basename = ''
- images.save_image(image, path=outpath, basename=basename, seed=None, prompt=None, extension=opts.samples_format, info=info, short_filename=True,
- no_prompt=True, grid=False, pnginfo_section_name="extras", existing_info=existing_pnginfo, forced_filename=None)
-
- if opts.enable_pnginfo:
+ if opts.enable_pnginfo: # append info before save
image.info = existing_pnginfo
image.info["extras"] = info
+ if save_output:
+ # Add upscaler name as a suffix.
+ suffix = f"-{shared.sd_upscalers[extras_upscaler_1].name}" if shared.opts.use_upscaler_name_as_suffix else ""
+ # Add second upscaler if applicable.
+ if suffix and extras_upscaler_2 and extras_upscaler_2_visibility:
+ suffix += f"-{shared.sd_upscalers[extras_upscaler_2].name}"
+
+ images.save_image(image, path=outpath, basename=basename, seed=None, prompt=None, extension=opts.samples_format, info=info, short_filename=True,
+ no_prompt=True, grid=False, pnginfo_section_name="extras", existing_info=existing_pnginfo, forced_filename=None, suffix=suffix)
+
if extras_mode != 2 or show_extras_results :
outputs.append(image)
@@ -213,25 +229,8 @@ def run_pnginfo(image):
if image is None:
return '', '', ''
- items = image.info
- geninfo = ''
-
- if "exif" in image.info:
- exif = piexif.load(image.info["exif"])
- exif_comment = (exif or {}).get("Exif", {}).get(piexif.ExifIFD.UserComment, b'')
- try:
- exif_comment = piexif.helper.UserComment.load(exif_comment)
- except ValueError:
- exif_comment = exif_comment.decode('utf8', errors="ignore")
-
- items['exif comment'] = exif_comment
- geninfo = exif_comment
-
- for field in ['jfif', 'jfif_version', 'jfif_unit', 'jfif_density', 'dpi', 'exif',
- 'loop', 'background', 'timestamp', 'duration']:
- items.pop(field, None)
-
- geninfo = items.get('parameters', geninfo)
+ geninfo, items = images.read_info_from_image(image)
+ items = {**{'parameters': geninfo}, **items}
info = ''
for key, text in items.items():
@@ -249,7 +248,10 @@ def run_pnginfo(image):
return '', geninfo, info
-def run_modelmerger(primary_model_name, secondary_model_name, teritary_model_name, interp_method, multiplier, save_as_half, custom_name):
+def run_modelmerger(primary_model_name, secondary_model_name, tertiary_model_name, interp_method, multiplier, save_as_half, custom_name, checkpoint_format):
+ shared.state.begin()
+ shared.state.job = 'model-merge'
+
def weighted_sum(theta0, theta1, alpha):
return ((1 - alpha) * theta0) + (alpha * theta1)
@@ -261,23 +263,8 @@ def run_modelmerger(primary_model_name, secondary_model_name, teritary_model_nam
primary_model_info = sd_models.checkpoints_list[primary_model_name]
secondary_model_info = sd_models.checkpoints_list[secondary_model_name]
- teritary_model_info = sd_models.checkpoints_list.get(teritary_model_name, None)
-
- print(f"Loading {primary_model_info.filename}...")
- primary_model = torch.load(primary_model_info.filename, map_location='cpu')
- theta_0 = sd_models.get_state_dict_from_checkpoint(primary_model)
-
- print(f"Loading {secondary_model_info.filename}...")
- secondary_model = torch.load(secondary_model_info.filename, map_location='cpu')
- theta_1 = sd_models.get_state_dict_from_checkpoint(secondary_model)
-
- if teritary_model_info is not None:
- print(f"Loading {teritary_model_info.filename}...")
- teritary_model = torch.load(teritary_model_info.filename, map_location='cpu')
- theta_2 = sd_models.get_state_dict_from_checkpoint(teritary_model)
- else:
- teritary_model = None
- theta_2 = None
+ tertiary_model_info = sd_models.checkpoints_list.get(tertiary_model_name, None)
+ result_is_inpainting_model = False
theta_funcs = {
"Weighted sum": (None, weighted_sum),
@@ -285,9 +272,19 @@ def run_modelmerger(primary_model_name, secondary_model_name, teritary_model_nam
}
theta_func1, theta_func2 = theta_funcs[interp_method]
- print(f"Merging...")
+ if theta_func1 and not tertiary_model_info:
+ shared.state.textinfo = "Failed: Interpolation method requires a tertiary model."
+ shared.state.end()
+ return ["Failed: Interpolation method requires a tertiary model."] + [gr.Dropdown.update(choices=sd_models.checkpoint_tiles()) for _ in range(4)]
+
+ shared.state.textinfo = f"Loading {secondary_model_info.filename}..."
+ print(f"Loading {secondary_model_info.filename}...")
+ theta_1 = sd_models.read_state_dict(secondary_model_info.filename, map_location='cpu')
if theta_func1:
+ print(f"Loading {tertiary_model_info.filename}...")
+ theta_2 = sd_models.read_state_dict(tertiary_model_info.filename, map_location='cpu')
+
for key in tqdm.tqdm(theta_1.keys()):
if 'model' in key:
if key in theta_2:
@@ -295,12 +292,33 @@ def run_modelmerger(primary_model_name, secondary_model_name, teritary_model_nam
theta_1[key] = theta_func1(theta_1[key], t2)
else:
theta_1[key] = torch.zeros_like(theta_1[key])
- del theta_2, teritary_model
+ del theta_2
+
+ shared.state.textinfo = f"Loading {primary_model_info.filename}..."
+ print(f"Loading {primary_model_info.filename}...")
+ theta_0 = sd_models.read_state_dict(primary_model_info.filename, map_location='cpu')
+
+ print("Merging...")
for key in tqdm.tqdm(theta_0.keys()):
if 'model' in key and key in theta_1:
+ a = theta_0[key]
+ b = theta_1[key]
- theta_0[key] = theta_func2(theta_0[key], theta_1[key], multiplier)
+ shared.state.textinfo = f'Merging layer {key}'
+ # this enables merging an inpainting model (A) with another one (B);
+ # where normal model would have 4 channels, for latenst space, inpainting model would
+ # have another 4 channels for unmasked picture's latent space, plus one channel for mask, for a total of 9
+ if a.shape != b.shape and a.shape[0:1] + a.shape[2:] == b.shape[0:1] + b.shape[2:]:
+ if a.shape[1] == 4 and b.shape[1] == 9:
+ raise RuntimeError("When merging inpainting model with a normal one, A must be the inpainting model.")
+
+ assert a.shape[1] == 9 and b.shape[1] == 4, f"Bad dimensions for merged layer {key}: A={a.shape}, B={b.shape}"
+
+ theta_0[key][:, 0:4, :, :] = theta_func2(a[:, 0:4, :, :], b, multiplier)
+ result_is_inpainting_model = True
+ else:
+ theta_0[key] = theta_func2(a, b, multiplier)
if save_as_half:
theta_0[key] = theta_0[key].half()
@@ -311,17 +329,35 @@ def run_modelmerger(primary_model_name, secondary_model_name, teritary_model_nam
theta_0[key] = theta_1[key]
if save_as_half:
theta_0[key] = theta_0[key].half()
+ del theta_1
ckpt_dir = shared.cmd_opts.ckpt_dir or sd_models.model_path
- filename = primary_model_info.model_name + '_' + str(round(1-multiplier, 2)) + '-' + secondary_model_info.model_name + '_' + str(round(multiplier, 2)) + '-' + interp_method.replace(" ", "_") + '-merged.ckpt'
- filename = filename if custom_name == '' else (custom_name + '.ckpt')
+ filename = \
+ primary_model_info.model_name + '_' + str(round(1-multiplier, 2)) + '-' + \
+ secondary_model_info.model_name + '_' + str(round(multiplier, 2)) + '-' + \
+ interp_method.replace(" ", "_") + \
+ '-merged.' + \
+ ("inpainting." if result_is_inpainting_model else "") + \
+ checkpoint_format
+
+ filename = filename if custom_name == '' else (custom_name + '.' + checkpoint_format)
+
output_modelname = os.path.join(ckpt_dir, filename)
+ shared.state.textinfo = f"Saving to {output_modelname}..."
print(f"Saving to {output_modelname}...")
- torch.save(primary_model, output_modelname)
+
+ _, extension = os.path.splitext(output_modelname)
+ if extension.lower() == ".safetensors":
+ safetensors.torch.save_file(theta_0, output_modelname, metadata={"format": "pt"})
+ else:
+ torch.save(theta_0, output_modelname)
sd_models.list_models()
- print(f"Checkpoint saved.")
+ print("Checkpoint saved.")
+ shared.state.textinfo = "Checkpoint saved to " + output_modelname
+ shared.state.end()
+
return ["Checkpoint saved to " + output_modelname] + [gr.Dropdown.update(choices=sd_models.checkpoint_tiles()) for _ in range(4)]
diff --git a/modules/generation_parameters_copypaste.py b/modules/generation_parameters_copypaste.py
index 985ec95eb..4baf4d9ae 100644
--- a/modules/generation_parameters_copypaste.py
+++ b/modules/generation_parameters_copypaste.py
@@ -1,10 +1,13 @@
import base64
import io
+import math
import os
import re
+from pathlib import Path
+
import gradio as gr
from modules.shared import script_path
-from modules import shared
+from modules import shared, ui_tempdir
import tempfile
from PIL import Image
@@ -12,6 +15,7 @@ re_param_code = r'\s*([\w ]+):\s*("(?:\\|\"|[^\"])+"|[^,]*)(?:,|$)'
re_param = re.compile(re_param_code)
re_params = re.compile(r"^(?:" + re_param_code + "){3,}$")
re_imagesize = re.compile(r"^(\d+)x(\d+)$")
+re_hypernet_hash = re.compile("\(([0-9a-f]+)\)$")
type_of_gr_update = type(gr.update())
paste_fields = {}
bind_list = []
@@ -33,11 +37,13 @@ def quote(text):
def image_from_url_text(filedata):
- if type(filedata) == dict and filedata["is_file"]:
+ if type(filedata) == list and len(filedata) > 0 and type(filedata[0]) == dict and filedata[0].get("is_file", False):
+ filedata = filedata[0]
+
+ if type(filedata) == dict and filedata.get("is_file", False):
filename = filedata["name"]
- tempdir = os.path.normpath(tempfile.gettempdir())
- normfn = os.path.normpath(filename)
- assert normfn.startswith(tempdir), 'trying to open image file not in temporary directory'
+ is_in_right_dir = ui_tempdir.check_tmp_file(shared.demo, filename)
+ assert is_in_right_dir, 'trying to open image file outside of allowed directories'
return Image.open(filename)
@@ -73,7 +79,10 @@ def integrate_settings_paste_fields(component_dict):
'sd_hypernetwork': 'Hypernet',
'sd_hypernetwork_strength': 'Hypernet strength',
'CLIP_stop_at_last_layers': 'Clip skip',
+ 'inpainting_mask_weight': 'Conditional mask weight',
'sd_model_checkpoint': 'Model hash',
+ 'eta_noise_seed_delta': 'ENSD',
+ 'initial_noise_multiplier': 'Noise multiplier',
}
settings_paste_fields = [
(component_dict[k], lambda d, k=k, v=v: ui.apply_setting(k, d.get(v, None)))
@@ -88,7 +97,7 @@ def integrate_settings_paste_fields(component_dict):
def create_buttons(tabs_list):
buttons = {}
for tab in tabs_list:
- buttons[tab] = gr.Button(f"Send to {tab}")
+ buttons[tab] = gr.Button(f"Send to {tab}", elem_id=f"{tab}_tab")
return buttons
@@ -97,36 +106,57 @@ def bind_buttons(buttons, send_image, send_generate_info):
bind_list.append([buttons, send_image, send_generate_info])
+def send_image_and_dimensions(x):
+ if isinstance(x, Image.Image):
+ img = x
+ else:
+ img = image_from_url_text(x)
+
+ if shared.opts.send_size and isinstance(img, Image.Image):
+ w = img.width
+ h = img.height
+ else:
+ w = gr.update()
+ h = gr.update()
+
+ return img, w, h
+
+
def run_bind():
- for buttons, send_image, send_generate_info in bind_list:
+ for buttons, source_image_component, send_generate_info in bind_list:
for tab in buttons:
button = buttons[tab]
- if send_image and paste_fields[tab]["init_img"]:
- if type(send_image) == gr.Gallery:
- button.click(
- fn=lambda x: image_from_url_text(x),
- _js="extract_image_from_gallery",
- inputs=[send_image],
- outputs=[paste_fields[tab]["init_img"]],
- )
+ destination_image_component = paste_fields[tab]["init_img"]
+ fields = paste_fields[tab]["fields"]
+
+ destination_width_component = next(iter([field for field, name in fields if name == "Size-1"] if fields else []), None)
+ destination_height_component = next(iter([field for field, name in fields if name == "Size-2"] if fields else []), None)
+
+ if source_image_component and destination_image_component:
+ if isinstance(source_image_component, gr.Gallery):
+ func = send_image_and_dimensions if destination_width_component else image_from_url_text
+ jsfunc = "extract_image_from_gallery"
else:
- button.click(
- fn=lambda x: x,
- inputs=[send_image],
- outputs=[paste_fields[tab]["init_img"]],
- )
+ func = send_image_and_dimensions if destination_width_component else lambda x: x
+ jsfunc = None
- if send_generate_info and paste_fields[tab]["fields"] is not None:
+ button.click(
+ fn=func,
+ _js=jsfunc,
+ inputs=[source_image_component],
+ outputs=[destination_image_component, destination_width_component, destination_height_component] if destination_width_component else [destination_image_component],
+ )
+
+ if send_generate_info and fields is not None:
if send_generate_info in paste_fields:
- paste_field_names = ['Prompt', 'Negative prompt', 'Steps', 'Face restoration', 'Size-1', 'Size-2'] + (["Seed"] if shared.opts.send_seed else [])
-
+ paste_field_names = ['Prompt', 'Negative prompt', 'Steps', 'Face restoration'] + (["Seed"] if shared.opts.send_seed else [])
button.click(
fn=lambda *x: x,
inputs=[field for field, name in paste_fields[send_generate_info]["fields"] if name in paste_field_names],
- outputs=[field for field, name in paste_fields[tab]["fields"] if name in paste_field_names],
+ outputs=[field for field, name in fields if name in paste_field_names],
)
else:
- connect_paste(button, paste_fields[tab]["fields"], send_generate_info)
+ connect_paste(button, fields, send_generate_info)
button.click(
fn=None,
@@ -136,6 +166,59 @@ def run_bind():
)
+def find_hypernetwork_key(hypernet_name, hypernet_hash=None):
+ """Determines the config parameter name to use for the hypernet based on the parameters in the infotext.
+
+ Example: an infotext provides "Hypernet: ke-ta" and "Hypernet hash: 1234abcd". For the "Hypernet" config
+ parameter this means there should be an entry that looks like "ke-ta-10000(1234abcd)" to set it to.
+
+ If the infotext has no hash, then a hypernet with the same name will be selected instead.
+ """
+ hypernet_name = hypernet_name.lower()
+ if hypernet_hash is not None:
+ # Try to match the hash in the name
+ for hypernet_key in shared.hypernetworks.keys():
+ result = re_hypernet_hash.search(hypernet_key)
+ if result is not None and result[1] == hypernet_hash:
+ return hypernet_key
+ else:
+ # Fall back to a hypernet with the same name
+ for hypernet_key in shared.hypernetworks.keys():
+ if hypernet_key.lower().startswith(hypernet_name):
+ return hypernet_key
+
+ return None
+
+
+def restore_old_hires_fix_params(res):
+ """for infotexts that specify old First pass size parameter, convert it into
+ width, height, and hr scale"""
+
+ firstpass_width = res.get('First pass size-1', None)
+ firstpass_height = res.get('First pass size-2', None)
+
+ if firstpass_width is None or firstpass_height is None:
+ return
+
+ firstpass_width, firstpass_height = int(firstpass_width), int(firstpass_height)
+ width = int(res.get("Size-1", 512))
+ height = int(res.get("Size-2", 512))
+
+ if firstpass_width == 0 or firstpass_height == 0:
+ # old algorithm for auto-calculating first pass size
+ desired_pixel_count = 512 * 512
+ actual_pixel_count = width * height
+ scale = math.sqrt(desired_pixel_count / actual_pixel_count)
+ firstpass_width = math.ceil(scale * width / 64) * 64
+ firstpass_height = math.ceil(scale * height / 64) * 64
+
+ hr_scale = width / firstpass_width if firstpass_width > 0 else height / firstpass_height
+
+ res['Size-1'] = firstpass_width
+ res['Size-2'] = firstpass_height
+ res['Hires upscale'] = hr_scale
+
+
def parse_generation_parameters(x: str):
"""parses generation parameters string, the one you see in text field under the picture in UI:
```
@@ -181,6 +264,20 @@ Steps: 20, Sampler: Euler a, CFG scale: 7, Seed: 965400086, Size: 512x512, Model
else:
res[k] = v
+ # Missing CLIP skip means it was set to 1 (the default)
+ if "Clip skip" not in res:
+ res["Clip skip"] = "1"
+
+ if "Hypernet strength" not in res:
+ res["Hypernet strength"] = "1"
+
+ if "Hypernet" in res:
+ hypernet_name = res["Hypernet"]
+ hypernet_hash = res.get("Hypernet hash", None)
+ res["Hypernet"] = find_hypernetwork_key(hypernet_name, hypernet_hash)
+
+ restore_old_hires_fix_params(res)
+
return res
diff --git a/modules/gfpgan_model.py b/modules/gfpgan_model.py
index a9452dce5..1e2dbc32b 100644
--- a/modules/gfpgan_model.py
+++ b/modules/gfpgan_model.py
@@ -36,7 +36,9 @@ def gfpgann():
else:
print("Unable to load gfpgan model!")
return None
- model = gfpgan_constructor(model_path=model_file, upscale=1, arch='clean', channel_multiplier=2, bg_upsampler=None)
+ if hasattr(facexlib.detection.retinaface, 'device'):
+ facexlib.detection.retinaface.device = devices.device_gfpgan
+ model = gfpgan_constructor(model_path=model_file, upscale=1, arch='clean', channel_multiplier=2, bg_upsampler=None, device=devices.device_gfpgan)
loaded_gfpgan_model = model
return model
diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py
index 3371b18e0..6a9b1398a 100644
--- a/modules/hypernetworks/hypernetwork.py
+++ b/modules/hypernetworks/hypernetwork.py
@@ -12,7 +12,7 @@ import torch
import tqdm
from einops import rearrange, repeat
from ldm.util import default
-from modules import devices, processing, sd_models, shared
+from modules import devices, processing, sd_models, shared, sd_samplers
from modules.textual_inversion import textual_inversion
from modules.textual_inversion.learn_schedule import LearnRateScheduler
from torch import einsum
@@ -38,7 +38,7 @@ class HypernetworkModule(torch.nn.Module):
activation_dict.update({cls_name.lower(): cls_obj for cls_name, cls_obj in inspect.getmembers(torch.nn.modules.activation) if inspect.isclass(cls_obj) and cls_obj.__module__ == 'torch.nn.modules.activation'})
def __init__(self, dim, state_dict=None, layer_structure=None, activation_func=None, weight_init='Normal',
- add_layer_norm=False, use_dropout=False, activate_output=False, last_layer_dropout=True):
+ add_layer_norm=False, use_dropout=False, activate_output=False, last_layer_dropout=False):
super().__init__()
assert layer_structure is not None, "layer_structure must not be None"
@@ -154,16 +154,28 @@ class Hypernetwork:
HypernetworkModule(size, None, self.layer_structure, self.activation_func, self.weight_init,
self.add_layer_norm, self.use_dropout, self.activate_output, last_layer_dropout=self.last_layer_dropout),
)
+ self.eval_mode()
def weights(self):
res = []
+ for k, layers in self.layers.items():
+ for layer in layers:
+ res += layer.parameters()
+ return res
+ def train_mode(self):
for k, layers in self.layers.items():
for layer in layers:
layer.train()
- res += layer.trainables()
+ for param in layer.parameters():
+ param.requires_grad = True
- return res
+ def eval_mode(self):
+ for k, layers in self.layers.items():
+ for layer in layers:
+ layer.eval()
+ for param in layer.parameters():
+ param.requires_grad = False
def save(self, filename):
state_dict = {}
@@ -265,7 +277,7 @@ def load_hypernetwork(filename):
print(traceback.format_exc(), file=sys.stderr)
else:
if shared.loaded_hypernetwork is not None:
- print(f"Unloading hypernetwork")
+ print("Unloading hypernetwork")
shared.loaded_hypernetwork = None
@@ -366,19 +378,44 @@ def report_statistics(loss_info:dict):
print(e)
+def create_hypernetwork(name, enable_sizes, overwrite_old, layer_structure=None, activation_func=None, weight_init=None, add_layer_norm=False, use_dropout=False):
+ # Remove illegal characters from name.
+ name = "".join( x for x in name if (x.isalnum() or x in "._- "))
-def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log_directory, training_width, training_height, steps, clip_grad_mode, clip_grad_value, create_image_every, save_hypernetwork_every, template_file, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height):
+ fn = os.path.join(shared.cmd_opts.hypernetwork_dir, f"{name}.pt")
+ if not overwrite_old:
+ assert not os.path.exists(fn), f"file {fn} already exists"
+
+ if type(layer_structure) == str:
+ layer_structure = [float(x.strip()) for x in layer_structure.split(",")]
+
+ hypernet = modules.hypernetworks.hypernetwork.Hypernetwork(
+ name=name,
+ enable_sizes=[int(x) for x in enable_sizes],
+ layer_structure=layer_structure,
+ activation_func=activation_func,
+ weight_init=weight_init,
+ add_layer_norm=add_layer_norm,
+ use_dropout=use_dropout,
+ )
+ hypernet.save(fn)
+
+ shared.reload_hypernetworks()
+
+
+def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, gradient_step, data_root, log_directory, training_width, training_height, steps, clip_grad_mode, clip_grad_value, shuffle_tags, tag_drop_out, latent_sampling_method, create_image_every, save_hypernetwork_every, template_file, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height):
# images allows training previews to have infotext. Importing it at the top causes a circular import problem.
from modules import images
save_hypernetwork_every = save_hypernetwork_every or 0
create_image_every = create_image_every or 0
- textual_inversion.validate_train_inputs(hypernetwork_name, learn_rate, batch_size, data_root, template_file, steps, save_hypernetwork_every, create_image_every, log_directory, name="hypernetwork")
+ textual_inversion.validate_train_inputs(hypernetwork_name, learn_rate, batch_size, gradient_step, data_root, template_file, steps, save_hypernetwork_every, create_image_every, log_directory, name="hypernetwork")
path = shared.hypernetworks.get(hypernetwork_name, None)
shared.loaded_hypernetwork = Hypernetwork()
shared.loaded_hypernetwork.load(path)
+ shared.state.job = "train-hypernetwork"
shared.state.textinfo = "Initializing hypernetwork training..."
shared.state.job_count = steps
@@ -403,38 +440,37 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
hypernetwork = shared.loaded_hypernetwork
checkpoint = sd_models.select_checkpoint()
- ititial_step = hypernetwork.step or 0
- if ititial_step >= steps:
- shared.state.textinfo = f"Model has already been trained beyond specified max steps"
+ initial_step = hypernetwork.step or 0
+ if initial_step >= steps:
+ shared.state.textinfo = "Model has already been trained beyond specified max steps"
return hypernetwork, filename
- scheduler = LearnRateScheduler(learn_rate, steps, ititial_step)
+ scheduler = LearnRateScheduler(learn_rate, steps, initial_step)
- clip_grad = torch.nn.utils.clip_grad_value_ if clip_grad_mode == "value" else \
- torch.nn.utils.clip_grad_norm_ if clip_grad_mode == "norm" else \
- None
+ clip_grad = torch.nn.utils.clip_grad_value_ if clip_grad_mode == "value" else torch.nn.utils.clip_grad_norm_ if clip_grad_mode == "norm" else None
if clip_grad:
- clip_grad_sched = LearnRateScheduler(clip_grad_value, steps, ititial_step, verbose=False)
-
+ clip_grad_sched = LearnRateScheduler(clip_grad_value, steps, initial_step, verbose=False)
+
# dataset loading may take a while, so input validations and early returns should be done before this
shared.state.textinfo = f"Preparing dataset from {html.escape(data_root)}..."
- with torch.autocast("cuda"):
- ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=training_width, height=training_height, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=hypernetwork_name, model=shared.sd_model, device=devices.device, template_file=template_file, include_cond=True, batch_size=batch_size)
+
+ pin_memory = shared.opts.pin_memory
+
+ ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=training_width, height=training_height, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=hypernetwork_name, model=shared.sd_model, cond_model=shared.sd_model.cond_stage_model, device=devices.device, template_file=template_file, include_cond=True, batch_size=batch_size, gradient_step=gradient_step, shuffle_tags=shuffle_tags, tag_drop_out=tag_drop_out, latent_sampling_method=latent_sampling_method)
+
+ latent_sampling_method = ds.latent_sampling_method
+
+ dl = modules.textual_inversion.dataset.PersonalizedDataLoader(ds, latent_sampling_method=latent_sampling_method, batch_size=ds.batch_size, pin_memory=pin_memory)
+
+ old_parallel_processing_allowed = shared.parallel_processing_allowed
if unload:
+ shared.parallel_processing_allowed = False
shared.sd_model.cond_stage_model.to(devices.cpu)
shared.sd_model.first_stage_model.to(devices.cpu)
- size = len(ds.indexes)
- loss_dict = defaultdict(lambda : deque(maxlen = 1024))
- losses = torch.zeros((size,))
- previous_mean_losses = [0]
- previous_mean_loss = 0
- print("Mean loss of {} elements".format(size))
-
weights = hypernetwork.weights()
- for weight in weights:
- weight.requires_grad = True
+ hypernetwork.train_mode()
# Here we use optimizer from saved HN, or we can specify as UI option.
if hypernetwork.optimizer_name in optimizer_dict:
@@ -452,145 +488,172 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
print("Cannot resume from saved optimizer!")
print(e)
+ scaler = torch.cuda.amp.GradScaler()
+
+ batch_size = ds.batch_size
+ gradient_step = ds.gradient_step
+ # n steps = batch_size * gradient_step * n image processed
+ steps_per_epoch = len(ds) // batch_size // gradient_step
+ max_steps_per_epoch = len(ds) // batch_size - (len(ds) // batch_size) % gradient_step
+ loss_step = 0
+ _loss_step = 0 #internal
+ # size = len(ds.indexes)
+ # loss_dict = defaultdict(lambda : deque(maxlen = 1024))
+ # losses = torch.zeros((size,))
+ # previous_mean_losses = [0]
+ # previous_mean_loss = 0
+ # print("Mean loss of {} elements".format(size))
+
steps_without_grad = 0
last_saved_file = ""
last_saved_image = ""
forced_filename = ""
- pbar = tqdm.tqdm(enumerate(ds), total=steps - ititial_step)
- for i, entries in pbar:
- hypernetwork.step = i + ititial_step
- if len(loss_dict) > 0:
- previous_mean_losses = [i[-1] for i in loss_dict.values()]
- previous_mean_loss = mean(previous_mean_losses)
-
- scheduler.apply(optimizer, hypernetwork.step)
- if scheduler.finished:
- break
+ pbar = tqdm.tqdm(total=steps - initial_step)
+ try:
+ for i in range((steps-initial_step) * gradient_step):
+ if scheduler.finished:
+ break
+ if shared.state.interrupted:
+ break
+ for j, batch in enumerate(dl):
+ # works as a drop_last=True for gradient accumulation
+ if j == max_steps_per_epoch:
+ break
+ scheduler.apply(optimizer, hypernetwork.step)
+ if scheduler.finished:
+ break
+ if shared.state.interrupted:
+ break
- if shared.state.interrupted:
- break
-
- if clip_grad:
- clip_grad_sched.step(hypernetwork.step)
-
- with torch.autocast("cuda"):
- c = stack_conds([entry.cond for entry in entries]).to(devices.device)
- # c = torch.vstack([entry.cond for entry in entries]).to(devices.device)
- x = torch.stack([entry.latent for entry in entries]).to(devices.device)
- loss = shared.sd_model(x, c)[0]
- del x
- del c
-
- losses[hypernetwork.step % losses.shape[0]] = loss.item()
- for entry in entries:
- loss_dict[entry.filename].append(loss.item())
+ if clip_grad:
+ clip_grad_sched.step(hypernetwork.step)
- optimizer.zero_grad()
- weights[0].grad = None
- loss.backward()
+ with devices.autocast():
+ x = batch.latent_sample.to(devices.device, non_blocking=pin_memory)
+ if tag_drop_out != 0 or shuffle_tags:
+ shared.sd_model.cond_stage_model.to(devices.device)
+ c = shared.sd_model.cond_stage_model(batch.cond_text).to(devices.device, non_blocking=pin_memory)
+ shared.sd_model.cond_stage_model.to(devices.cpu)
+ else:
+ c = stack_conds(batch.cond).to(devices.device, non_blocking=pin_memory)
+ loss = shared.sd_model(x, c)[0] / gradient_step
+ del x
+ del c
- if weights[0].grad is None:
- steps_without_grad += 1
- else:
- steps_without_grad = 0
- assert steps_without_grad < 10, 'no gradient found for the trained weight after backward() for 10 steps in a row; this is a bug; training cannot continue'
+ _loss_step += loss.item()
+ scaler.scale(loss).backward()
+
+ # go back until we reach gradient accumulation steps
+ if (j + 1) % gradient_step != 0:
+ continue
- if clip_grad:
- clip_grad(weights, clip_grad_sched.learn_rate)
+ if clip_grad:
+ clip_grad(weights, clip_grad_sched.learn_rate)
+
+ scaler.step(optimizer)
+ scaler.update()
+ hypernetwork.step += 1
+ pbar.update()
+ optimizer.zero_grad(set_to_none=True)
+ loss_step = _loss_step
+ _loss_step = 0
- optimizer.step()
+ steps_done = hypernetwork.step + 1
+
+ epoch_num = hypernetwork.step // steps_per_epoch
+ epoch_step = hypernetwork.step % steps_per_epoch
- steps_done = hypernetwork.step + 1
+ pbar.set_description(f"[Epoch {epoch_num}: {epoch_step+1}/{steps_per_epoch}]loss: {loss_step:.7f}")
+ if hypernetwork_dir is not None and steps_done % save_hypernetwork_every == 0:
+ # Before saving, change name to match current checkpoint.
+ hypernetwork_name_every = f'{hypernetwork_name}-{steps_done}'
+ last_saved_file = os.path.join(hypernetwork_dir, f'{hypernetwork_name_every}.pt')
+ hypernetwork.optimizer_name = optimizer_name
+ if shared.opts.save_optimizer_state:
+ hypernetwork.optimizer_state_dict = optimizer.state_dict()
+ save_hypernetwork(hypernetwork, checkpoint, hypernetwork_name, last_saved_file)
+ hypernetwork.optimizer_state_dict = None # dereference it after saving, to save memory.
- if torch.isnan(losses[hypernetwork.step % losses.shape[0]]):
- raise RuntimeError("Loss diverged.")
-
- if len(previous_mean_losses) > 1:
- std = stdev(previous_mean_losses)
- else:
- std = 0
- dataset_loss_info = f"dataset loss:{mean(previous_mean_losses):.3f}" + u"\u00B1" + f"({std / (len(previous_mean_losses) ** 0.5):.3f})"
- pbar.set_description(dataset_loss_info)
+ textual_inversion.write_loss(log_directory, "hypernetwork_loss.csv", hypernetwork.step, steps_per_epoch, {
+ "loss": f"{loss_step:.7f}",
+ "learn_rate": scheduler.learn_rate
+ })
- if hypernetwork_dir is not None and steps_done % save_hypernetwork_every == 0:
- # Before saving, change name to match current checkpoint.
- hypernetwork_name_every = f'{hypernetwork_name}-{steps_done}'
- last_saved_file = os.path.join(hypernetwork_dir, f'{hypernetwork_name_every}.pt')
- hypernetwork.optimizer_name = optimizer_name
- if shared.opts.save_optimizer_state:
- hypernetwork.optimizer_state_dict = optimizer.state_dict()
- save_hypernetwork(hypernetwork, checkpoint, hypernetwork_name, last_saved_file)
- hypernetwork.optimizer_state_dict = None # dereference it after saving, to save memory.
+ if images_dir is not None and steps_done % create_image_every == 0:
+ forced_filename = f'{hypernetwork_name}-{steps_done}'
+ last_saved_image = os.path.join(images_dir, forced_filename)
+ hypernetwork.eval_mode()
+ shared.sd_model.cond_stage_model.to(devices.device)
+ shared.sd_model.first_stage_model.to(devices.device)
- textual_inversion.write_loss(log_directory, "hypernetwork_loss.csv", hypernetwork.step, len(ds), {
- "loss": f"{previous_mean_loss:.7f}",
- "learn_rate": scheduler.learn_rate
- })
+ p = processing.StableDiffusionProcessingTxt2Img(
+ sd_model=shared.sd_model,
+ do_not_save_grid=True,
+ do_not_save_samples=True,
+ )
- if images_dir is not None and steps_done % create_image_every == 0:
- forced_filename = f'{hypernetwork_name}-{steps_done}'
- last_saved_image = os.path.join(images_dir, forced_filename)
+ if preview_from_txt2img:
+ p.prompt = preview_prompt
+ p.negative_prompt = preview_negative_prompt
+ p.steps = preview_steps
+ p.sampler_name = sd_samplers.samplers[preview_sampler_index].name
+ p.cfg_scale = preview_cfg_scale
+ p.seed = preview_seed
+ p.width = preview_width
+ p.height = preview_height
+ else:
+ p.prompt = batch.cond_text[0]
+ p.steps = 20
+ p.width = training_width
+ p.height = training_height
- optimizer.zero_grad()
- shared.sd_model.cond_stage_model.to(devices.device)
- shared.sd_model.first_stage_model.to(devices.device)
+ preview_text = p.prompt
- p = processing.StableDiffusionProcessingTxt2Img(
- sd_model=shared.sd_model,
- do_not_save_grid=True,
- do_not_save_samples=True,
- )
+ processed = processing.process_images(p)
+ image = processed.images[0] if len(processed.images) > 0 else None
- if preview_from_txt2img:
- p.prompt = preview_prompt
- p.negative_prompt = preview_negative_prompt
- p.steps = preview_steps
- p.sampler_index = preview_sampler_index
- p.cfg_scale = preview_cfg_scale
- p.seed = preview_seed
- p.width = preview_width
- p.height = preview_height
- else:
- p.prompt = entries[0].cond_text
- p.steps = 20
+ if unload:
+ shared.sd_model.cond_stage_model.to(devices.cpu)
+ shared.sd_model.first_stage_model.to(devices.cpu)
+ hypernetwork.train_mode()
+ if image is not None:
+ shared.state.current_image = image
+ last_saved_image, last_text_info = images.save_image(image, images_dir, "", p.seed, p.prompt, shared.opts.samples_format, processed.infotexts[0], p=p, forced_filename=forced_filename, save_to_dirs=False)
+ last_saved_image += f", prompt: {preview_text}"
- preview_text = p.prompt
+ shared.state.job_no = hypernetwork.step
- processed = processing.process_images(p)
- image = processed.images[0] if len(processed.images)>0 else None
-
- if unload:
- shared.sd_model.cond_stage_model.to(devices.cpu)
- shared.sd_model.first_stage_model.to(devices.cpu)
-
- if image is not None:
- shared.state.current_image = image
- last_saved_image, last_text_info = images.save_image(image, images_dir, "", p.seed, p.prompt, shared.opts.samples_format, processed.infotexts[0], p=p, forced_filename=forced_filename, save_to_dirs=False)
- last_saved_image += f", prompt: {preview_text}"
-
- shared.state.job_no = hypernetwork.step
-
- shared.state.textinfo = f"""
+ shared.state.textinfo = f"""
-Loss: {previous_mean_loss:.7f}
-Step: {hypernetwork.step}
-Last prompt: {html.escape(entries[0].cond_text)}
+Loss: {loss_step:.7f}
+Step: {steps_done}
+Last prompt: {html.escape(batch.cond_text[0])}
Last saved hypernetwork: {html.escape(last_saved_file)}
Last saved image: {html.escape(last_saved_image)}
"""
-
- report_statistics(loss_dict)
+ except Exception:
+ print(traceback.format_exc(), file=sys.stderr)
+ finally:
+ pbar.leave = False
+ pbar.close()
+ hypernetwork.eval_mode()
+ #report_statistics(loss_dict)
filename = os.path.join(shared.cmd_opts.hypernetwork_dir, f'{hypernetwork_name}.pt')
hypernetwork.optimizer_name = optimizer_name
if shared.opts.save_optimizer_state:
hypernetwork.optimizer_state_dict = optimizer.state_dict()
save_hypernetwork(hypernetwork, checkpoint, hypernetwork_name, filename)
+
del optimizer
hypernetwork.optimizer_state_dict = None # dereference it after saving, to save memory.
+ shared.sd_model.cond_stage_model.to(devices.device)
+ shared.sd_model.first_stage_model.to(devices.device)
+ shared.parallel_processing_allowed = old_parallel_processing_allowed
+
return hypernetwork, filename
def save_hypernetwork(hypernetwork, checkpoint, hypernetwork_name, filename):
diff --git a/modules/hypernetworks/ui.py b/modules/hypernetworks/ui.py
index c2d4b51c5..e7f9e593a 100644
--- a/modules/hypernetworks/ui.py
+++ b/modules/hypernetworks/ui.py
@@ -3,39 +3,16 @@ import os
import re
import gradio as gr
-import modules.textual_inversion.preprocess
-import modules.textual_inversion.textual_inversion
+import modules.hypernetworks.hypernetwork
from modules import devices, sd_hijack, shared
-from modules.hypernetworks import hypernetwork
not_available = ["hardswish", "multiheadattention"]
-keys = list(x for x in hypernetwork.HypernetworkModule.activation_dict.keys() if x not in not_available)
+keys = list(x for x in modules.hypernetworks.hypernetwork.HypernetworkModule.activation_dict.keys() if x not in not_available)
def create_hypernetwork(name, enable_sizes, overwrite_old, layer_structure=None, activation_func=None, weight_init=None, add_layer_norm=False, use_dropout=False):
- # Remove illegal characters from name.
- name = "".join( x for x in name if (x.isalnum() or x in "._- "))
+ filename = modules.hypernetworks.hypernetwork.create_hypernetwork(name, enable_sizes, overwrite_old, layer_structure, activation_func, weight_init, add_layer_norm, use_dropout)
- fn = os.path.join(shared.cmd_opts.hypernetwork_dir, f"{name}.pt")
- if not overwrite_old:
- assert not os.path.exists(fn), f"file {fn} already exists"
-
- if type(layer_structure) == str:
- layer_structure = [float(x.strip()) for x in layer_structure.split(",")]
-
- hypernet = modules.hypernetworks.hypernetwork.Hypernetwork(
- name=name,
- enable_sizes=[int(x) for x in enable_sizes],
- layer_structure=layer_structure,
- activation_func=activation_func,
- weight_init=weight_init,
- add_layer_norm=add_layer_norm,
- use_dropout=use_dropout,
- )
- hypernet.save(fn)
-
- shared.reload_hypernetworks()
-
- return gr.Dropdown.update(choices=sorted([x for x in shared.hypernetworks.keys()])), f"Created: {fn}", ""
+ return gr.Dropdown.update(choices=sorted([x for x in shared.hypernetworks.keys()])), f"Created: {filename}", ""
def train_hypernetwork(*args):
diff --git a/modules/images.py b/modules/images.py
index ae705cbd5..c3a5fc8bc 100644
--- a/modules/images.py
+++ b/modules/images.py
@@ -15,6 +15,7 @@ import piexif.helper
from PIL import Image, ImageFont, ImageDraw, PngImagePlugin
from fonts.ttf import Roboto
import string
+import json
from modules import sd_samplers, shared, script_callbacks
from modules.shared import opts, cmd_opts
@@ -38,11 +39,14 @@ def image_grid(imgs, batch_size=1, rows=None):
cols = math.ceil(len(imgs) / rows)
- w, h = imgs[0].size
- grid = Image.new('RGB', size=(cols * w, rows * h), color='black')
+ params = script_callbacks.ImageGridLoopParams(imgs, cols, rows)
+ script_callbacks.image_grid_callback(params)
- for i, img in enumerate(imgs):
- grid.paste(img, box=(i % cols * w, i // cols * h))
+ w, h = imgs[0].size
+ grid = Image.new('RGB', size=(params.cols * w, params.rows * h), color='black')
+
+ for i, img in enumerate(params.imgs):
+ grid.paste(img, box=(i % params.cols * w, i // params.cols * h))
return grid
@@ -135,8 +139,19 @@ def draw_grid_annotations(im, width, height, hor_texts, ver_texts):
lines.append(word)
return lines
- def draw_texts(drawing, draw_x, draw_y, lines):
+ def get_font(fontsize):
+ try:
+ return ImageFont.truetype(opts.font or Roboto, fontsize)
+ except Exception:
+ return ImageFont.truetype(Roboto, fontsize)
+
+ def draw_texts(drawing, draw_x, draw_y, lines, initial_fnt, initial_fontsize):
for i, line in enumerate(lines):
+ fnt = initial_fnt
+ fontsize = initial_fontsize
+ while drawing.multiline_textsize(line.text, font=fnt)[0] > line.allowed_width and fontsize > 0:
+ fontsize -= 1
+ fnt = get_font(fontsize)
drawing.multiline_text((draw_x, draw_y + line.size[1] / 2), line.text, font=fnt, fill=color_active if line.is_active else color_inactive, anchor="mm", align="center")
if not line.is_active:
@@ -147,10 +162,7 @@ def draw_grid_annotations(im, width, height, hor_texts, ver_texts):
fontsize = (width + height) // 25
line_spacing = fontsize // 2
- try:
- fnt = ImageFont.truetype(opts.font or Roboto, fontsize)
- except Exception:
- fnt = ImageFont.truetype(Roboto, fontsize)
+ fnt = get_font(fontsize)
color_active = (0, 0, 0)
color_inactive = (153, 153, 153)
@@ -177,6 +189,7 @@ def draw_grid_annotations(im, width, height, hor_texts, ver_texts):
for line in texts:
bbox = calc_d.multiline_textbbox((0, 0), line.text, font=fnt)
line.size = (bbox[2] - bbox[0], bbox[3] - bbox[1])
+ line.allowed_width = allowed_width
hor_text_heights = [sum([line.size[1] + line_spacing for line in lines]) - line_spacing for lines in hor_texts]
ver_text_heights = [sum([line.size[1] + line_spacing for line in lines]) - line_spacing * len(lines) for lines in
@@ -193,13 +206,13 @@ def draw_grid_annotations(im, width, height, hor_texts, ver_texts):
x = pad_left + width * col + width / 2
y = pad_top / 2 - hor_text_heights[col] / 2
- draw_texts(d, x, y, hor_texts[col])
+ draw_texts(d, x, y, hor_texts[col], fnt, fontsize)
for row in range(rows):
x = pad_left / 2
y = pad_top + height * row + height / 2 - ver_text_heights[row] / 2
- draw_texts(d, x, y, ver_texts[row])
+ draw_texts(d, x, y, ver_texts[row], fnt, fontsize)
return result
@@ -217,16 +230,32 @@ def draw_prompt_matrix(im, width, height, all_prompts):
return draw_grid_annotations(im, width, height, hor_texts, ver_texts)
-def resize_image(resize_mode, im, width, height):
+def resize_image(resize_mode, im, width, height, upscaler_name=None):
+ """
+ Resizes an image with the specified resize_mode, width, and height.
+
+ Args:
+ resize_mode: The mode to use when resizing the image.
+ 0: Resize the image to the specified width and height.
+ 1: Resize the image to fill the specified width and height, maintaining the aspect ratio, and then center the image within the dimensions, cropping the excess.
+ 2: Resize the image to fit within the specified width and height, maintaining the aspect ratio, and then center the image within the dimensions, filling empty with data from image.
+ im: The image to resize.
+ width: The width to resize the image to.
+ height: The height to resize the image to.
+ upscaler_name: The name of the upscaler to use. If not provided, defaults to opts.upscaler_for_img2img.
+ """
+
+ upscaler_name = upscaler_name or opts.upscaler_for_img2img
+
def resize(im, w, h):
- if opts.upscaler_for_img2img is None or opts.upscaler_for_img2img == "None" or im.mode == 'L':
+ if upscaler_name is None or upscaler_name == "None" or im.mode == 'L':
return im.resize((w, h), resample=LANCZOS)
scale = max(w / im.width, h / im.height)
if scale > 1.0:
- upscalers = [x for x in shared.sd_upscalers if x.name == opts.upscaler_for_img2img]
- assert len(upscalers) > 0, f"could not find upscaler named {opts.upscaler_for_img2img}"
+ upscalers = [x for x in shared.sd_upscalers if x.name == upscaler_name]
+ assert len(upscalers) > 0, f"could not find upscaler named {upscaler_name}"
upscaler = upscalers[0]
im = upscaler.scaler.upscale(im, scale, upscaler.data_path)
@@ -303,8 +332,9 @@ class FilenameGenerator:
'width': lambda self: self.image.width,
'height': lambda self: self.image.height,
'styles': lambda self: self.p and sanitize_filename_part(", ".join([style for style in self.p.styles if not style == "None"]) or "None", replace_spaces=False),
- 'sampler': lambda self: self.p and sanitize_filename_part(sd_samplers.samplers[self.p.sampler_index].name, replace_spaces=False),
+ 'sampler': lambda self: self.p and sanitize_filename_part(self.p.sampler_name, replace_spaces=False),
'model_hash': lambda self: getattr(self.p, "sd_model_hash", shared.sd_model.sd_model_hash),
+ 'model_name': lambda self: sanitize_filename_part(shared.sd_model.sd_checkpoint_info.model_name, replace_spaces=False),
'date': lambda self: datetime.datetime.now().strftime('%Y-%m-%d'),
'datetime': lambda self, *args: self.datetime(*args), # accepts formats: [datetime], [datetime], [datetime]
'job_timestamp': lambda self: getattr(self.p, "job_timestamp", shared.state.job_timestamp),
@@ -427,7 +457,7 @@ def save_image(image, path, basename, seed=None, prompt=None, extension='png', i
The directory to save the image. Note, the option `save_to_dirs` will make the image to be saved into a sub directory.
basename (`str`):
The base filename which will be applied to `filename pattern`.
- seed, prompt, short_filename,
+ seed, prompt, short_filename,
extension (`str`):
Image file extension, default is `png`.
pngsectionname (`str`):
@@ -499,30 +529,44 @@ def save_image(image, path, basename, seed=None, prompt=None, extension='png', i
image = params.image
fullfn = params.filename
info = params.pnginfo.get(pnginfo_section_name, None)
+
+ def _atomically_save_image(image_to_save, filename_without_extension, extension):
+ # save image with .tmp extension to avoid race condition when another process detects new image in the directory
+ temp_file_path = filename_without_extension + ".tmp"
+ image_format = Image.registered_extensions()[extension]
+
+ if extension.lower() == '.png':
+ pnginfo_data = PngImagePlugin.PngInfo()
+ if opts.enable_pnginfo:
+ for k, v in params.pnginfo.items():
+ pnginfo_data.add_text(k, str(v))
+
+ image_to_save.save(temp_file_path, format=image_format, quality=opts.jpeg_quality, pnginfo=pnginfo_data)
+
+ elif extension.lower() in (".jpg", ".jpeg", ".webp"):
+ if image_to_save.mode == 'RGBA':
+ image_to_save = image_to_save.convert("RGB")
+
+ image_to_save.save(temp_file_path, format=image_format, quality=opts.jpeg_quality)
+
+ if opts.enable_pnginfo and info is not None:
+ exif_bytes = piexif.dump({
+ "Exif": {
+ piexif.ExifIFD.UserComment: piexif.helper.UserComment.dump(info or "", encoding="unicode")
+ },
+ })
+
+ piexif.insert(exif_bytes, temp_file_path)
+ else:
+ image_to_save.save(temp_file_path, format=image_format, quality=opts.jpeg_quality)
+
+ # atomically rename the file with correct extension
+ os.replace(temp_file_path, filename_without_extension + extension)
+
fullfn_without_extension, extension = os.path.splitext(params.filename)
+ _atomically_save_image(image, fullfn_without_extension, extension)
- def exif_bytes():
- return piexif.dump({
- "Exif": {
- piexif.ExifIFD.UserComment: piexif.helper.UserComment.dump(info or "", encoding="unicode")
- },
- })
-
- if extension.lower() == '.png':
- pnginfo_data = PngImagePlugin.PngInfo()
- if opts.enable_pnginfo:
- for k, v in params.pnginfo.items():
- pnginfo_data.add_text(k, str(v))
-
- image.save(fullfn, quality=opts.jpeg_quality, pnginfo=pnginfo_data)
-
- elif extension.lower() in (".jpg", ".jpeg", ".webp"):
- image.save(fullfn, quality=opts.jpeg_quality)
-
- if opts.enable_pnginfo and info is not None:
- piexif.insert(exif_bytes(), fullfn)
- else:
- image.save(fullfn, quality=opts.jpeg_quality)
+ image.already_saved_as = fullfn
target_side_length = 4000
oversize = image.width > target_side_length or image.height > target_side_length
@@ -534,9 +578,7 @@ def save_image(image, path, basename, seed=None, prompt=None, extension='png', i
elif oversize:
image = image.resize((image.width * target_side_length // image.height, target_side_length), LANCZOS)
- image.save(fullfn_without_extension + ".jpg", quality=opts.jpeg_quality)
- if opts.enable_pnginfo and info is not None:
- piexif.insert(exif_bytes(), fullfn_without_extension + ".jpg")
+ _atomically_save_image(image, fullfn_without_extension, ".jpg")
if opts.save_txt and info is not None:
txt_fullfn = f"{fullfn_without_extension}.txt"
@@ -550,10 +592,45 @@ def save_image(image, path, basename, seed=None, prompt=None, extension='png', i
return fullfn, txt_fullfn
+def read_info_from_image(image):
+ items = image.info or {}
+
+ geninfo = items.pop('parameters', None)
+
+ if "exif" in items:
+ exif = piexif.load(items["exif"])
+ exif_comment = (exif or {}).get("Exif", {}).get(piexif.ExifIFD.UserComment, b'')
+ try:
+ exif_comment = piexif.helper.UserComment.load(exif_comment)
+ except ValueError:
+ exif_comment = exif_comment.decode('utf8', errors="ignore")
+
+ items['exif comment'] = exif_comment
+ geninfo = exif_comment
+
+ for field in ['jfif', 'jfif_version', 'jfif_unit', 'jfif_density', 'dpi', 'exif',
+ 'loop', 'background', 'timestamp', 'duration']:
+ items.pop(field, None)
+
+ if items.get("Software", None) == "NovelAI":
+ try:
+ json_info = json.loads(items["Comment"])
+ sampler = sd_samplers.samplers_map.get(json_info["sampler"], "Euler a")
+
+ geninfo = f"""{items["Description"]}
+Negative prompt: {json_info["uc"]}
+Steps: {json_info["steps"]}, Sampler: {sampler}, CFG scale: {json_info["scale"]}, Seed: {json_info["seed"]}, Size: {image.width}x{image.height}, Clip skip: 2, ENSD: 31337"""
+ except Exception:
+ print("Error parsing NovelAI image generation parameters:", file=sys.stderr)
+ print(traceback.format_exc(), file=sys.stderr)
+
+ return geninfo, items
+
+
def image_data(data):
try:
image = Image.open(io.BytesIO(data))
- textinfo = image.text["parameters"]
+ textinfo, _ = read_info_from_image(image)
return textinfo, None
except Exception:
pass
@@ -567,3 +644,14 @@ def image_data(data):
pass
return '', None
+
+
+def flatten(img, bgcolor):
+ """replaces transparency with bgcolor (example: "#ffffff"), returning an RGB mode image with no transparency"""
+
+ if img.mode == "RGBA":
+ background = Image.new('RGBA', img.size, bgcolor)
+ background.paste(img, mask=img)
+ img = background
+
+ return img.convert('RGB')
diff --git a/modules/img2img.py b/modules/img2img.py
index be9f36534..ca58b5d87 100644
--- a/modules/img2img.py
+++ b/modules/img2img.py
@@ -4,9 +4,9 @@ import sys
import traceback
import numpy as np
-from PIL import Image, ImageOps, ImageChops
+from PIL import Image, ImageOps, ImageFilter, ImageEnhance, ImageChops
-from modules import devices
+from modules import devices, sd_samplers
from modules.processing import Processed, StableDiffusionProcessingImg2Img, process_images
from modules.shared import opts, state
import modules.shared as shared
@@ -40,7 +40,7 @@ def process_batch(p, input_dir, output_dir, args):
img = Image.open(image)
# Use the EXIF orientation of photos taken by smartphones.
- img = ImageOps.exif_transpose(img)
+ img = ImageOps.exif_transpose(img)
p.init_images = [img] * p.batch_size
proc = modules.scripts.scripts_img2img.run(p, *args)
@@ -59,18 +59,31 @@ def process_batch(p, input_dir, output_dir, args):
processed_image.save(os.path.join(output_dir, filename))
-def img2img(mode: int, prompt: str, negative_prompt: str, prompt_style: str, prompt_style2: str, init_img, init_img_with_mask, init_img_inpaint, init_mask_inpaint, mask_mode, steps: int, sampler_index: int, mask_blur: int, inpainting_fill: int, restore_faces: bool, tiling: bool, n_iter: int, batch_size: int, cfg_scale: float, denoising_strength: float, seed: int, subseed: int, subseed_strength: float, seed_resize_from_h: int, seed_resize_from_w: int, seed_enable_extras: bool, height: int, width: int, resize_mode: int, inpaint_full_res: bool, inpaint_full_res_padding: int, inpainting_mask_invert: int, img2img_batch_input_dir: str, img2img_batch_output_dir: str, *args):
+def img2img(mode: int, prompt: str, negative_prompt: str, prompt_style: str, prompt_style2: str, init_img, init_img_with_mask, init_img_with_mask_orig, init_img_inpaint, init_mask_inpaint, mask_mode, steps: int, sampler_index: int, mask_blur: int, mask_alpha: float, inpainting_fill: int, restore_faces: bool, tiling: bool, n_iter: int, batch_size: int, cfg_scale: float, denoising_strength: float, seed: int, subseed: int, subseed_strength: float, seed_resize_from_h: int, seed_resize_from_w: int, seed_enable_extras: bool, height: int, width: int, resize_mode: int, inpaint_full_res: bool, inpaint_full_res_padding: int, inpainting_mask_invert: int, img2img_batch_input_dir: str, img2img_batch_output_dir: str, *args):
is_inpaint = mode == 1
is_batch = mode == 2
if is_inpaint:
# Drawn mask
if mask_mode == 0:
- image = init_img_with_mask['image']
- mask = init_img_with_mask['mask']
- alpha_mask = ImageOps.invert(image.split()[-1]).convert('L').point(lambda x: 255 if x > 0 else 0, mode='1')
- mask = ImageChops.lighter(alpha_mask, mask.convert('L')).convert('L')
- image = image.convert('RGB')
+ is_mask_sketch = isinstance(init_img_with_mask, dict)
+ is_mask_paint = not is_mask_sketch
+ if is_mask_sketch:
+ # Sketch: mask iff. not transparent
+ image, mask = init_img_with_mask["image"], init_img_with_mask["mask"]
+ alpha_mask = ImageOps.invert(image.split()[-1]).convert('L').point(lambda x: 255 if x > 0 else 0, mode='1')
+ mask = ImageChops.lighter(alpha_mask, mask.convert('L')).convert('L')
+ else:
+ # Color-sketch: mask iff. painted over
+ image = init_img_with_mask
+ orig = init_img_with_mask_orig or init_img_with_mask
+ pred = np.any(np.array(image) != np.array(orig), axis=-1)
+ mask = Image.fromarray(pred.astype(np.uint8) * 255, "L")
+ mask = ImageEnhance.Brightness(mask).enhance(1 - mask_alpha / 100)
+ blur = ImageFilter.GaussianBlur(mask_blur)
+ image = Image.composite(image.filter(blur), orig, mask.filter(blur))
+
+ image = image.convert("RGB")
# Uploaded mask
else:
image = init_img_inpaint
@@ -82,7 +95,7 @@ def img2img(mode: int, prompt: str, negative_prompt: str, prompt_style: str, pro
# Use the EXIF orientation of photos taken by smartphones.
if image is not None:
- image = ImageOps.exif_transpose(image)
+ image = ImageOps.exif_transpose(image)
assert 0. <= denoising_strength <= 1., 'can only work with strength in [0.0, 1.0]'
@@ -99,7 +112,7 @@ def img2img(mode: int, prompt: str, negative_prompt: str, prompt_style: str, pro
seed_resize_from_h=seed_resize_from_h,
seed_resize_from_w=seed_resize_from_w,
seed_enable_extras=seed_enable_extras,
- sampler_index=sampler_index,
+ sampler_name=sd_samplers.samplers_for_img2img[sampler_index].name,
batch_size=batch_size,
n_iter=n_iter,
steps=steps,
@@ -149,4 +162,4 @@ def img2img(mode: int, prompt: str, negative_prompt: str, prompt_style: str, pro
if opts.do_not_show_images:
processed.images = []
- return processed.images, generation_info_js, plaintext_to_html(processed.info)
+ return processed.images, generation_info_js, plaintext_to_html(processed.info), plaintext_to_html(processed.comments)
diff --git a/modules/import_hook.py b/modules/import_hook.py
new file mode 100644
index 000000000..28c67dfa8
--- /dev/null
+++ b/modules/import_hook.py
@@ -0,0 +1,5 @@
+import sys
+
+# this will break any attempt to import xformers which will prevent stability diffusion repo from trying to use it
+if "--xformers" not in "".join(sys.argv):
+ sys.modules["xformers"] = None
diff --git a/modules/interrogate.py b/modules/interrogate.py
index 9769aa347..738d8ff76 100644
--- a/modules/interrogate.py
+++ b/modules/interrogate.py
@@ -1,4 +1,3 @@
-import contextlib
import os
import sys
import traceback
@@ -11,10 +10,9 @@ from torchvision import transforms
from torchvision.transforms.functional import InterpolationMode
import modules.shared as shared
-from modules import devices, paths, lowvram
+from modules import devices, paths, lowvram, modelloader
blip_image_eval_size = 384
-blip_model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_caption_capfilt_large.pth'
clip_model_name = 'ViT-L/14'
Category = namedtuple("Category", ["name", "topn", "items"])
@@ -47,7 +45,14 @@ class InterrogateModels:
def load_blip_model(self):
import models.blip
- blip_model = models.blip.blip_decoder(pretrained=blip_model_url, image_size=blip_image_eval_size, vit='base', med_config=os.path.join(paths.paths["BLIP"], "configs", "med_config.json"))
+ files = modelloader.load_models(
+ model_path=os.path.join(paths.models_path, "BLIP"),
+ model_url='https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_caption_capfilt_large.pth',
+ ext_filter=[".pth"],
+ download_name='model_base_caption_capfilt_large.pth',
+ )
+
+ blip_model = models.blip.blip_decoder(pretrained=files[0], image_size=blip_image_eval_size, vit='base', med_config=os.path.join(paths.paths["BLIP"], "configs", "med_config.json"))
blip_model.eval()
return blip_model
@@ -130,8 +135,9 @@ class InterrogateModels:
return caption[0]
def interrogate(self, pil_image):
- res = None
-
+ res = ""
+ shared.state.begin()
+ shared.state.job = 'interrogate'
try:
if shared.cmd_opts.lowvram or shared.cmd_opts.medvram:
@@ -148,8 +154,7 @@ class InterrogateModels:
clip_image = self.clip_preprocess(pil_image).unsqueeze(0).type(self.dtype).to(devices.device_interrogate)
- precision_scope = torch.autocast if shared.cmd_opts.precision == "autocast" else contextlib.nullcontext
- with torch.no_grad(), precision_scope("cuda"):
+ with torch.no_grad(), devices.autocast():
image_features = self.clip_model.encode_image(clip_image).type(self.dtype)
image_features /= image_features.norm(dim=-1, keepdim=True)
@@ -168,10 +173,11 @@ class InterrogateModels:
res += ", " + match
except Exception:
- print(f"Error interrogating", file=sys.stderr)
+ print("Error interrogating", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
res += ""
self.unload()
+ shared.state.end()
return res
diff --git a/modules/lowvram.py b/modules/lowvram.py
index a4652cb1c..042a0254a 100644
--- a/modules/lowvram.py
+++ b/modules/lowvram.py
@@ -51,20 +51,30 @@ def setup_for_low_vram(sd_model, use_medvram):
send_me_to_gpu(first_stage_model, None)
return first_stage_model_decode(z)
- # remove three big modules, cond, first_stage, and unet from the model and then
- # send the model to GPU. Then put modules back. the modules will be in CPU.
- stored = sd_model.cond_stage_model.transformer, sd_model.first_stage_model, sd_model.model
- sd_model.cond_stage_model.transformer, sd_model.first_stage_model, sd_model.model = None, None, None
- sd_model.to(devices.device)
- sd_model.cond_stage_model.transformer, sd_model.first_stage_model, sd_model.model = stored
+ # for SD1, cond_stage_model is CLIP and its NN is in the tranformer frield, but for SD2, it's open clip, and it's in model field
+ if hasattr(sd_model.cond_stage_model, 'model'):
+ sd_model.cond_stage_model.transformer = sd_model.cond_stage_model.model
- # register hooks for those the first two models
+ # remove four big modules, cond, first_stage, depth (if applicable), and unet from the model and then
+ # send the model to GPU. Then put modules back. the modules will be in CPU.
+ stored = sd_model.cond_stage_model.transformer, sd_model.first_stage_model, getattr(sd_model, 'depth_model', None), sd_model.model
+ sd_model.cond_stage_model.transformer, sd_model.first_stage_model, sd_model.depth_model, sd_model.model = None, None, None, None
+ sd_model.to(devices.device)
+ sd_model.cond_stage_model.transformer, sd_model.first_stage_model, sd_model.depth_model, sd_model.model = stored
+
+ # register hooks for those the first three models
sd_model.cond_stage_model.transformer.register_forward_pre_hook(send_me_to_gpu)
sd_model.first_stage_model.register_forward_pre_hook(send_me_to_gpu)
sd_model.first_stage_model.encode = first_stage_model_encode_wrap
sd_model.first_stage_model.decode = first_stage_model_decode_wrap
+ if sd_model.depth_model:
+ sd_model.depth_model.register_forward_pre_hook(send_me_to_gpu)
parents[sd_model.cond_stage_model.transformer] = sd_model.cond_stage_model
+ if hasattr(sd_model.cond_stage_model, 'model'):
+ sd_model.cond_stage_model.model = sd_model.cond_stage_model.transformer
+ del sd_model.cond_stage_model.transformer
+
if use_medvram:
sd_model.model.register_forward_pre_hook(send_me_to_gpu)
else:
diff --git a/modules/memmon.py b/modules/memmon.py
index 9fb9b687c..a7060f585 100644
--- a/modules/memmon.py
+++ b/modules/memmon.py
@@ -71,10 +71,13 @@ class MemUsageMonitor(threading.Thread):
def read(self):
if not self.disabled:
free, total = torch.cuda.mem_get_info()
+ self.data["free"] = free
self.data["total"] = total
torch_stats = torch.cuda.memory_stats(self.device)
+ self.data["active"] = torch_stats["active.all.current"]
self.data["active_peak"] = torch_stats["active_bytes.all.peak"]
+ self.data["reserved"] = torch_stats["reserved_bytes.all.current"]
self.data["reserved_peak"] = torch_stats["reserved_bytes.all.peak"]
self.data["system_peak"] = total - self.data["min_free"]
diff --git a/modules/modelloader.py b/modules/modelloader.py
index e4a6f8acb..6a1a7ac83 100644
--- a/modules/modelloader.py
+++ b/modules/modelloader.py
@@ -82,6 +82,7 @@ def cleanup_models():
src_path = models_path
dest_path = os.path.join(models_path, "Stable-diffusion")
move_files(src_path, dest_path, ".ckpt")
+ move_files(src_path, dest_path, ".safetensors")
src_path = os.path.join(root_path, "ESRGAN")
dest_path = os.path.join(models_path, "ESRGAN")
move_files(src_path, dest_path)
@@ -122,11 +123,27 @@ def move_files(src_path: str, dest_path: str, ext_filter: str = None):
pass
+builtin_upscaler_classes = []
+forbidden_upscaler_classes = set()
+
+
+def list_builtin_upscalers():
+ load_upscalers()
+
+ builtin_upscaler_classes.clear()
+ builtin_upscaler_classes.extend(Upscaler.__subclasses__())
+
+
+def forbid_loaded_nonbuiltin_upscalers():
+ for cls in Upscaler.__subclasses__():
+ if cls not in builtin_upscaler_classes:
+ forbidden_upscaler_classes.add(cls)
+
+
def load_upscalers():
- sd = shared.script_path
# We can only do this 'magic' method to dynamically load upscalers if they are referenced,
# so we'll try to import any _model.py files before looking in __subclasses__
- modules_dir = os.path.join(sd, "modules")
+ modules_dir = os.path.join(shared.script_path, "modules")
for file in os.listdir(modules_dir):
if "_model.py" in file:
model_name = file.replace("_model.py", "")
@@ -135,22 +152,16 @@ def load_upscalers():
importlib.import_module(full_model)
except:
pass
+
datas = []
- c_o = vars(shared.cmd_opts)
+ commandline_options = vars(shared.cmd_opts)
for cls in Upscaler.__subclasses__():
+ if cls in forbidden_upscaler_classes:
+ continue
+
name = cls.__name__
- module_name = cls.__module__
- module = importlib.import_module(module_name)
- class_ = getattr(module, name)
cmd_name = f"{name.lower().replace('upscaler', '')}_models_path"
- opt_string = None
- try:
- if cmd_name in c_o:
- opt_string = c_o[cmd_name]
- except:
- pass
- scaler = class_(opt_string)
- for child in scaler.scalers:
- datas.append(child)
+ scaler = cls(commandline_options.get(cmd_name, None))
+ datas += scaler.scalers
shared.sd_upscalers = datas
diff --git a/modules/ngrok.py b/modules/ngrok.py
index 5c5f349aa..3df2c06bf 100644
--- a/modules/ngrok.py
+++ b/modules/ngrok.py
@@ -1,14 +1,23 @@
from pyngrok import ngrok, conf, exception
-
def connect(token, port, region):
- if token == None:
+ account = None
+ if token is None:
token = 'None'
+ else:
+ if ':' in token:
+ # token = authtoken:username:password
+ account = token.split(':')[1] + ':' + token.split(':')[-1]
+ token = token.split(':')[0]
+
config = conf.PyngrokConfig(
auth_token=token, region=region
)
try:
- public_url = ngrok.connect(port, pyngrok_config=config).public_url
+ if account is None:
+ public_url = ngrok.connect(port, pyngrok_config=config, bind_tls=True).public_url
+ else:
+ public_url = ngrok.connect(port, pyngrok_config=config, bind_tls=True, auth=account).public_url
except exception.PyngrokNgrokError:
print(f'Invalid ngrok authtoken, ngrok connection aborted.\n'
f'Your token: {token}, get the right one on https://dashboard.ngrok.com/get-started/your-authtoken')
diff --git a/modules/paths.py b/modules/paths.py
index 1e7a2fbcf..4dd03a359 100644
--- a/modules/paths.py
+++ b/modules/paths.py
@@ -9,7 +9,7 @@ sys.path.insert(0, script_path)
# search for directory of stable diffusion in following places
sd_path = None
-possible_sd_paths = [os.path.join(script_path, 'repositories/stable-diffusion'), '.', os.path.dirname(script_path)]
+possible_sd_paths = [os.path.join(script_path, 'repositories/stable-diffusion-stability-ai'), '.', os.path.dirname(script_path)]
for possible_sd_path in possible_sd_paths:
if os.path.exists(os.path.join(possible_sd_path, 'ldm/models/diffusion/ddpm.py')):
sd_path = os.path.abspath(possible_sd_path)
diff --git a/modules/processing.py b/modules/processing.py
index 03c9143dc..477121592 100644
--- a/modules/processing.py
+++ b/modules/processing.py
@@ -2,6 +2,7 @@ import json
import math
import os
import sys
+import warnings
import torch
import numpy as np
@@ -12,15 +13,21 @@ from skimage import exposure
from typing import Any, Dict, List, Optional
import modules.sd_hijack
-from modules import devices, prompt_parser, masking, sd_samplers, lowvram, generation_parameters_copypaste
+from modules import devices, prompt_parser, masking, sd_samplers, lowvram, generation_parameters_copypaste, script_callbacks
from modules.sd_hijack import model_hijack
from modules.shared import opts, cmd_opts, state
import modules.shared as shared
import modules.face_restoration
import modules.images as images
import modules.styles
+import modules.sd_models as sd_models
+import modules.sd_vae as sd_vae
import logging
+from ldm.data.util import AddMiDaS
+from ldm.models.diffusion.ddpm import LatentDepth2ImageDiffusion
+from einops import repeat, rearrange
+from blendmodes.blend import blendLayers, BlendType
# some of those options should not be changed at all because they would break the model, so I removed them from options.
opt_C = 4
@@ -33,17 +40,19 @@ def setup_color_correction(image):
return correction_target
-def apply_color_correction(correction, image):
+def apply_color_correction(correction, original_image):
logging.info("Applying color correction.")
image = Image.fromarray(cv2.cvtColor(exposure.match_histograms(
cv2.cvtColor(
- np.asarray(image),
+ np.asarray(original_image),
cv2.COLOR_RGB2LAB
),
correction,
channel_axis=2
), cv2.COLOR_LAB2RGB).astype("uint8"))
-
+
+ image = blendLayers(image, original_image, BlendType.LUMINOSITY)
+
return image
@@ -66,19 +75,33 @@ def apply_overlay(image, paste_loc, index, overlays):
return image
-def get_correct_sampler(p):
- if isinstance(p, modules.processing.StableDiffusionProcessingTxt2Img):
- return sd_samplers.samplers
- elif isinstance(p, modules.processing.StableDiffusionProcessingImg2Img):
- return sd_samplers.samplers_for_img2img
- elif isinstance(p, modules.api.processing.StableDiffusionProcessingAPI):
- return sd_samplers.samplers
+
+def txt2img_image_conditioning(sd_model, x, width, height):
+ if sd_model.model.conditioning_key not in {'hybrid', 'concat'}:
+ # Dummy zero conditioning if we're not using inpainting model.
+ # Still takes up a bit of memory, but no encoder call.
+ # Pretty sure we can just make this a 1x1 image since its not going to be used besides its batch size.
+ return x.new_zeros(x.shape[0], 5, 1, 1, dtype=x.dtype, device=x.device)
+
+ # The "masked-image" in this case will just be all zeros since the entire image is masked.
+ image_conditioning = torch.zeros(x.shape[0], 3, height, width, device=x.device)
+ image_conditioning = sd_model.get_first_stage_encoding(sd_model.encode_first_stage(image_conditioning))
+
+ # Add the fake full 1s mask to the first dimension.
+ image_conditioning = torch.nn.functional.pad(image_conditioning, (0, 0, 0, 0, 1, 0), value=1.0)
+ image_conditioning = image_conditioning.to(x.dtype)
+
+ return image_conditioning
+
class StableDiffusionProcessing():
"""
The first set of paramaters: sd_models -> do_not_reload_embeddings represent the minimum required to create a StableDiffusionProcessing
"""
- def __init__(self, sd_model=None, outpath_samples=None, outpath_grids=None, prompt: str = "", styles: List[str] = None, seed: int = -1, subseed: int = -1, subseed_strength: float = 0, seed_resize_from_h: int = -1, seed_resize_from_w: int = -1, seed_enable_extras: bool = True, sampler_index: int = 0, batch_size: int = 1, n_iter: int = 1, steps: int = 50, cfg_scale: float = 7.0, width: int = 512, height: int = 512, restore_faces: bool = False, tiling: bool = False, do_not_save_samples: bool = False, do_not_save_grid: bool = False, extra_generation_params: Dict[Any, Any] = None, overlay_images: Any = None, negative_prompt: str = None, eta: float = None, do_not_reload_embeddings: bool = False, denoising_strength: float = 0, ddim_discretize: str = None, s_churn: float = 0.0, s_tmax: float = None, s_tmin: float = 0.0, s_noise: float = 1.0, override_settings: Dict[str, Any] = None):
+ def __init__(self, sd_model=None, outpath_samples=None, outpath_grids=None, prompt: str = "", styles: List[str] = None, seed: int = -1, subseed: int = -1, subseed_strength: float = 0, seed_resize_from_h: int = -1, seed_resize_from_w: int = -1, seed_enable_extras: bool = True, sampler_name: str = None, batch_size: int = 1, n_iter: int = 1, steps: int = 50, cfg_scale: float = 7.0, width: int = 512, height: int = 512, restore_faces: bool = False, tiling: bool = False, do_not_save_samples: bool = False, do_not_save_grid: bool = False, extra_generation_params: Dict[Any, Any] = None, overlay_images: Any = None, negative_prompt: str = None, eta: float = None, do_not_reload_embeddings: bool = False, denoising_strength: float = 0, ddim_discretize: str = None, s_churn: float = 0.0, s_tmax: float = None, s_tmin: float = 0.0, s_noise: float = 1.0, override_settings: Dict[str, Any] = None, override_settings_restore_afterwards: bool = True, sampler_index: int = None):
+ if sampler_index is not None:
+ print("sampler_index argument for StableDiffusionProcessing does not do anything; use sampler_name", file=sys.stderr)
+
self.sd_model = sd_model
self.outpath_samples: str = outpath_samples
self.outpath_grids: str = outpath_grids
@@ -91,7 +114,7 @@ class StableDiffusionProcessing():
self.subseed_strength: float = subseed_strength
self.seed_resize_from_h: int = seed_resize_from_h
self.seed_resize_from_w: int = seed_resize_from_w
- self.sampler_index: int = sampler_index
+ self.sampler_name: str = sampler_name
self.batch_size: int = batch_size
self.n_iter: int = n_iter
self.steps: int = steps
@@ -116,6 +139,8 @@ class StableDiffusionProcessing():
self.s_tmax = s_tmax or float('inf') # not representable as a standard ui option
self.s_noise = s_noise or opts.s_noise
self.override_settings = {k: v for k, v in (override_settings or {}).items() if k not in shared.restricted_opts}
+ self.override_settings_restore_afterwards = override_settings_restore_afterwards
+ self.is_using_inpainting_conditioning = False
if not seed_enable_extras:
self.subseed = -1
@@ -126,33 +151,37 @@ class StableDiffusionProcessing():
self.scripts = None
self.script_args = None
self.all_prompts = None
+ self.all_negative_prompts = None
self.all_seeds = None
self.all_subseeds = None
+ self.iteration = 0
def txt2img_image_conditioning(self, x, width=None, height=None):
- if self.sampler.conditioning_key not in {'hybrid', 'concat'}:
- # Dummy zero conditioning if we're not using inpainting model.
- # Still takes up a bit of memory, but no encoder call.
- # Pretty sure we can just make this a 1x1 image since its not going to be used besides its batch size.
- return x.new_zeros(x.shape[0], 5, 1, 1)
+ self.is_using_inpainting_conditioning = self.sd_model.model.conditioning_key in {'hybrid', 'concat'}
- height = height or self.height
- width = width or self.width
+ return txt2img_image_conditioning(self.sd_model, x, width or self.width, height or self.height)
- # The "masked-image" in this case will just be all zeros since the entire image is masked.
- image_conditioning = torch.zeros(x.shape[0], 3, height, width, device=x.device)
- image_conditioning = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(image_conditioning))
+ def depth2img_image_conditioning(self, source_image):
+ # Use the AddMiDaS helper to Format our source image to suit the MiDaS model
+ transformer = AddMiDaS(model_type="dpt_hybrid")
+ transformed = transformer({"jpg": rearrange(source_image[0], "c h w -> h w c")})
+ midas_in = torch.from_numpy(transformed["midas_in"][None, ...]).to(device=shared.device)
+ midas_in = repeat(midas_in, "1 ... -> n ...", n=self.batch_size)
- # Add the fake full 1s mask to the first dimension.
- image_conditioning = torch.nn.functional.pad(image_conditioning, (0, 0, 0, 0, 1, 0), value=1.0)
- image_conditioning = image_conditioning.to(x.dtype)
+ conditioning_image = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(source_image))
+ conditioning = torch.nn.functional.interpolate(
+ self.sd_model.depth_model(midas_in),
+ size=conditioning_image.shape[2:],
+ mode="bicubic",
+ align_corners=False,
+ )
- return image_conditioning
+ (depth_min, depth_max) = torch.aminmax(conditioning)
+ conditioning = 2. * (conditioning - depth_min) / (depth_max - depth_min) - 1.
+ return conditioning
- def img2img_image_conditioning(self, source_image, latent_image, image_mask = None):
- if self.sampler.conditioning_key not in {'hybrid', 'concat'}:
- # Dummy zero conditioning if we're not using inpainting model.
- return latent_image.new_zeros(latent_image.shape[0], 5, 1, 1)
+ def inpainting_image_conditioning(self, source_image, latent_image, image_mask = None):
+ self.is_using_inpainting_conditioning = True
# Handle the different mask inputs
if image_mask is not None:
@@ -176,7 +205,7 @@ class StableDiffusionProcessing():
source_image * (1.0 - conditioning_mask),
getattr(self, "inpainting_mask_weight", shared.opts.inpainting_mask_weight)
)
-
+
# Encode the new masked image using first stage of network.
conditioning_image = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(conditioning_image))
@@ -188,6 +217,18 @@ class StableDiffusionProcessing():
return image_conditioning
+ def img2img_image_conditioning(self, source_image, latent_image, image_mask=None):
+ # HACK: Using introspection as the Depth2Image model doesn't appear to uniquely
+ # identify itself with a field common to all models. The conditioning_key is also hybrid.
+ if isinstance(self.sd_model, LatentDepth2ImageDiffusion):
+ return self.depth2img_image_conditioning(source_image)
+
+ if self.sampler.conditioning_key in {'hybrid', 'concat'}:
+ return self.inpainting_image_conditioning(source_image, latent_image, image_mask=image_mask)
+
+ # Dummy zero conditioning if we're not using inpainting or depth model.
+ return latent_image.new_zeros(latent_image.shape[0], 5, 1, 1)
+
def init(self, all_prompts, all_seeds, all_subseeds):
pass
@@ -200,7 +241,7 @@ class StableDiffusionProcessing():
class Processed:
- def __init__(self, p: StableDiffusionProcessing, images_list, seed=-1, info="", subseed=None, all_prompts=None, all_seeds=None, all_subseeds=None, index_of_first_image=0, infotexts=None):
+ def __init__(self, p: StableDiffusionProcessing, images_list, seed=-1, info="", subseed=None, all_prompts=None, all_negative_prompts=None, all_seeds=None, all_subseeds=None, index_of_first_image=0, infotexts=None, comments=""):
self.images = images_list
self.prompt = p.prompt
self.negative_prompt = p.negative_prompt
@@ -208,10 +249,10 @@ class Processed:
self.subseed = subseed
self.subseed_strength = p.subseed_strength
self.info = info
+ self.comments = comments
self.width = p.width
self.height = p.height
- self.sampler_index = p.sampler_index
- self.sampler = sd_samplers.samplers[p.sampler_index].name
+ self.sampler_name = p.sampler_name
self.cfg_scale = p.cfg_scale
self.steps = p.steps
self.batch_size = p.batch_size
@@ -238,17 +279,20 @@ class Processed:
self.negative_prompt = self.negative_prompt if type(self.negative_prompt) != list else self.negative_prompt[0]
self.seed = int(self.seed if type(self.seed) != list else self.seed[0]) if self.seed is not None else -1
self.subseed = int(self.subseed if type(self.subseed) != list else self.subseed[0]) if self.subseed is not None else -1
+ self.is_using_inpainting_conditioning = p.is_using_inpainting_conditioning
- self.all_prompts = all_prompts or [self.prompt]
- self.all_seeds = all_seeds or [self.seed]
- self.all_subseeds = all_subseeds or [self.subseed]
+ self.all_prompts = all_prompts or p.all_prompts or [self.prompt]
+ self.all_negative_prompts = all_negative_prompts or p.all_negative_prompts or [self.negative_prompt]
+ self.all_seeds = all_seeds or p.all_seeds or [self.seed]
+ self.all_subseeds = all_subseeds or p.all_subseeds or [self.subseed]
self.infotexts = infotexts or [info]
def js(self):
obj = {
- "prompt": self.prompt,
+ "prompt": self.all_prompts[0],
"all_prompts": self.all_prompts,
- "negative_prompt": self.negative_prompt,
+ "negative_prompt": self.all_negative_prompts[0],
+ "all_negative_prompts": self.all_negative_prompts,
"seed": self.seed,
"all_seeds": self.all_seeds,
"subseed": self.subseed,
@@ -256,8 +300,7 @@ class Processed:
"subseed_strength": self.subseed_strength,
"width": self.width,
"height": self.height,
- "sampler_index": self.sampler_index,
- "sampler": self.sampler,
+ "sampler_name": self.sampler_name,
"cfg_scale": self.cfg_scale,
"steps": self.steps,
"batch_size": self.batch_size,
@@ -273,11 +316,12 @@ class Processed:
"styles": self.styles,
"job_timestamp": self.job_timestamp,
"clip_skip": self.clip_skip,
+ "is_using_inpainting_conditioning": self.is_using_inpainting_conditioning,
}
return json.dumps(obj)
- def infotext(self, p: StableDiffusionProcessing, index):
+ def infotext(self, p: StableDiffusionProcessing, index):
return create_infotext(p, self.all_prompts, self.all_seeds, self.all_subseeds, comments=[], position_in_batch=index % self.batch_size, iteration=index // self.batch_size)
@@ -297,13 +341,14 @@ def slerp(val, low, high):
def create_random_tensors(shape, seeds, subseeds=None, subseed_strength=0.0, seed_resize_from_h=0, seed_resize_from_w=0, p=None):
+ eta_noise_seed_delta = opts.eta_noise_seed_delta or 0
xs = []
# if we have multiple seeds, this means we are working with batch size>1; this then
# enables the generation of additional tensors with noise that the sampler will use during its processing.
# Using those pre-generated tensors instead of simple torch.randn allows a batch with seeds [100, 101] to
# produce the same images as with two batches [100], [101].
- if p is not None and p.sampler is not None and (len(seeds) > 1 and opts.enable_batch_seeds or opts.eta_noise_seed_delta > 0):
+ if p is not None and p.sampler is not None and (len(seeds) > 1 and opts.enable_batch_seeds or eta_noise_seed_delta > 0):
sampler_noises = [[] for _ in range(p.sampler.number_of_needed_noises(p))]
else:
sampler_noises = None
@@ -343,8 +388,8 @@ def create_random_tensors(shape, seeds, subseeds=None, subseed_strength=0.0, see
if sampler_noises is not None:
cnt = p.sampler.number_of_needed_noises(p)
- if opts.eta_noise_seed_delta > 0:
- torch.manual_seed(seed + opts.eta_noise_seed_delta)
+ if eta_noise_seed_delta > 0:
+ torch.manual_seed(seed + eta_noise_seed_delta)
for j in range(cnt):
sampler_noises[j].append(devices.randn_without_seed(tuple(noise_shape)))
@@ -377,14 +422,14 @@ def fix_seed(p):
p.subseed = get_fixed_seed(p.subseed)
-def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments, iteration=0, position_in_batch=0):
+def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments=None, iteration=0, position_in_batch=0):
index = position_in_batch + iteration * p.batch_size
clip_skip = getattr(p, 'clip_skip', opts.CLIP_stop_at_last_layers)
generation_params = {
"Steps": p.steps,
- "Sampler": get_correct_sampler(p)[p.sampler_index].name,
+ "Sampler": p.sampler_name,
"CFG scale": p.cfg_scale,
"Seed": all_seeds[index],
"Face restoration": (opts.face_restoration_model if p.restore_faces else None),
@@ -392,6 +437,7 @@ def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments, iteration
"Model hash": getattr(p, 'sd_model_hash', None if not opts.add_model_hash_to_info or not shared.sd_model.sd_model_hash else shared.sd_model.sd_model_hash),
"Model": (None if not opts.add_model_name_to_info or not shared.sd_model.sd_checkpoint_info.model_name else shared.sd_model.sd_checkpoint_info.model_name.replace(',', '').replace(':', '')),
"Hypernet": (None if shared.loaded_hypernetwork is None else shared.loaded_hypernetwork.name),
+ "Hypernet hash": (None if shared.loaded_hypernetwork is None else sd_models.model_hash(shared.loaded_hypernetwork.filename)),
"Hypernet strength": (None if shared.loaded_hypernetwork is None or shared.opts.sd_hypernetwork_strength >= 1 else shared.opts.sd_hypernetwork_strength),
"Batch size": (None if p.batch_size < 2 else p.batch_size),
"Batch pos": (None if p.batch_size < 2 else position_in_batch),
@@ -399,6 +445,7 @@ def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments, iteration
"Variation seed strength": (None if p.subseed_strength == 0 else p.subseed_strength),
"Seed resize from": (None if p.seed_resize_from_w == 0 or p.seed_resize_from_h == 0 else f"{p.seed_resize_from_w}x{p.seed_resize_from_h}"),
"Denoising strength": getattr(p, 'denoising_strength', None),
+ "Conditional mask weight": getattr(p, "inpainting_mask_weight", shared.opts.inpainting_mask_weight) if p.is_using_inpainting_conditioning else None,
"Eta": (None if p.sampler is None or p.sampler.eta == p.sampler.default_eta else p.sampler.eta),
"Clip skip": None if clip_skip <= 1 else clip_skip,
"ENSD": None if opts.eta_noise_seed_delta == 0 else opts.eta_noise_seed_delta,
@@ -408,7 +455,7 @@ def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments, iteration
generation_params_text = ", ".join([k if k == v else f'{k}: {generation_parameters_copypaste.quote(v)}' for k, v in generation_params.items() if v is not None])
- negative_prompt_text = "\nNegative prompt: " + p.negative_prompt if p.negative_prompt else ""
+ negative_prompt_text = "\nNegative prompt: " + p.all_negative_prompts[index] if p.all_negative_prompts[index] else ""
return f"{all_prompts[index]}{negative_prompt_text}\n{generation_params_text}".strip()
@@ -418,13 +465,21 @@ def process_images(p: StableDiffusionProcessing) -> Processed:
try:
for k, v in p.override_settings.items():
- setattr(opts, k, v) # we don't call onchange for simplicity which makes changing model, hypernet impossible
+ setattr(opts, k, v)
+ if k == 'sd_hypernetwork': shared.reload_hypernetworks() # make onchange call for changing hypernet
+ if k == 'sd_model_checkpoint': sd_models.reload_model_weights() # make onchange call for changing SD model
+ if k == 'sd_vae': sd_vae.reload_vae_weights() # make onchange call for changing VAE
res = process_images_inner(p)
finally:
- for k, v in stored_opts.items():
- setattr(opts, k, v)
+ # restore opts to original state
+ if p.override_settings_restore_afterwards:
+ for k, v in stored_opts.items():
+ setattr(opts, k, v)
+ if k == 'sd_hypernetwork': shared.reload_hypernetworks()
+ if k == 'sd_model_checkpoint': sd_models.reload_model_weights()
+ if k == 'sd_vae': sd_vae.reload_vae_weights()
return res
@@ -437,10 +492,6 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
else:
assert p.prompt is not None
- with open(os.path.join(shared.script_path, "params.txt"), "w", encoding="utf8") as file:
- processed = Processed(p, [], p.seed, "")
- file.write(processed.infotext(p, 0))
-
devices.torch_gc()
seed = get_fixed_seed(p.seed)
@@ -451,12 +502,15 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
comments = {}
- shared.prompt_styles.apply_styles(p)
-
if type(p.prompt) == list:
- p.all_prompts = p.prompt
+ p.all_prompts = [shared.prompt_styles.apply_styles_to_prompt(x, p.styles) for x in p.prompt]
else:
- p.all_prompts = p.batch_size * p.n_iter * [p.prompt]
+ p.all_prompts = p.batch_size * p.n_iter * [shared.prompt_styles.apply_styles_to_prompt(p.prompt, p.styles)]
+
+ if type(p.negative_prompt) == list:
+ p.all_negative_prompts = [shared.prompt_styles.apply_negative_styles_to_prompt(x, p.styles) for x in p.negative_prompt]
+ else:
+ p.all_negative_prompts = p.batch_size * p.n_iter * [shared.prompt_styles.apply_negative_styles_to_prompt(p.negative_prompt, p.styles)]
if type(seed) == list:
p.all_seeds = seed
@@ -471,6 +525,10 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
def infotext(iteration=0, position_in_batch=0):
return create_infotext(p, p.all_prompts, p.all_seeds, p.all_subseeds, comments, iteration, position_in_batch)
+ with open(os.path.join(shared.script_path, "params.txt"), "w", encoding="utf8") as file:
+ processed = Processed(p, [], p.seed, "")
+ file.write(processed.infotext(p, 0))
+
if os.path.exists(cmd_opts.embeddings_dir) and not p.do_not_reload_embeddings:
model_hijack.embedding_db.load_textual_inversion_embeddings()
@@ -488,13 +546,16 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
state.job_count = p.n_iter
for n in range(p.n_iter):
+ p.iteration = n
+
if state.skipped:
state.skipped = False
-
+
if state.interrupted:
break
prompts = p.all_prompts[n * p.batch_size:(n + 1) * p.batch_size]
+ negative_prompts = p.all_negative_prompts[n * p.batch_size:(n + 1) * p.batch_size]
seeds = p.all_seeds[n * p.batch_size:(n + 1) * p.batch_size]
subseeds = p.all_subseeds[n * p.batch_size:(n + 1) * p.batch_size]
@@ -505,7 +566,7 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
p.scripts.process_batch(p, batch_number=n, prompts=prompts, seeds=seeds, subseeds=subseeds)
with devices.autocast():
- uc = prompt_parser.get_learned_conditioning(shared.sd_model, len(prompts) * [p.negative_prompt], p.steps)
+ uc = prompt_parser.get_learned_conditioning(shared.sd_model, negative_prompts, p.steps)
c = prompt_parser.get_multicond_learned_conditioning(shared.sd_model, prompts, p.steps)
if len(model_hijack.comments) > 0:
@@ -518,8 +579,8 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
with devices.autocast():
samples_ddim = p.sample(conditioning=c, unconditional_conditioning=uc, seeds=seeds, subseeds=subseeds, subseed_strength=p.subseed_strength, prompts=prompts)
- samples_ddim = samples_ddim.to(devices.dtype_vae)
- x_samples_ddim = decode_first_stage(p.sd_model, samples_ddim)
+ x_samples_ddim = [decode_first_stage(p.sd_model, samples_ddim[i:i+1].to(dtype=devices.dtype_vae))[0].cpu() for i in range(samples_ddim.size(0))]
+ x_samples_ddim = torch.stack(x_samples_ddim).float()
x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
del samples_ddim
@@ -529,9 +590,8 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
devices.torch_gc()
- if opts.filter_nsfw:
- import modules.safety as safety
- x_samples_ddim = modules.safety.censor_batch(x_samples_ddim)
+ if p.scripts is not None:
+ p.scripts.postprocess_batch(p, x_samples_ddim, batch_number=n)
for i, x_sample in enumerate(x_samples_ddim):
x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2)
@@ -565,7 +625,7 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
image.info["parameters"] = text
output_images.append(image)
- del x_samples_ddim
+ del x_samples_ddim
devices.torch_gc()
@@ -591,7 +651,7 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
devices.torch_gc()
- res = Processed(p, output_images, p.all_seeds[0], infotext() + "".join(["\n\n" + x for x in comments]), subseed=p.all_subseeds[0], all_prompts=p.all_prompts, all_seeds=p.all_seeds, all_subseeds=p.all_subseeds, index_of_first_image=index_of_first_image, infotexts=infotexts)
+ res = Processed(p, output_images, p.all_seeds[0], infotext(), comments="".join(["\n\n" + x for x in comments]), subseed=p.all_subseeds[0], index_of_first_image=index_of_first_image, infotexts=infotexts)
if p.scripts is not None:
p.scripts.postprocess(p, res)
@@ -602,14 +662,18 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
sampler = None
- def __init__(self, enable_hr: bool=False, denoising_strength: float=0.75, firstphase_width: int=0, firstphase_height: int=0, **kwargs):
+ def __init__(self, enable_hr: bool = False, denoising_strength: float = 0.75, firstphase_width: int = 0, firstphase_height: int = 0, hr_scale: float = 2.0, hr_upscaler: str = None, **kwargs):
super().__init__(**kwargs)
self.enable_hr = enable_hr
self.denoising_strength = denoising_strength
- self.firstphase_width = firstphase_width
- self.firstphase_height = firstphase_height
- self.truncate_x = 0
- self.truncate_y = 0
+ self.hr_scale = hr_scale
+ self.hr_upscaler = hr_upscaler
+
+ if firstphase_width != 0 or firstphase_height != 0:
+ print("firstphase_width/firstphase_height no longer supported; use hr_scale", file=sys.stderr)
+ self.hr_scale = self.width / firstphase_width
+ self.width = firstphase_width
+ self.height = firstphase_height
def init(self, all_prompts, all_seeds, all_subseeds):
if self.enable_hr:
@@ -618,62 +682,45 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
else:
state.job_count = state.job_count * 2
- self.extra_generation_params["First pass size"] = f"{self.firstphase_width}x{self.firstphase_height}"
-
- if self.firstphase_width == 0 or self.firstphase_height == 0:
- desired_pixel_count = 512 * 512
- actual_pixel_count = self.width * self.height
- scale = math.sqrt(desired_pixel_count / actual_pixel_count)
- self.firstphase_width = math.ceil(scale * self.width / 64) * 64
- self.firstphase_height = math.ceil(scale * self.height / 64) * 64
- firstphase_width_truncated = int(scale * self.width)
- firstphase_height_truncated = int(scale * self.height)
-
- else:
-
- width_ratio = self.width / self.firstphase_width
- height_ratio = self.height / self.firstphase_height
-
- if width_ratio > height_ratio:
- firstphase_width_truncated = self.firstphase_width
- firstphase_height_truncated = self.firstphase_width * self.height / self.width
- else:
- firstphase_width_truncated = self.firstphase_height * self.width / self.height
- firstphase_height_truncated = self.firstphase_height
-
- self.truncate_x = int(self.firstphase_width - firstphase_width_truncated) // opt_f
- self.truncate_y = int(self.firstphase_height - firstphase_height_truncated) // opt_f
+ self.extra_generation_params["Hires upscale"] = self.hr_scale
+ if self.hr_upscaler is not None:
+ self.extra_generation_params["Hires upscaler"] = self.hr_upscaler
def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength, prompts):
- self.sampler = sd_samplers.create_sampler_with_index(sd_samplers.samplers, self.sampler_index, self.sd_model)
+ self.sampler = sd_samplers.create_sampler(self.sampler_name, self.sd_model)
+
+ latent_scale_mode = shared.latent_upscale_modes.get(self.hr_upscaler, None) if self.hr_upscaler is not None else shared.latent_upscale_modes.get(shared.latent_upscale_default_mode, "nearest")
+ if self.enable_hr and latent_scale_mode is None:
+ assert len([x for x in shared.sd_upscalers if x.name == self.hr_upscaler]) > 0, f"could not find upscaler named {self.hr_upscaler}"
+
+ x = create_random_tensors([opt_C, self.height // opt_f, self.width // opt_f], seeds=seeds, subseeds=subseeds, subseed_strength=self.subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self)
+ samples = self.sampler.sample(self, x, conditioning, unconditional_conditioning, image_conditioning=self.txt2img_image_conditioning(x))
if not self.enable_hr:
- x = create_random_tensors([opt_C, self.height // opt_f, self.width // opt_f], seeds=seeds, subseeds=subseeds, subseed_strength=self.subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self)
- samples = self.sampler.sample(self, x, conditioning, unconditional_conditioning, image_conditioning=self.txt2img_image_conditioning(x))
return samples
- x = create_random_tensors([opt_C, self.firstphase_height // opt_f, self.firstphase_width // opt_f], seeds=seeds, subseeds=subseeds, subseed_strength=self.subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self)
- samples = self.sampler.sample(self, x, conditioning, unconditional_conditioning, image_conditioning=self.txt2img_image_conditioning(x, self.firstphase_width, self.firstphase_height))
+ target_width = int(self.width * self.hr_scale)
+ target_height = int(self.height * self.hr_scale)
- samples = samples[:, :, self.truncate_y//2:samples.shape[2]-self.truncate_y//2, self.truncate_x//2:samples.shape[3]-self.truncate_x//2]
-
- """saves image before applying hires fix, if enabled in options; takes as an arguyment either an image or batch with latent space images"""
def save_intermediate(image, index):
+ """saves image before applying hires fix, if enabled in options; takes as an argument either an image or batch with latent space images"""
+
if not opts.save or self.do_not_save_samples or not opts.save_images_before_highres_fix:
return
if not isinstance(image, Image.Image):
- image = sd_samplers.sample_to_image(image, index)
+ image = sd_samplers.sample_to_image(image, index, approximation=0)
- images.save_image(image, self.outpath_samples, "", seeds[index], prompts[index], opts.samples_format, suffix="-before-highres-fix")
+ info = create_infotext(self, self.all_prompts, self.all_seeds, self.all_subseeds, [], iteration=self.iteration, position_in_batch=index)
+ images.save_image(image, self.outpath_samples, "", seeds[index], prompts[index], opts.samples_format, info=info, suffix="-before-highres-fix")
- if opts.use_scale_latent_for_hires_fix:
+ if latent_scale_mode is not None:
for i in range(samples.shape[0]):
save_intermediate(samples, i)
- samples = torch.nn.functional.interpolate(samples, size=(self.height // opt_f, self.width // opt_f), mode="bilinear")
+ samples = torch.nn.functional.interpolate(samples, size=(target_height // opt_f, target_width // opt_f), mode=latent_scale_mode["mode"], antialias=latent_scale_mode["antialias"])
- # Avoid making the inpainting conditioning unless necessary as
+ # Avoid making the inpainting conditioning unless necessary as
# this does need some extra compute to decode / encode the image again.
if getattr(self, "inpainting_mask_weight", shared.opts.inpainting_mask_weight) < 1.0:
image_conditioning = self.img2img_image_conditioning(decode_first_stage(self.sd_model, samples), samples)
@@ -691,7 +738,7 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
save_intermediate(image, i)
- image = images.resize_image(0, image, self.width, self.height)
+ image = images.resize_image(0, image, target_width, target_height, upscaler_name=self.hr_upscaler)
image = np.array(image).astype(np.float32) / 255.0
image = np.moveaxis(image, 2, 0)
batch_images.append(image)
@@ -706,9 +753,9 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
shared.state.nextjob()
- self.sampler = sd_samplers.create_sampler_with_index(sd_samplers.samplers, self.sampler_index, self.sd_model)
+ self.sampler = sd_samplers.create_sampler(self.sampler_name, self.sd_model)
- noise = create_random_tensors(samples.shape[1:], seeds=seeds, subseeds=subseeds, subseed_strength=subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self)
+ noise = create_random_tensors(samples.shape[1:], seeds=seeds, subseeds=subseeds, subseed_strength=subseed_strength, p=self)
# GC now before running the next img2img to prevent running out of memory
x = None
@@ -722,7 +769,7 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
sampler = None
- def __init__(self, init_images: list=None, resize_mode: int=0, denoising_strength: float=0.75, mask: Any=None, mask_blur: int=4, inpainting_fill: int=0, inpaint_full_res: bool=True, inpaint_full_res_padding: int=0, inpainting_mask_invert: int=0, **kwargs):
+ def __init__(self, init_images: list = None, resize_mode: int = 0, denoising_strength: float = 0.75, mask: Any = None, mask_blur: int = 4, inpainting_fill: int = 0, inpaint_full_res: bool = True, inpaint_full_res_padding: int = 0, inpainting_mask_invert: int = 0, initial_noise_multiplier: float = None, **kwargs):
super().__init__(**kwargs)
self.init_images = init_images
@@ -730,7 +777,6 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
self.denoising_strength: float = denoising_strength
self.init_latent = None
self.image_mask = mask
- #self.image_unblurred_mask = None
self.latent_mask = None
self.mask_for_overlay = None
self.mask_blur = mask_blur
@@ -738,66 +784,68 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
self.inpaint_full_res = inpaint_full_res
self.inpaint_full_res_padding = inpaint_full_res_padding
self.inpainting_mask_invert = inpainting_mask_invert
+ self.initial_noise_multiplier = opts.initial_noise_multiplier if initial_noise_multiplier is None else initial_noise_multiplier
self.mask = None
self.nmask = None
self.image_conditioning = None
def init(self, all_prompts, all_seeds, all_subseeds):
- self.sampler = sd_samplers.create_sampler_with_index(sd_samplers.samplers_for_img2img, self.sampler_index, self.sd_model)
+ self.sampler = sd_samplers.create_sampler(self.sampler_name, self.sd_model)
crop_region = None
- if self.image_mask is not None:
- self.image_mask = self.image_mask.convert('L')
+ image_mask = self.image_mask
+
+ if image_mask is not None:
+ image_mask = image_mask.convert('L')
if self.inpainting_mask_invert:
- self.image_mask = ImageOps.invert(self.image_mask)
-
- #self.image_unblurred_mask = self.image_mask
+ image_mask = ImageOps.invert(image_mask)
if self.mask_blur > 0:
- self.image_mask = self.image_mask.filter(ImageFilter.GaussianBlur(self.mask_blur))
+ image_mask = image_mask.filter(ImageFilter.GaussianBlur(self.mask_blur))
if self.inpaint_full_res:
- self.mask_for_overlay = self.image_mask
- mask = self.image_mask.convert('L')
+ self.mask_for_overlay = image_mask
+ mask = image_mask.convert('L')
crop_region = masking.get_crop_region(np.array(mask), self.inpaint_full_res_padding)
crop_region = masking.expand_crop_region(crop_region, self.width, self.height, mask.width, mask.height)
x1, y1, x2, y2 = crop_region
mask = mask.crop(crop_region)
- self.image_mask = images.resize_image(2, mask, self.width, self.height)
+ image_mask = images.resize_image(2, mask, self.width, self.height)
self.paste_to = (x1, y1, x2-x1, y2-y1)
else:
- self.image_mask = images.resize_image(self.resize_mode, self.image_mask, self.width, self.height)
- np_mask = np.array(self.image_mask)
+ image_mask = images.resize_image(self.resize_mode, image_mask, self.width, self.height)
+ np_mask = np.array(image_mask)
np_mask = np.clip((np_mask.astype(np.float32)) * 2, 0, 255).astype(np.uint8)
self.mask_for_overlay = Image.fromarray(np_mask)
self.overlay_images = []
- latent_mask = self.latent_mask if self.latent_mask is not None else self.image_mask
+ latent_mask = self.latent_mask if self.latent_mask is not None else image_mask
add_color_corrections = opts.img2img_color_correction and self.color_corrections is None
if add_color_corrections:
self.color_corrections = []
imgs = []
for img in self.init_images:
- image = img.convert("RGB")
+ image = images.flatten(img, opts.img2img_background_color)
- if crop_region is None:
+ if crop_region is None and self.resize_mode != 3:
image = images.resize_image(self.resize_mode, image, self.width, self.height)
- if self.image_mask is not None:
+ if image_mask is not None:
image_masked = Image.new('RGBa', (image.width, image.height))
image_masked.paste(image.convert("RGBA").convert("RGBa"), mask=ImageOps.invert(self.mask_for_overlay.convert('L')))
self.overlay_images.append(image_masked.convert('RGBA'))
+ # crop_region is not None if we are doing inpaint full res
if crop_region is not None:
image = image.crop(crop_region)
image = images.resize_image(2, image, self.width, self.height)
- if self.image_mask is not None:
+ if image_mask is not None:
if self.inpainting_fill != 1:
image = masking.fill(image, latent_mask)
@@ -829,7 +877,10 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
self.init_latent = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(image))
- if self.image_mask is not None:
+ if self.resize_mode == 3:
+ self.init_latent = torch.nn.functional.interpolate(self.init_latent, size=(self.height // opt_f, self.width // opt_f), mode="bilinear")
+
+ if image_mask is not None:
init_mask = latent_mask
latmask = init_mask.convert('RGB').resize((self.init_latent.shape[3], self.init_latent.shape[2]))
latmask = np.moveaxis(np.array(latmask, dtype=np.float32), 2, 0) / 255
@@ -846,11 +897,15 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
elif self.inpainting_fill == 3:
self.init_latent = self.init_latent * self.mask
- self.image_conditioning = self.img2img_image_conditioning(image, self.init_latent, self.image_mask)
+ self.image_conditioning = self.img2img_image_conditioning(image, self.init_latent, image_mask)
def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength, prompts):
x = create_random_tensors([opt_C, self.height // opt_f, self.width // opt_f], seeds=seeds, subseeds=subseeds, subseed_strength=self.subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self)
+ if self.initial_noise_multiplier != 1.0:
+ self.extra_generation_params["Noise multiplier"] = self.initial_noise_multiplier
+ x *= self.initial_noise_multiplier
+
samples = self.sampler.sample_img2img(self, self.init_latent, x, conditioning, unconditional_conditioning, image_conditioning=self.image_conditioning)
if self.mask is not None:
diff --git a/modules/safe.py b/modules/safe.py
index a9209e385..82d44be31 100644
--- a/modules/safe.py
+++ b/modules/safe.py
@@ -37,16 +37,16 @@ class RestrictedUnpickler(pickle.Unpickler):
if module == 'collections' and name == 'OrderedDict':
return getattr(collections, name)
- if module == 'torch._utils' and name in ['_rebuild_tensor_v2', '_rebuild_parameter']:
+ if module == 'torch._utils' and name in ['_rebuild_tensor_v2', '_rebuild_parameter', '_rebuild_device_tensor_from_numpy']:
return getattr(torch._utils, name)
- if module == 'torch' and name in ['FloatStorage', 'HalfStorage', 'IntStorage', 'LongStorage', 'DoubleStorage', 'ByteStorage']:
+ if module == 'torch' and name in ['FloatStorage', 'HalfStorage', 'IntStorage', 'LongStorage', 'DoubleStorage', 'ByteStorage', 'float32']:
return getattr(torch, name)
if module == 'torch.nn.modules.container' and name in ['ParameterDict']:
return getattr(torch.nn.modules.container, name)
- if module == 'numpy.core.multiarray' and name == 'scalar':
- return numpy.core.multiarray.scalar
- if module == 'numpy' and name == 'dtype':
- return numpy.dtype
+ if module == 'numpy.core.multiarray' and name in ['scalar', '_reconstruct']:
+ return getattr(numpy.core.multiarray, name)
+ if module == 'numpy' and name in ['dtype', 'ndarray']:
+ return getattr(numpy, name)
if module == '_codecs' and name == 'encode':
return encode
if module == "pytorch_lightning.callbacks" and name == 'model_checkpoint':
@@ -62,14 +62,12 @@ class RestrictedUnpickler(pickle.Unpickler):
raise Exception(f"global '{module}/{name}' is forbidden")
-allowed_zip_names = ["archive/data.pkl", "archive/version"]
-allowed_zip_names_re = re.compile(r"^archive/data/\d+$")
-
+# Regular expression that accepts 'dirname/version', 'dirname/data.pkl', and 'dirname/data/'
+allowed_zip_names_re = re.compile(r"^([^/]+)/((data/\d+)|version|(data\.pkl))$")
+data_pkl_re = re.compile(r"^([^/]+)/data\.pkl$")
def check_zip_filenames(filename, names):
for name in names:
- if name in allowed_zip_names:
- continue
if allowed_zip_names_re.match(name):
continue
@@ -83,7 +81,13 @@ def check_pt(filename, extra_handler):
with zipfile.ZipFile(filename) as z:
check_zip_filenames(filename, z.namelist())
- with z.open('archive/data.pkl') as file:
+ # find filename of data.pkl in zip file: '/data.pkl'
+ data_pkl_filenames = [f for f in z.namelist() if data_pkl_re.match(f)]
+ if len(data_pkl_filenames) == 0:
+ raise Exception(f"data.pkl not found in {filename}")
+ if len(data_pkl_filenames) > 1:
+ raise Exception(f"Multiple data.pkl found in {filename}")
+ with z.open(data_pkl_filenames[0]) as file:
unpickler = RestrictedUnpickler(file)
unpickler.extra_handler = extra_handler
unpickler.load()
@@ -99,12 +103,12 @@ def check_pt(filename, extra_handler):
def load(filename, *args, **kwargs):
- return load_with_extra(filename, *args, **kwargs)
+ return load_with_extra(filename, extra_handler=global_extra_handler, *args, **kwargs)
def load_with_extra(filename, extra_handler=None, *args, **kwargs):
"""
- this functon is intended to be used by extensions that want to load models with
+ this function is intended to be used by extensions that want to load models with
some extra classes in them that the usual unpickler would find suspicious.
Use the extra_handler argument to specify a function that takes module and field name as text,
@@ -133,19 +137,56 @@ def load_with_extra(filename, extra_handler=None, *args, **kwargs):
except pickle.UnpicklingError:
print(f"Error verifying pickled file from {filename}:", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
- print(f"-----> !!!! The file is most likely corrupted !!!! <-----", file=sys.stderr)
- print(f"You can skip this check with --disable-safe-unpickle commandline argument, but that is not going to help you.\n\n", file=sys.stderr)
+ print("-----> !!!! The file is most likely corrupted !!!! <-----", file=sys.stderr)
+ print("You can skip this check with --disable-safe-unpickle commandline argument, but that is not going to help you.\n\n", file=sys.stderr)
return None
except Exception:
print(f"Error verifying pickled file from {filename}:", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
- print(f"\nThe file may be malicious, so the program is not going to read it.", file=sys.stderr)
- print(f"You can skip this check with --disable-safe-unpickle commandline argument.\n\n", file=sys.stderr)
+ print("\nThe file may be malicious, so the program is not going to read it.", file=sys.stderr)
+ print("You can skip this check with --disable-safe-unpickle commandline argument.\n\n", file=sys.stderr)
return None
return unsafe_torch_load(filename, *args, **kwargs)
+class Extra:
+ """
+ A class for temporarily setting the global handler for when you can't explicitly call load_with_extra
+ (because it's not your code making the torch.load call). The intended use is like this:
+
+```
+import torch
+from modules import safe
+
+def handler(module, name):
+ if module == 'torch' and name in ['float64', 'float16']:
+ return getattr(torch, name)
+
+ return None
+
+with safe.Extra(handler):
+ x = torch.load('model.pt')
+```
+ """
+
+ def __init__(self, handler):
+ self.handler = handler
+
+ def __enter__(self):
+ global global_extra_handler
+
+ assert global_extra_handler is None, 'already inside an Extra() block'
+ global_extra_handler = self.handler
+
+ def __exit__(self, exc_type, exc_val, exc_tb):
+ global global_extra_handler
+
+ global_extra_handler = None
+
+
unsafe_torch_load = torch.load
torch.load = load
+global_extra_handler = None
+
diff --git a/modules/safety.py b/modules/safety.py
deleted file mode 100644
index cff4b2783..000000000
--- a/modules/safety.py
+++ /dev/null
@@ -1,42 +0,0 @@
-import torch
-from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
-from transformers import AutoFeatureExtractor
-from PIL import Image
-
-import modules.shared as shared
-
-safety_model_id = "CompVis/stable-diffusion-safety-checker"
-safety_feature_extractor = None
-safety_checker = None
-
-def numpy_to_pil(images):
- """
- Convert a numpy image or a batch of images to a PIL image.
- """
- if images.ndim == 3:
- images = images[None, ...]
- images = (images * 255).round().astype("uint8")
- pil_images = [Image.fromarray(image) for image in images]
-
- return pil_images
-
-# check and replace nsfw content
-def check_safety(x_image):
- global safety_feature_extractor, safety_checker
-
- if safety_feature_extractor is None:
- safety_feature_extractor = AutoFeatureExtractor.from_pretrained(safety_model_id)
- safety_checker = StableDiffusionSafetyChecker.from_pretrained(safety_model_id)
-
- safety_checker_input = safety_feature_extractor(numpy_to_pil(x_image), return_tensors="pt")
- x_checked_image, has_nsfw_concept = safety_checker(images=x_image, clip_input=safety_checker_input.pixel_values)
-
- return x_checked_image, has_nsfw_concept
-
-
-def censor_batch(x):
- x_samples_ddim_numpy = x.cpu().permute(0, 2, 3, 1).numpy()
- x_checked_image, has_nsfw_concept = check_safety(x_samples_ddim_numpy)
- x = torch.from_numpy(x_checked_image).permute(0, 3, 1, 2)
-
- return x
diff --git a/modules/script_callbacks.py b/modules/script_callbacks.py
index f19e164cf..de69fd9f4 100644
--- a/modules/script_callbacks.py
+++ b/modules/script_callbacks.py
@@ -51,6 +51,13 @@ class UiTrainTabParams:
self.txt2img_preview_params = txt2img_preview_params
+class ImageGridLoopParams:
+ def __init__(self, imgs, cols, rows):
+ self.imgs = imgs
+ self.cols = cols
+ self.rows = rows
+
+
ScriptCallback = namedtuple("ScriptCallback", ["script", "callback"])
callback_map = dict(
callbacks_app_started=[],
@@ -61,6 +68,9 @@ callback_map = dict(
callbacks_before_image_saved=[],
callbacks_image_saved=[],
callbacks_cfg_denoiser=[],
+ callbacks_before_component=[],
+ callbacks_after_component=[],
+ callbacks_image_grid=[],
)
@@ -137,6 +147,30 @@ def cfg_denoiser_callback(params: CFGDenoiserParams):
report_exception(c, 'cfg_denoiser_callback')
+def before_component_callback(component, **kwargs):
+ for c in callback_map['callbacks_before_component']:
+ try:
+ c.callback(component, **kwargs)
+ except Exception:
+ report_exception(c, 'before_component_callback')
+
+
+def after_component_callback(component, **kwargs):
+ for c in callback_map['callbacks_after_component']:
+ try:
+ c.callback(component, **kwargs)
+ except Exception:
+ report_exception(c, 'after_component_callback')
+
+
+def image_grid_callback(params: ImageGridLoopParams):
+ for c in callback_map['callbacks_image_grid']:
+ try:
+ c.callback(params)
+ except Exception:
+ report_exception(c, 'image_grid')
+
+
def add_callback(callbacks, fun):
stack = [x for x in inspect.stack() if x.filename != __file__]
filename = stack[0].filename if len(stack) > 0 else 'unknown file'
@@ -220,3 +254,28 @@ def on_cfg_denoiser(callback):
- params: CFGDenoiserParams - parameters to be passed to the inner model and sampling state details.
"""
add_callback(callback_map['callbacks_cfg_denoiser'], callback)
+
+
+def on_before_component(callback):
+ """register a function to be called before a component is created.
+ The callback is called with arguments:
+ - component - gradio component that is about to be created.
+ - **kwargs - args to gradio.components.IOComponent.__init__ function
+
+ Use elem_id/label fields of kwargs to figure out which component it is.
+ This can be useful to inject your own components somewhere in the middle of vanilla UI.
+ """
+ add_callback(callback_map['callbacks_before_component'], callback)
+
+
+def on_after_component(callback):
+ """register a function to be called after a component is created. See on_before_component for more."""
+ add_callback(callback_map['callbacks_after_component'], callback)
+
+
+def on_image_grid(callback):
+ """register a function to be called before making an image grid.
+ The callback is called with one argument:
+ - params: ImageGridLoopParams - parameters to be used for grid creation. Can be modified.
+ """
+ add_callback(callback_map['callbacks_image_grid'], callback)
diff --git a/modules/script_loading.py b/modules/script_loading.py
new file mode 100644
index 000000000..f93f0951a
--- /dev/null
+++ b/modules/script_loading.py
@@ -0,0 +1,34 @@
+import os
+import sys
+import traceback
+from types import ModuleType
+
+
+def load_module(path):
+ with open(path, "r", encoding="utf8") as file:
+ text = file.read()
+
+ compiled = compile(text, path, 'exec')
+ module = ModuleType(os.path.basename(path))
+ exec(compiled, module.__dict__)
+
+ return module
+
+
+def preload_extensions(extensions_dir, parser):
+ if not os.path.isdir(extensions_dir):
+ return
+
+ for dirname in sorted(os.listdir(extensions_dir)):
+ preload_script = os.path.join(extensions_dir, dirname, "preload.py")
+ if not os.path.isfile(preload_script):
+ continue
+
+ try:
+ module = load_module(preload_script)
+ if hasattr(module, 'preload'):
+ module.preload(parser)
+
+ except Exception:
+ print(f"Error running preload() for {preload_script}", file=sys.stderr)
+ print(traceback.format_exc(), file=sys.stderr)
diff --git a/modules/scripts.py b/modules/scripts.py
index 637b23292..722f86850 100644
--- a/modules/scripts.py
+++ b/modules/scripts.py
@@ -6,7 +6,7 @@ from collections import namedtuple
import gradio as gr
from modules.processing import StableDiffusionProcessing
-from modules import shared, paths, script_callbacks, extensions
+from modules import shared, paths, script_callbacks, extensions, script_loading
AlwaysVisible = object()
@@ -17,6 +17,9 @@ class Script:
args_to = None
alwayson = False
+ is_txt2img = False
+ is_img2img = False
+
"""A gr.Group component that has all script's UI inside it"""
group = None
@@ -33,7 +36,7 @@ class Script:
def ui(self, is_img2img):
"""this function should create gradio UI elements. See https://gradio.app/docs/#components
The return value should be an array of all components that are used in processing.
- Values of those returned componenbts will be passed to run() and process() functions.
+ Values of those returned components will be passed to run() and process() functions.
"""
pass
@@ -44,7 +47,7 @@ class Script:
This function should return:
- False if the script should not be shown in UI at all
- - True if the script should be shown in UI if it's scelected in the scripts drowpdown
+ - True if the script should be shown in UI if it's selected in the scripts dropdown
- script.AlwaysVisible if the script should be shown in UI at all times
"""
@@ -85,6 +88,17 @@ class Script:
pass
+ def postprocess_batch(self, p, *args, **kwargs):
+ """
+ Same as process_batch(), but called for every batch after it has been generated.
+
+ **kwargs will have same items as process_batch, and also:
+ - batch_number - index of current batch, from 0 to number of batches-1
+ - images - torch tensor with all generated images, with values ranging from 0 to 1;
+ """
+
+ pass
+
def postprocess(self, p, processed, *args):
"""
This function is called after processing ends for AlwaysVisible scripts.
@@ -93,6 +107,23 @@ class Script:
pass
+ def before_component(self, component, **kwargs):
+ """
+ Called before a component is created.
+ Use elem_id/label fields of kwargs to figure out which component it is.
+ This can be useful to inject your own components somewhere in the middle of vanilla UI.
+ You can return created components in the ui() function to add them to the list of arguments for your processing functions
+ """
+
+ pass
+
+ def after_component(self, component, **kwargs):
+ """
+ Called after a component is created. Same as above.
+ """
+
+ pass
+
def describe(self):
"""unused"""
return ""
@@ -140,7 +171,7 @@ def list_files_with_name(filename):
continue
path = os.path.join(dirpath, filename)
- if os.path.isfile(filename):
+ if os.path.isfile(path):
res.append(path)
return res
@@ -161,13 +192,7 @@ def load_scripts():
sys.path = [scriptfile.basedir] + sys.path
current_basedir = scriptfile.basedir
- with open(scriptfile.path, "r", encoding="utf8") as file:
- text = file.read()
-
- from types import ModuleType
- compiled = compile(text, scriptfile.path, 'exec')
- module = ModuleType(scriptfile.filename)
- exec(compiled, module.__dict__)
+ module = script_loading.load_module(scriptfile.path)
for key, script_class in module.__dict__.items():
if type(script_class) == type and issubclass(script_class, Script):
@@ -201,12 +226,18 @@ class ScriptRunner:
self.titles = []
self.infotext_fields = []
- def setup_ui(self, is_img2img):
+ def initialize_scripts(self, is_img2img):
+ self.scripts.clear()
+ self.alwayson_scripts.clear()
+ self.selectable_scripts.clear()
+
for script_class, path, basedir in scripts_data:
script = script_class()
script.filename = path
+ script.is_txt2img = not is_img2img
+ script.is_img2img = is_img2img
- visibility = script.show(is_img2img)
+ visibility = script.show(script.is_img2img)
if visibility == AlwaysVisible:
self.scripts.append(script)
@@ -217,6 +248,7 @@ class ScriptRunner:
self.scripts.append(script)
self.selectable_scripts.append(script)
+ def setup_ui(self):
self.titles = [wrap_call(script.title, script.filename, "title") or f"{script.filename} [error]" for script in self.selectable_scripts]
inputs = [None]
@@ -226,7 +258,7 @@ class ScriptRunner:
script.args_from = len(inputs)
script.args_to = len(inputs)
- controls = wrap_call(script.ui, script.filename, "ui", is_img2img)
+ controls = wrap_call(script.ui, script.filename, "ui", script.is_img2img)
if controls is None:
return
@@ -326,33 +358,53 @@ class ScriptRunner:
print(f"Error running postprocess: {script.filename}", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
+ def postprocess_batch(self, p, images, **kwargs):
+ for script in self.alwayson_scripts:
+ try:
+ script_args = p.script_args[script.args_from:script.args_to]
+ script.postprocess_batch(p, *script_args, images=images, **kwargs)
+ except Exception:
+ print(f"Error running postprocess_batch: {script.filename}", file=sys.stderr)
+ print(traceback.format_exc(), file=sys.stderr)
+
+ def before_component(self, component, **kwargs):
+ for script in self.scripts:
+ try:
+ script.before_component(component, **kwargs)
+ except Exception:
+ print(f"Error running before_component: {script.filename}", file=sys.stderr)
+ print(traceback.format_exc(), file=sys.stderr)
+
+ def after_component(self, component, **kwargs):
+ for script in self.scripts:
+ try:
+ script.after_component(component, **kwargs)
+ except Exception:
+ print(f"Error running after_component: {script.filename}", file=sys.stderr)
+ print(traceback.format_exc(), file=sys.stderr)
+
def reload_sources(self, cache):
for si, script in list(enumerate(self.scripts)):
- with open(script.filename, "r", encoding="utf8") as file:
- args_from = script.args_from
- args_to = script.args_to
- filename = script.filename
- text = file.read()
+ args_from = script.args_from
+ args_to = script.args_to
+ filename = script.filename
- from types import ModuleType
+ module = cache.get(filename, None)
+ if module is None:
+ module = script_loading.load_module(script.filename)
+ cache[filename] = module
- module = cache.get(filename, None)
- if module is None:
- compiled = compile(text, filename, 'exec')
- module = ModuleType(script.filename)
- exec(compiled, module.__dict__)
- cache[filename] = module
-
- for key, script_class in module.__dict__.items():
- if type(script_class) == type and issubclass(script_class, Script):
- self.scripts[si] = script_class()
- self.scripts[si].filename = filename
- self.scripts[si].args_from = args_from
- self.scripts[si].args_to = args_to
+ for key, script_class in module.__dict__.items():
+ if type(script_class) == type and issubclass(script_class, Script):
+ self.scripts[si] = script_class()
+ self.scripts[si].filename = filename
+ self.scripts[si].args_from = args_from
+ self.scripts[si].args_to = args_to
scripts_txt2img = ScriptRunner()
scripts_img2img = ScriptRunner()
+scripts_current: ScriptRunner = None
def reload_script_body_only():
@@ -369,3 +421,22 @@ def reload_scripts():
scripts_txt2img = ScriptRunner()
scripts_img2img = ScriptRunner()
+
+def IOComponent_init(self, *args, **kwargs):
+ if scripts_current is not None:
+ scripts_current.before_component(self, **kwargs)
+
+ script_callbacks.before_component_callback(self, **kwargs)
+
+ res = original_IOComponent_init(self, *args, **kwargs)
+
+ script_callbacks.after_component_callback(self, **kwargs)
+
+ if scripts_current is not None:
+ scripts_current.after_component(self, **kwargs)
+
+ return res
+
+
+original_IOComponent_init = gr.components.IOComponent.__init__
+gr.components.IOComponent.__init__ = IOComponent_init
diff --git a/modules/sd_hijack.py b/modules/sd_hijack.py
index bc49d235e..fa2cd4bbe 100644
--- a/modules/sd_hijack.py
+++ b/modules/sd_hijack.py
@@ -1,61 +1,81 @@
-import math
-import os
-import sys
-import traceback
import torch
-import numpy as np
-from torch import einsum
from torch.nn.functional import silu
import modules.textual_inversion.textual_inversion
-from modules import prompt_parser, devices, sd_hijack_optimizations, shared
-from modules.shared import opts, device, cmd_opts
+from modules import devices, sd_hijack_optimizations, shared, sd_hijack_checkpoint
+from modules.hypernetworks import hypernetwork
+from modules.shared import cmd_opts
+from modules import sd_hijack_clip, sd_hijack_open_clip, sd_hijack_unet, sd_hijack_xlmr, xlmr
+
from modules.sd_hijack_optimizations import invokeAI_mps_available
import ldm.modules.attention
import ldm.modules.diffusionmodules.model
+import ldm.modules.diffusionmodules.openaimodel
+import ldm.models.diffusion.ddim
+import ldm.models.diffusion.plms
+import ldm.modules.encoders.modules
attention_CrossAttention_forward = ldm.modules.attention.CrossAttention.forward
diffusionmodules_model_nonlinearity = ldm.modules.diffusionmodules.model.nonlinearity
diffusionmodules_model_AttnBlock_forward = ldm.modules.diffusionmodules.model.AttnBlock.forward
+# new memory efficient cross attention blocks do not support hypernets and we already
+# have memory efficient cross attention anyway, so this disables SD2.0's memory efficient cross attention
+ldm.modules.attention.MemoryEfficientCrossAttention = ldm.modules.attention.CrossAttention
+ldm.modules.attention.BasicTransformerBlock.ATTENTION_MODES["softmax-xformers"] = ldm.modules.attention.CrossAttention
+
+# silence new console spam from SD2
+ldm.modules.attention.print = lambda *args: None
+ldm.modules.diffusionmodules.model.print = lambda *args: None
+
def apply_optimizations():
undo_optimizations()
ldm.modules.diffusionmodules.model.nonlinearity = silu
+ ldm.modules.diffusionmodules.openaimodel.th = sd_hijack_unet.th
+
+ optimization_method = None
if cmd_opts.force_enable_xformers or (cmd_opts.xformers and shared.xformers_available and torch.version.cuda and (6, 0) <= torch.cuda.get_device_capability(shared.device) <= (9, 0)):
print("Applying xformers cross attention optimization.")
ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.xformers_attention_forward
ldm.modules.diffusionmodules.model.AttnBlock.forward = sd_hijack_optimizations.xformers_attnblock_forward
+ optimization_method = 'xformers'
elif cmd_opts.opt_split_attention_v1:
print("Applying v1 cross attention optimization.")
ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.split_cross_attention_forward_v1
+ optimization_method = 'V1'
elif not cmd_opts.disable_opt_split_attention and (cmd_opts.opt_split_attention_invokeai or not torch.cuda.is_available()):
if not invokeAI_mps_available and shared.device.type == 'mps':
print("The InvokeAI cross attention optimization for MPS requires the psutil package which is not installed.")
print("Applying v1 cross attention optimization.")
ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.split_cross_attention_forward_v1
+ optimization_method = 'V1'
else:
print("Applying cross attention optimization (InvokeAI).")
ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.split_cross_attention_forward_invokeAI
+ optimization_method = 'InvokeAI'
elif not cmd_opts.disable_opt_split_attention and (cmd_opts.opt_split_attention or torch.cuda.is_available()):
print("Applying cross attention optimization (Doggettx).")
ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.split_cross_attention_forward
ldm.modules.diffusionmodules.model.AttnBlock.forward = sd_hijack_optimizations.cross_attention_attnblock_forward
+ optimization_method = 'Doggettx'
+
+ return optimization_method
def undo_optimizations():
- from modules.hypernetworks import hypernetwork
-
ldm.modules.attention.CrossAttention.forward = hypernetwork.attention_CrossAttention_forward
ldm.modules.diffusionmodules.model.nonlinearity = diffusionmodules_model_nonlinearity
ldm.modules.diffusionmodules.model.AttnBlock.forward = diffusionmodules_model_AttnBlock_forward
-def get_target_prompt_token_count(token_count):
- return math.ceil(max(token_count, 1) / 75) * 75
+def fix_checkpoint():
+ ldm.modules.attention.BasicTransformerBlock.forward = sd_hijack_checkpoint.BasicTransformerBlock_forward
+ ldm.modules.diffusionmodules.openaimodel.ResBlock.forward = sd_hijack_checkpoint.ResBlock_forward
+ ldm.modules.diffusionmodules.openaimodel.AttentionBlock.forward = sd_hijack_checkpoint.AttentionBlock_forward
class StableDiffusionModelHijack:
@@ -64,18 +84,31 @@ class StableDiffusionModelHijack:
layers = None
circular_enabled = False
clip = None
+ optimization_method = None
embedding_db = modules.textual_inversion.textual_inversion.EmbeddingDatabase(cmd_opts.embeddings_dir)
def hijack(self, m):
- model_embeddings = m.cond_stage_model.transformer.text_model.embeddings
- model_embeddings.token_embedding = EmbeddingsWithFixes(model_embeddings.token_embedding, self)
- m.cond_stage_model = FrozenCLIPEmbedderWithCustomWords(m.cond_stage_model, self)
+ if type(m.cond_stage_model) == xlmr.BertSeriesModelWithTransformation:
+ model_embeddings = m.cond_stage_model.roberta.embeddings
+ model_embeddings.token_embedding = EmbeddingsWithFixes(model_embeddings.word_embeddings, self)
+ m.cond_stage_model = sd_hijack_xlmr.FrozenXLMREmbedderWithCustomWords(m.cond_stage_model, self)
+
+ elif type(m.cond_stage_model) == ldm.modules.encoders.modules.FrozenCLIPEmbedder:
+ model_embeddings = m.cond_stage_model.transformer.text_model.embeddings
+ model_embeddings.token_embedding = EmbeddingsWithFixes(model_embeddings.token_embedding, self)
+ m.cond_stage_model = sd_hijack_clip.FrozenCLIPEmbedderWithCustomWords(m.cond_stage_model, self)
+
+ elif type(m.cond_stage_model) == ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder:
+ m.cond_stage_model.model.token_embedding = EmbeddingsWithFixes(m.cond_stage_model.model.token_embedding, self)
+ m.cond_stage_model = sd_hijack_open_clip.FrozenOpenCLIPEmbedderWithCustomWords(m.cond_stage_model, self)
+
+ self.optimization_method = apply_optimizations()
self.clip = m.cond_stage_model
-
- apply_optimizations()
+
+ fix_checkpoint()
def flatten(el):
flattened = [flatten(children) for children in el.children()]
@@ -87,15 +120,22 @@ class StableDiffusionModelHijack:
self.layers = flatten(m)
def undo_hijack(self, m):
- if type(m.cond_stage_model) == FrozenCLIPEmbedderWithCustomWords:
+
+ if type(m.cond_stage_model) == xlmr.BertSeriesModelWithTransformation:
+ m.cond_stage_model = m.cond_stage_model.wrapped
+
+ elif type(m.cond_stage_model) == sd_hijack_clip.FrozenCLIPEmbedderWithCustomWords:
m.cond_stage_model = m.cond_stage_model.wrapped
- model_embeddings = m.cond_stage_model.transformer.text_model.embeddings
- if type(model_embeddings.token_embedding) == EmbeddingsWithFixes:
- model_embeddings.token_embedding = model_embeddings.token_embedding.wrapped
+ model_embeddings = m.cond_stage_model.transformer.text_model.embeddings
+ if type(model_embeddings.token_embedding) == EmbeddingsWithFixes:
+ model_embeddings.token_embedding = model_embeddings.token_embedding.wrapped
+ elif type(m.cond_stage_model) == sd_hijack_open_clip.FrozenOpenCLIPEmbedderWithCustomWords:
+ m.cond_stage_model.wrapped.model.token_embedding = m.cond_stage_model.wrapped.model.token_embedding.wrapped
+ m.cond_stage_model = m.cond_stage_model.wrapped
+ self.apply_circular(False)
self.layers = None
- self.circular_enabled = False
self.clip = None
def apply_circular(self, enable):
@@ -112,261 +152,8 @@ class StableDiffusionModelHijack:
def tokenize(self, text):
_, remade_batch_tokens, _, _, _, token_count = self.clip.process_text([text])
- return remade_batch_tokens[0], token_count, get_target_prompt_token_count(token_count)
-
-class FrozenCLIPEmbedderWithCustomWords(torch.nn.Module):
- def __init__(self, wrapped, hijack):
- super().__init__()
- self.wrapped = wrapped
- self.hijack: StableDiffusionModelHijack = hijack
- self.tokenizer = wrapped.tokenizer
- self.token_mults = {}
-
- self.comma_token = [v for k, v in self.tokenizer.get_vocab().items() if k == ','][0]
-
- tokens_with_parens = [(k, v) for k, v in self.tokenizer.get_vocab().items() if '(' in k or ')' in k or '[' in k or ']' in k]
- for text, ident in tokens_with_parens:
- mult = 1.0
- for c in text:
- if c == '[':
- mult /= 1.1
- if c == ']':
- mult *= 1.1
- if c == '(':
- mult *= 1.1
- if c == ')':
- mult /= 1.1
-
- if mult != 1.0:
- self.token_mults[ident] = mult
-
- def tokenize_line(self, line, used_custom_terms, hijack_comments):
- id_end = self.wrapped.tokenizer.eos_token_id
-
- if opts.enable_emphasis:
- parsed = prompt_parser.parse_prompt_attention(line)
- else:
- parsed = [[line, 1.0]]
-
- tokenized = self.wrapped.tokenizer([text for text, _ in parsed], truncation=False, add_special_tokens=False)["input_ids"]
-
- fixes = []
- remade_tokens = []
- multipliers = []
- last_comma = -1
-
- for tokens, (text, weight) in zip(tokenized, parsed):
- i = 0
- while i < len(tokens):
- token = tokens[i]
-
- embedding, embedding_length_in_tokens = self.hijack.embedding_db.find_embedding_at_position(tokens, i)
-
- if token == self.comma_token:
- last_comma = len(remade_tokens)
- elif opts.comma_padding_backtrack != 0 and max(len(remade_tokens), 1) % 75 == 0 and last_comma != -1 and len(remade_tokens) - last_comma <= opts.comma_padding_backtrack:
- last_comma += 1
- reloc_tokens = remade_tokens[last_comma:]
- reloc_mults = multipliers[last_comma:]
-
- remade_tokens = remade_tokens[:last_comma]
- length = len(remade_tokens)
-
- rem = int(math.ceil(length / 75)) * 75 - length
- remade_tokens += [id_end] * rem + reloc_tokens
- multipliers = multipliers[:last_comma] + [1.0] * rem + reloc_mults
-
- if embedding is None:
- remade_tokens.append(token)
- multipliers.append(weight)
- i += 1
- else:
- emb_len = int(embedding.vec.shape[0])
- iteration = len(remade_tokens) // 75
- if (len(remade_tokens) + emb_len) // 75 != iteration:
- rem = (75 * (iteration + 1) - len(remade_tokens))
- remade_tokens += [id_end] * rem
- multipliers += [1.0] * rem
- iteration += 1
- fixes.append((iteration, (len(remade_tokens) % 75, embedding)))
- remade_tokens += [0] * emb_len
- multipliers += [weight] * emb_len
- used_custom_terms.append((embedding.name, embedding.checksum()))
- i += embedding_length_in_tokens
-
- token_count = len(remade_tokens)
- prompt_target_length = get_target_prompt_token_count(token_count)
- tokens_to_add = prompt_target_length - len(remade_tokens)
-
- remade_tokens = remade_tokens + [id_end] * tokens_to_add
- multipliers = multipliers + [1.0] * tokens_to_add
-
- return remade_tokens, fixes, multipliers, token_count
-
- def process_text(self, texts):
- used_custom_terms = []
- remade_batch_tokens = []
- hijack_comments = []
- hijack_fixes = []
- token_count = 0
-
- cache = {}
- batch_multipliers = []
- for line in texts:
- if line in cache:
- remade_tokens, fixes, multipliers = cache[line]
- else:
- remade_tokens, fixes, multipliers, current_token_count = self.tokenize_line(line, used_custom_terms, hijack_comments)
- token_count = max(current_token_count, token_count)
-
- cache[line] = (remade_tokens, fixes, multipliers)
-
- remade_batch_tokens.append(remade_tokens)
- hijack_fixes.append(fixes)
- batch_multipliers.append(multipliers)
-
- return batch_multipliers, remade_batch_tokens, used_custom_terms, hijack_comments, hijack_fixes, token_count
-
- def process_text_old(self, text):
- id_start = self.wrapped.tokenizer.bos_token_id
- id_end = self.wrapped.tokenizer.eos_token_id
- maxlen = self.wrapped.max_length # you get to stay at 77
- used_custom_terms = []
- remade_batch_tokens = []
- overflowing_words = []
- hijack_comments = []
- hijack_fixes = []
- token_count = 0
-
- cache = {}
- batch_tokens = self.wrapped.tokenizer(text, truncation=False, add_special_tokens=False)["input_ids"]
- batch_multipliers = []
- for tokens in batch_tokens:
- tuple_tokens = tuple(tokens)
-
- if tuple_tokens in cache:
- remade_tokens, fixes, multipliers = cache[tuple_tokens]
- else:
- fixes = []
- remade_tokens = []
- multipliers = []
- mult = 1.0
-
- i = 0
- while i < len(tokens):
- token = tokens[i]
-
- embedding, embedding_length_in_tokens = self.hijack.embedding_db.find_embedding_at_position(tokens, i)
-
- mult_change = self.token_mults.get(token) if opts.enable_emphasis else None
- if mult_change is not None:
- mult *= mult_change
- i += 1
- elif embedding is None:
- remade_tokens.append(token)
- multipliers.append(mult)
- i += 1
- else:
- emb_len = int(embedding.vec.shape[0])
- fixes.append((len(remade_tokens), embedding))
- remade_tokens += [0] * emb_len
- multipliers += [mult] * emb_len
- used_custom_terms.append((embedding.name, embedding.checksum()))
- i += embedding_length_in_tokens
-
- if len(remade_tokens) > maxlen - 2:
- vocab = {v: k for k, v in self.wrapped.tokenizer.get_vocab().items()}
- ovf = remade_tokens[maxlen - 2:]
- overflowing_words = [vocab.get(int(x), "") for x in ovf]
- overflowing_text = self.wrapped.tokenizer.convert_tokens_to_string(''.join(overflowing_words))
- hijack_comments.append(f"Warning: too many input tokens; some ({len(overflowing_words)}) have been truncated:\n{overflowing_text}\n")
-
- token_count = len(remade_tokens)
- remade_tokens = remade_tokens + [id_end] * (maxlen - 2 - len(remade_tokens))
- remade_tokens = [id_start] + remade_tokens[0:maxlen - 2] + [id_end]
- cache[tuple_tokens] = (remade_tokens, fixes, multipliers)
-
- multipliers = multipliers + [1.0] * (maxlen - 2 - len(multipliers))
- multipliers = [1.0] + multipliers[0:maxlen - 2] + [1.0]
-
- remade_batch_tokens.append(remade_tokens)
- hijack_fixes.append(fixes)
- batch_multipliers.append(multipliers)
- return batch_multipliers, remade_batch_tokens, used_custom_terms, hijack_comments, hijack_fixes, token_count
-
- def forward(self, text):
- use_old = opts.use_old_emphasis_implementation
- if use_old:
- batch_multipliers, remade_batch_tokens, used_custom_terms, hijack_comments, hijack_fixes, token_count = self.process_text_old(text)
- else:
- batch_multipliers, remade_batch_tokens, used_custom_terms, hijack_comments, hijack_fixes, token_count = self.process_text(text)
-
- self.hijack.comments += hijack_comments
-
- if len(used_custom_terms) > 0:
- self.hijack.comments.append("Used embeddings: " + ", ".join([f'{word} [{checksum}]' for word, checksum in used_custom_terms]))
-
- if use_old:
- self.hijack.fixes = hijack_fixes
- return self.process_tokens(remade_batch_tokens, batch_multipliers)
-
- z = None
- i = 0
- while max(map(len, remade_batch_tokens)) != 0:
- rem_tokens = [x[75:] for x in remade_batch_tokens]
- rem_multipliers = [x[75:] for x in batch_multipliers]
-
- self.hijack.fixes = []
- for unfiltered in hijack_fixes:
- fixes = []
- for fix in unfiltered:
- if fix[0] == i:
- fixes.append(fix[1])
- self.hijack.fixes.append(fixes)
-
- tokens = []
- multipliers = []
- for j in range(len(remade_batch_tokens)):
- if len(remade_batch_tokens[j]) > 0:
- tokens.append(remade_batch_tokens[j][:75])
- multipliers.append(batch_multipliers[j][:75])
- else:
- tokens.append([self.wrapped.tokenizer.eos_token_id] * 75)
- multipliers.append([1.0] * 75)
-
- z1 = self.process_tokens(tokens, multipliers)
- z = z1 if z is None else torch.cat((z, z1), axis=-2)
-
- remade_batch_tokens = rem_tokens
- batch_multipliers = rem_multipliers
- i += 1
-
- return z
-
- def process_tokens(self, remade_batch_tokens, batch_multipliers):
- if not opts.use_old_emphasis_implementation:
- remade_batch_tokens = [[self.wrapped.tokenizer.bos_token_id] + x[:75] + [self.wrapped.tokenizer.eos_token_id] for x in remade_batch_tokens]
- batch_multipliers = [[1.0] + x[:75] + [1.0] for x in batch_multipliers]
-
- tokens = torch.asarray(remade_batch_tokens).to(device)
- outputs = self.wrapped.transformer(input_ids=tokens, output_hidden_states=-opts.CLIP_stop_at_last_layers)
-
- if opts.CLIP_stop_at_last_layers > 1:
- z = outputs.hidden_states[-opts.CLIP_stop_at_last_layers]
- z = self.wrapped.transformer.text_model.final_layer_norm(z)
- else:
- z = outputs.last_hidden_state
-
- # restoring original mean is likely not correct, but it seems to work well to prevent artifacts that happen otherwise
- batch_multipliers_of_same_length = [x + [1.0] * (75 - len(x)) for x in batch_multipliers]
- batch_multipliers = torch.asarray(batch_multipliers_of_same_length).to(device)
- original_mean = z.mean()
- z *= batch_multipliers.reshape(batch_multipliers.shape + (1,)).expand(z.shape)
- new_mean = z.mean()
- z *= original_mean / new_mean
-
- return z
+ return remade_batch_tokens[0], token_count, sd_hijack_clip.get_target_prompt_token_count(token_count)
class EmbeddingsWithFixes(torch.nn.Module):
@@ -406,3 +193,19 @@ def add_circular_option_to_conv_2d():
model_hijack = StableDiffusionModelHijack()
+
+
+def register_buffer(self, name, attr):
+ """
+ Fix register buffer bug for Mac OS.
+ """
+
+ if type(attr) == torch.Tensor:
+ if attr.device != devices.device:
+ attr = attr.to(device=devices.device, dtype=(torch.float32 if devices.device.type == 'mps' else None))
+
+ setattr(self, name, attr)
+
+
+ldm.models.diffusion.ddim.DDIMSampler.register_buffer = register_buffer
+ldm.models.diffusion.plms.PLMSSampler.register_buffer = register_buffer
diff --git a/modules/sd_hijack_checkpoint.py b/modules/sd_hijack_checkpoint.py
new file mode 100644
index 000000000..5712972f1
--- /dev/null
+++ b/modules/sd_hijack_checkpoint.py
@@ -0,0 +1,10 @@
+from torch.utils.checkpoint import checkpoint
+
+def BasicTransformerBlock_forward(self, x, context=None):
+ return checkpoint(self._forward, x, context)
+
+def AttentionBlock_forward(self, x):
+ return checkpoint(self._forward, x)
+
+def ResBlock_forward(self, x, emb):
+ return checkpoint(self._forward, x, emb)
\ No newline at end of file
diff --git a/modules/sd_hijack_clip.py b/modules/sd_hijack_clip.py
new file mode 100644
index 000000000..ca92b142c
--- /dev/null
+++ b/modules/sd_hijack_clip.py
@@ -0,0 +1,303 @@
+import math
+
+import torch
+
+from modules import prompt_parser, devices
+from modules.shared import opts
+
+def get_target_prompt_token_count(token_count):
+ return math.ceil(max(token_count, 1) / 75) * 75
+
+
+class FrozenCLIPEmbedderWithCustomWordsBase(torch.nn.Module):
+ def __init__(self, wrapped, hijack):
+ super().__init__()
+ self.wrapped = wrapped
+ self.hijack = hijack
+
+ def tokenize(self, texts):
+ raise NotImplementedError
+
+ def encode_with_transformers(self, tokens):
+ raise NotImplementedError
+
+ def encode_embedding_init_text(self, init_text, nvpt):
+ raise NotImplementedError
+
+ def tokenize_line(self, line, used_custom_terms, hijack_comments):
+ if opts.enable_emphasis:
+ parsed = prompt_parser.parse_prompt_attention(line)
+ else:
+ parsed = [[line, 1.0]]
+
+ tokenized = self.tokenize([text for text, _ in parsed])
+
+ fixes = []
+ remade_tokens = []
+ multipliers = []
+ last_comma = -1
+
+ for tokens, (text, weight) in zip(tokenized, parsed):
+ i = 0
+ while i < len(tokens):
+ token = tokens[i]
+
+ embedding, embedding_length_in_tokens = self.hijack.embedding_db.find_embedding_at_position(tokens, i)
+
+ if token == self.comma_token:
+ last_comma = len(remade_tokens)
+ elif opts.comma_padding_backtrack != 0 and max(len(remade_tokens), 1) % 75 == 0 and last_comma != -1 and len(remade_tokens) - last_comma <= opts.comma_padding_backtrack:
+ last_comma += 1
+ reloc_tokens = remade_tokens[last_comma:]
+ reloc_mults = multipliers[last_comma:]
+
+ remade_tokens = remade_tokens[:last_comma]
+ length = len(remade_tokens)
+
+ rem = int(math.ceil(length / 75)) * 75 - length
+ remade_tokens += [self.id_end] * rem + reloc_tokens
+ multipliers = multipliers[:last_comma] + [1.0] * rem + reloc_mults
+
+ if embedding is None:
+ remade_tokens.append(token)
+ multipliers.append(weight)
+ i += 1
+ else:
+ emb_len = int(embedding.vec.shape[0])
+ iteration = len(remade_tokens) // 75
+ if (len(remade_tokens) + emb_len) // 75 != iteration:
+ rem = (75 * (iteration + 1) - len(remade_tokens))
+ remade_tokens += [self.id_end] * rem
+ multipliers += [1.0] * rem
+ iteration += 1
+ fixes.append((iteration, (len(remade_tokens) % 75, embedding)))
+ remade_tokens += [0] * emb_len
+ multipliers += [weight] * emb_len
+ used_custom_terms.append((embedding.name, embedding.checksum()))
+ i += embedding_length_in_tokens
+
+ token_count = len(remade_tokens)
+ prompt_target_length = get_target_prompt_token_count(token_count)
+ tokens_to_add = prompt_target_length - len(remade_tokens)
+
+ remade_tokens = remade_tokens + [self.id_end] * tokens_to_add
+ multipliers = multipliers + [1.0] * tokens_to_add
+
+ return remade_tokens, fixes, multipliers, token_count
+
+ def process_text(self, texts):
+ used_custom_terms = []
+ remade_batch_tokens = []
+ hijack_comments = []
+ hijack_fixes = []
+ token_count = 0
+
+ cache = {}
+ batch_multipliers = []
+ for line in texts:
+ if line in cache:
+ remade_tokens, fixes, multipliers = cache[line]
+ else:
+ remade_tokens, fixes, multipliers, current_token_count = self.tokenize_line(line, used_custom_terms, hijack_comments)
+ token_count = max(current_token_count, token_count)
+
+ cache[line] = (remade_tokens, fixes, multipliers)
+
+ remade_batch_tokens.append(remade_tokens)
+ hijack_fixes.append(fixes)
+ batch_multipliers.append(multipliers)
+
+ return batch_multipliers, remade_batch_tokens, used_custom_terms, hijack_comments, hijack_fixes, token_count
+
+ def process_text_old(self, texts):
+ id_start = self.id_start
+ id_end = self.id_end
+ maxlen = self.wrapped.max_length # you get to stay at 77
+ used_custom_terms = []
+ remade_batch_tokens = []
+ hijack_comments = []
+ hijack_fixes = []
+ token_count = 0
+
+ cache = {}
+ batch_tokens = self.tokenize(texts)
+ batch_multipliers = []
+ for tokens in batch_tokens:
+ tuple_tokens = tuple(tokens)
+
+ if tuple_tokens in cache:
+ remade_tokens, fixes, multipliers = cache[tuple_tokens]
+ else:
+ fixes = []
+ remade_tokens = []
+ multipliers = []
+ mult = 1.0
+
+ i = 0
+ while i < len(tokens):
+ token = tokens[i]
+
+ embedding, embedding_length_in_tokens = self.hijack.embedding_db.find_embedding_at_position(tokens, i)
+
+ mult_change = self.token_mults.get(token) if opts.enable_emphasis else None
+ if mult_change is not None:
+ mult *= mult_change
+ i += 1
+ elif embedding is None:
+ remade_tokens.append(token)
+ multipliers.append(mult)
+ i += 1
+ else:
+ emb_len = int(embedding.vec.shape[0])
+ fixes.append((len(remade_tokens), embedding))
+ remade_tokens += [0] * emb_len
+ multipliers += [mult] * emb_len
+ used_custom_terms.append((embedding.name, embedding.checksum()))
+ i += embedding_length_in_tokens
+
+ if len(remade_tokens) > maxlen - 2:
+ vocab = {v: k for k, v in self.wrapped.tokenizer.get_vocab().items()}
+ ovf = remade_tokens[maxlen - 2:]
+ overflowing_words = [vocab.get(int(x), "") for x in ovf]
+ overflowing_text = self.wrapped.tokenizer.convert_tokens_to_string(''.join(overflowing_words))
+ hijack_comments.append(f"Warning: too many input tokens; some ({len(overflowing_words)}) have been truncated:\n{overflowing_text}\n")
+
+ token_count = len(remade_tokens)
+ remade_tokens = remade_tokens + [id_end] * (maxlen - 2 - len(remade_tokens))
+ remade_tokens = [id_start] + remade_tokens[0:maxlen - 2] + [id_end]
+ cache[tuple_tokens] = (remade_tokens, fixes, multipliers)
+
+ multipliers = multipliers + [1.0] * (maxlen - 2 - len(multipliers))
+ multipliers = [1.0] + multipliers[0:maxlen - 2] + [1.0]
+
+ remade_batch_tokens.append(remade_tokens)
+ hijack_fixes.append(fixes)
+ batch_multipliers.append(multipliers)
+ return batch_multipliers, remade_batch_tokens, used_custom_terms, hijack_comments, hijack_fixes, token_count
+
+ def forward(self, text):
+ use_old = opts.use_old_emphasis_implementation
+ if use_old:
+ batch_multipliers, remade_batch_tokens, used_custom_terms, hijack_comments, hijack_fixes, token_count = self.process_text_old(text)
+ else:
+ batch_multipliers, remade_batch_tokens, used_custom_terms, hijack_comments, hijack_fixes, token_count = self.process_text(text)
+
+ self.hijack.comments += hijack_comments
+
+ if len(used_custom_terms) > 0:
+ self.hijack.comments.append("Used embeddings: " + ", ".join([f'{word} [{checksum}]' for word, checksum in used_custom_terms]))
+
+ if use_old:
+ self.hijack.fixes = hijack_fixes
+ return self.process_tokens(remade_batch_tokens, batch_multipliers)
+
+ z = None
+ i = 0
+ while max(map(len, remade_batch_tokens)) != 0:
+ rem_tokens = [x[75:] for x in remade_batch_tokens]
+ rem_multipliers = [x[75:] for x in batch_multipliers]
+
+ self.hijack.fixes = []
+ for unfiltered in hijack_fixes:
+ fixes = []
+ for fix in unfiltered:
+ if fix[0] == i:
+ fixes.append(fix[1])
+ self.hijack.fixes.append(fixes)
+
+ tokens = []
+ multipliers = []
+ for j in range(len(remade_batch_tokens)):
+ if len(remade_batch_tokens[j]) > 0:
+ tokens.append(remade_batch_tokens[j][:75])
+ multipliers.append(batch_multipliers[j][:75])
+ else:
+ tokens.append([self.id_end] * 75)
+ multipliers.append([1.0] * 75)
+
+ z1 = self.process_tokens(tokens, multipliers)
+ z = z1 if z is None else torch.cat((z, z1), axis=-2)
+
+ remade_batch_tokens = rem_tokens
+ batch_multipliers = rem_multipliers
+ i += 1
+
+ return z
+
+ def process_tokens(self, remade_batch_tokens, batch_multipliers):
+ if not opts.use_old_emphasis_implementation:
+ remade_batch_tokens = [[self.id_start] + x[:75] + [self.id_end] for x in remade_batch_tokens]
+ batch_multipliers = [[1.0] + x[:75] + [1.0] for x in batch_multipliers]
+
+ tokens = torch.asarray(remade_batch_tokens).to(devices.device)
+
+ if self.id_end != self.id_pad:
+ for batch_pos in range(len(remade_batch_tokens)):
+ index = remade_batch_tokens[batch_pos].index(self.id_end)
+ tokens[batch_pos, index+1:tokens.shape[1]] = self.id_pad
+
+ z = self.encode_with_transformers(tokens)
+
+ # restoring original mean is likely not correct, but it seems to work well to prevent artifacts that happen otherwise
+ batch_multipliers_of_same_length = [x + [1.0] * (75 - len(x)) for x in batch_multipliers]
+ batch_multipliers = torch.asarray(batch_multipliers_of_same_length).to(devices.device)
+ original_mean = z.mean()
+ z *= batch_multipliers.reshape(batch_multipliers.shape + (1,)).expand(z.shape)
+ new_mean = z.mean()
+ z *= original_mean / new_mean
+
+ return z
+
+
+class FrozenCLIPEmbedderWithCustomWords(FrozenCLIPEmbedderWithCustomWordsBase):
+ def __init__(self, wrapped, hijack):
+ super().__init__(wrapped, hijack)
+ self.tokenizer = wrapped.tokenizer
+
+ vocab = self.tokenizer.get_vocab()
+
+ self.comma_token = vocab.get(',', None)
+
+ self.token_mults = {}
+ tokens_with_parens = [(k, v) for k, v in vocab.items() if '(' in k or ')' in k or '[' in k or ']' in k]
+ for text, ident in tokens_with_parens:
+ mult = 1.0
+ for c in text:
+ if c == '[':
+ mult /= 1.1
+ if c == ']':
+ mult *= 1.1
+ if c == '(':
+ mult *= 1.1
+ if c == ')':
+ mult /= 1.1
+
+ if mult != 1.0:
+ self.token_mults[ident] = mult
+
+ self.id_start = self.wrapped.tokenizer.bos_token_id
+ self.id_end = self.wrapped.tokenizer.eos_token_id
+ self.id_pad = self.id_end
+
+ def tokenize(self, texts):
+ tokenized = self.wrapped.tokenizer(texts, truncation=False, add_special_tokens=False)["input_ids"]
+
+ return tokenized
+
+ def encode_with_transformers(self, tokens):
+ outputs = self.wrapped.transformer(input_ids=tokens, output_hidden_states=-opts.CLIP_stop_at_last_layers)
+
+ if opts.CLIP_stop_at_last_layers > 1:
+ z = outputs.hidden_states[-opts.CLIP_stop_at_last_layers]
+ z = self.wrapped.transformer.text_model.final_layer_norm(z)
+ else:
+ z = outputs.last_hidden_state
+
+ return z
+
+ def encode_embedding_init_text(self, init_text, nvpt):
+ embedding_layer = self.wrapped.transformer.text_model.embeddings
+ ids = self.wrapped.tokenizer(init_text, max_length=nvpt, return_tensors="pt", add_special_tokens=False)["input_ids"]
+ embedded = embedding_layer.token_embedding.wrapped(ids.to(embedding_layer.token_embedding.wrapped.weight.device)).squeeze(0)
+
+ return embedded
diff --git a/modules/sd_hijack_inpainting.py b/modules/sd_hijack_inpainting.py
index fd92a3354..31d2c8987 100644
--- a/modules/sd_hijack_inpainting.py
+++ b/modules/sd_hijack_inpainting.py
@@ -1,3 +1,4 @@
+import os
import torch
from einops import repeat
@@ -11,196 +12,11 @@ from ldm.models.diffusion.ddpm import LatentDiffusion
from ldm.models.diffusion.plms import PLMSSampler
from ldm.models.diffusion.ddim import DDIMSampler, noise_like
-# =================================================================================================
-# Monkey patch DDIMSampler methods from RunwayML repo directly.
-# Adapted from:
-# https://github.com/runwayml/stable-diffusion/blob/main/ldm/models/diffusion/ddim.py
-# =================================================================================================
-@torch.no_grad()
-def sample_ddim(self,
- S,
- batch_size,
- shape,
- conditioning=None,
- callback=None,
- normals_sequence=None,
- img_callback=None,
- quantize_x0=False,
- eta=0.,
- mask=None,
- x0=None,
- temperature=1.,
- noise_dropout=0.,
- score_corrector=None,
- corrector_kwargs=None,
- verbose=True,
- x_T=None,
- log_every_t=100,
- unconditional_guidance_scale=1.,
- unconditional_conditioning=None,
- # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
- **kwargs
- ):
- if conditioning is not None:
- if isinstance(conditioning, dict):
- ctmp = conditioning[list(conditioning.keys())[0]]
- while isinstance(ctmp, list):
- ctmp = ctmp[0]
- cbs = ctmp.shape[0]
- if cbs != batch_size:
- print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
- else:
- if conditioning.shape[0] != batch_size:
- print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
-
- self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose)
- # sampling
- C, H, W = shape
- size = (batch_size, C, H, W)
- print(f'Data shape for DDIM sampling is {size}, eta {eta}')
-
- samples, intermediates = self.ddim_sampling(conditioning, size,
- callback=callback,
- img_callback=img_callback,
- quantize_denoised=quantize_x0,
- mask=mask, x0=x0,
- ddim_use_original_steps=False,
- noise_dropout=noise_dropout,
- temperature=temperature,
- score_corrector=score_corrector,
- corrector_kwargs=corrector_kwargs,
- x_T=x_T,
- log_every_t=log_every_t,
- unconditional_guidance_scale=unconditional_guidance_scale,
- unconditional_conditioning=unconditional_conditioning,
- )
- return samples, intermediates
-
-@torch.no_grad()
-def p_sample_ddim(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
- temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
- unconditional_guidance_scale=1., unconditional_conditioning=None):
- b, *_, device = *x.shape, x.device
-
- if unconditional_conditioning is None or unconditional_guidance_scale == 1.:
- e_t = self.model.apply_model(x, t, c)
- else:
- x_in = torch.cat([x] * 2)
- t_in = torch.cat([t] * 2)
- if isinstance(c, dict):
- assert isinstance(unconditional_conditioning, dict)
- c_in = dict()
- for k in c:
- if isinstance(c[k], list):
- c_in[k] = [
- torch.cat([unconditional_conditioning[k][i], c[k][i]])
- for i in range(len(c[k]))
- ]
- else:
- c_in[k] = torch.cat([unconditional_conditioning[k], c[k]])
- else:
- c_in = torch.cat([unconditional_conditioning, c])
- e_t_uncond, e_t = self.model.apply_model(x_in, t_in, c_in).chunk(2)
- e_t = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond)
-
- if score_corrector is not None:
- assert self.model.parameterization == "eps"
- e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs)
-
- alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
- alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev
- sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas
- sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas
- # select parameters corresponding to the currently considered timestep
- a_t = torch.full((b, 1, 1, 1), alphas[index], device=device)
- a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device)
- sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device)
- sqrt_one_minus_at = torch.full((b, 1, 1, 1), sqrt_one_minus_alphas[index],device=device)
-
- # current prediction for x_0
- pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
- if quantize_denoised:
- pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
- # direction pointing to x_t
- dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t
- noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
- if noise_dropout > 0.:
- noise = torch.nn.functional.dropout(noise, p=noise_dropout)
- x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
- return x_prev, pred_x0
-
-
-# =================================================================================================
-# Monkey patch PLMSSampler methods.
-# This one was not actually patched correctly in the RunwayML repo, but we can replicate the changes.
-# Adapted from:
-# https://github.com/CompVis/stable-diffusion/blob/main/ldm/models/diffusion/plms.py
-# =================================================================================================
-@torch.no_grad()
-def sample_plms(self,
- S,
- batch_size,
- shape,
- conditioning=None,
- callback=None,
- normals_sequence=None,
- img_callback=None,
- quantize_x0=False,
- eta=0.,
- mask=None,
- x0=None,
- temperature=1.,
- noise_dropout=0.,
- score_corrector=None,
- corrector_kwargs=None,
- verbose=True,
- x_T=None,
- log_every_t=100,
- unconditional_guidance_scale=1.,
- unconditional_conditioning=None,
- # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
- **kwargs
- ):
- if conditioning is not None:
- if isinstance(conditioning, dict):
- ctmp = conditioning[list(conditioning.keys())[0]]
- while isinstance(ctmp, list):
- ctmp = ctmp[0]
- cbs = ctmp.shape[0]
- if cbs != batch_size:
- print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
- else:
- if conditioning.shape[0] != batch_size:
- print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
-
- self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose)
- # sampling
- C, H, W = shape
- size = (batch_size, C, H, W)
- print(f'Data shape for PLMS sampling is {size}')
-
- samples, intermediates = self.plms_sampling(conditioning, size,
- callback=callback,
- img_callback=img_callback,
- quantize_denoised=quantize_x0,
- mask=mask, x0=x0,
- ddim_use_original_steps=False,
- noise_dropout=noise_dropout,
- temperature=temperature,
- score_corrector=score_corrector,
- corrector_kwargs=corrector_kwargs,
- x_T=x_T,
- log_every_t=log_every_t,
- unconditional_guidance_scale=unconditional_guidance_scale,
- unconditional_conditioning=unconditional_conditioning,
- )
- return samples, intermediates
-
@torch.no_grad()
def p_sample_plms(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
- temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
- unconditional_guidance_scale=1., unconditional_conditioning=None, old_eps=None, t_next=None):
+ temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
+ unconditional_guidance_scale=1., unconditional_conditioning=None, old_eps=None, t_next=None, dynamic_threshold=None):
b, *_, device = *x.shape, x.device
def get_model_output(x, t):
@@ -209,7 +25,7 @@ def p_sample_plms(self, x, c, t, index, repeat_noise=False, use_original_steps=F
else:
x_in = torch.cat([x] * 2)
t_in = torch.cat([t] * 2)
-
+
if isinstance(c, dict):
assert isinstance(unconditional_conditioning, dict)
c_in = dict()
@@ -249,6 +65,8 @@ def p_sample_plms(self, x, c, t, index, repeat_noise=False, use_original_steps=F
pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
if quantize_denoised:
pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
+ if dynamic_threshold is not None:
+ pred_x0 = norm_thresholding(pred_x0, dynamic_threshold)
# direction pointing to x_t
dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t
noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
@@ -276,56 +94,18 @@ def p_sample_plms(self, x, c, t, index, repeat_noise=False, use_original_steps=F
x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t_prime, index)
return x_prev, pred_x0, e_t
-
-# =================================================================================================
-# Monkey patch LatentInpaintDiffusion to load the checkpoint with a proper config.
-# Adapted from:
-# https://github.com/runwayml/stable-diffusion/blob/main/ldm/models/diffusion/ddpm.py
-# =================================================================================================
-
-@torch.no_grad()
-def get_unconditional_conditioning(self, batch_size, null_label=None):
- if null_label is not None:
- xc = null_label
- if isinstance(xc, ListConfig):
- xc = list(xc)
- if isinstance(xc, dict) or isinstance(xc, list):
- c = self.get_learned_conditioning(xc)
- else:
- if hasattr(xc, "to"):
- xc = xc.to(self.device)
- c = self.get_learned_conditioning(xc)
- else:
- # todo: get null label from cond_stage_model
- raise NotImplementedError()
- c = repeat(c, "1 ... -> b ...", b=batch_size).to(self.device)
- return c
-
-
-class LatentInpaintDiffusion(LatentDiffusion):
- def __init__(
- self,
- concat_keys=("mask", "masked_image"),
- masked_image_key="masked_image",
- *args,
- **kwargs,
- ):
- super().__init__(*args, **kwargs)
- self.masked_image_key = masked_image_key
- assert self.masked_image_key in concat_keys
- self.concat_keys = concat_keys
def should_hijack_inpainting(checkpoint_info):
- return str(checkpoint_info.filename).endswith("inpainting.ckpt") and not checkpoint_info.config.endswith("inpainting.yaml")
+ from modules import sd_models
+
+ ckpt_basename = os.path.basename(checkpoint_info.filename).lower()
+ cfg_basename = os.path.basename(sd_models.find_checkpoint_config(checkpoint_info)).lower()
+
+ return "inpainting" in ckpt_basename and not "inpainting" in cfg_basename
def do_inpainting_hijack():
- ldm.models.diffusion.ddpm.get_unconditional_conditioning = get_unconditional_conditioning
- ldm.models.diffusion.ddpm.LatentInpaintDiffusion = LatentInpaintDiffusion
-
- ldm.models.diffusion.ddim.DDIMSampler.p_sample_ddim = p_sample_ddim
- ldm.models.diffusion.ddim.DDIMSampler.sample = sample_ddim
+ # p_sample_plms is needed because PLMS can't work with dicts as conditionings
ldm.models.diffusion.plms.PLMSSampler.p_sample_plms = p_sample_plms
- ldm.models.diffusion.plms.PLMSSampler.sample = sample_plms
\ No newline at end of file
diff --git a/modules/sd_hijack_open_clip.py b/modules/sd_hijack_open_clip.py
new file mode 100644
index 000000000..f733e8529
--- /dev/null
+++ b/modules/sd_hijack_open_clip.py
@@ -0,0 +1,37 @@
+import open_clip.tokenizer
+import torch
+
+from modules import sd_hijack_clip, devices
+from modules.shared import opts
+
+tokenizer = open_clip.tokenizer._tokenizer
+
+
+class FrozenOpenCLIPEmbedderWithCustomWords(sd_hijack_clip.FrozenCLIPEmbedderWithCustomWordsBase):
+ def __init__(self, wrapped, hijack):
+ super().__init__(wrapped, hijack)
+
+ self.comma_token = [v for k, v in tokenizer.encoder.items() if k == ','][0]
+ self.id_start = tokenizer.encoder[""]
+ self.id_end = tokenizer.encoder[""]
+ self.id_pad = 0
+
+ def tokenize(self, texts):
+ assert not opts.use_old_emphasis_implementation, 'Old emphasis implementation not supported for Open Clip'
+
+ tokenized = [tokenizer.encode(text) for text in texts]
+
+ return tokenized
+
+ def encode_with_transformers(self, tokens):
+ # set self.wrapped.layer_idx here according to opts.CLIP_stop_at_last_layers
+ z = self.wrapped.encode_with_transformer(tokens)
+
+ return z
+
+ def encode_embedding_init_text(self, init_text, nvpt):
+ ids = tokenizer.encode(init_text)
+ ids = torch.asarray([ids], device=devices.device, dtype=torch.int)
+ embedded = self.wrapped.model.token_embedding.wrapped(ids).squeeze(0)
+
+ return embedded
diff --git a/modules/sd_hijack_optimizations.py b/modules/sd_hijack_optimizations.py
index 98123fbf4..02c87f404 100644
--- a/modules/sd_hijack_optimizations.py
+++ b/modules/sd_hijack_optimizations.py
@@ -127,7 +127,7 @@ def check_for_psutil():
invokeAI_mps_available = check_for_psutil()
-# -- Taken from https://github.com/invoke-ai/InvokeAI --
+# -- Taken from https://github.com/invoke-ai/InvokeAI and modified --
if invokeAI_mps_available:
import psutil
mem_total_gb = psutil.virtual_memory().total // (1 << 30)
@@ -152,14 +152,16 @@ def einsum_op_slice_1(q, k, v, slice_size):
return r
def einsum_op_mps_v1(q, k, v):
- if q.shape[1] <= 4096: # (512x512) max q.shape[1]: 4096
+ if q.shape[0] * q.shape[1] <= 2**16: # (512x512) max q.shape[1]: 4096
return einsum_op_compvis(q, k, v)
else:
slice_size = math.floor(2**30 / (q.shape[0] * q.shape[1]))
+ if slice_size % 4096 == 0:
+ slice_size -= 1
return einsum_op_slice_1(q, k, v, slice_size)
def einsum_op_mps_v2(q, k, v):
- if mem_total_gb > 8 and q.shape[1] <= 4096:
+ if mem_total_gb > 8 and q.shape[0] * q.shape[1] <= 2**16:
return einsum_op_compvis(q, k, v)
else:
return einsum_op_slice_0(q, k, v, 1)
@@ -188,7 +190,7 @@ def einsum_op(q, k, v):
return einsum_op_cuda(q, k, v)
if q.device.type == 'mps':
- if mem_total_gb >= 32:
+ if mem_total_gb >= 32 and q.shape[0] % 32 != 0 and q.shape[0] * q.shape[1] < 2**18:
return einsum_op_mps_v1(q, k, v)
return einsum_op_mps_v2(q, k, v)
diff --git a/modules/sd_hijack_unet.py b/modules/sd_hijack_unet.py
new file mode 100644
index 000000000..18daf8c14
--- /dev/null
+++ b/modules/sd_hijack_unet.py
@@ -0,0 +1,30 @@
+import torch
+
+
+class TorchHijackForUnet:
+ """
+ This is torch, but with cat that resizes tensors to appropriate dimensions if they do not match;
+ this makes it possible to create pictures with dimensions that are multiples of 8 rather than 64
+ """
+
+ def __getattr__(self, item):
+ if item == 'cat':
+ return self.cat
+
+ if hasattr(torch, item):
+ return getattr(torch, item)
+
+ raise AttributeError("'{}' object has no attribute '{}'".format(type(self).__name__, item))
+
+ def cat(self, tensors, *args, **kwargs):
+ if len(tensors) == 2:
+ a, b = tensors
+ if a.shape[-2:] != b.shape[-2:]:
+ a = torch.nn.functional.interpolate(a, b.shape[-2:], mode="nearest")
+
+ tensors = (a, b)
+
+ return torch.cat(tensors, *args, **kwargs)
+
+
+th = TorchHijackForUnet()
diff --git a/modules/sd_hijack_xlmr.py b/modules/sd_hijack_xlmr.py
new file mode 100644
index 000000000..4ac51c386
--- /dev/null
+++ b/modules/sd_hijack_xlmr.py
@@ -0,0 +1,34 @@
+import open_clip.tokenizer
+import torch
+
+from modules import sd_hijack_clip, devices
+from modules.shared import opts
+
+
+class FrozenXLMREmbedderWithCustomWords(sd_hijack_clip.FrozenCLIPEmbedderWithCustomWords):
+ def __init__(self, wrapped, hijack):
+ super().__init__(wrapped, hijack)
+
+ self.id_start = wrapped.config.bos_token_id
+ self.id_end = wrapped.config.eos_token_id
+ self.id_pad = wrapped.config.pad_token_id
+
+ self.comma_token = self.tokenizer.get_vocab().get(',', None) # alt diffusion doesn't have bits for comma
+
+ def encode_with_transformers(self, tokens):
+ # there's no CLIP Skip here because all hidden layers have size of 1024 and the last one uses a
+ # trained layer to transform those 1024 into 768 for unet; so you can't choose which transformer
+ # layer to work with - you have to use the last
+
+ attention_mask = (tokens != self.id_pad).to(device=tokens.device, dtype=torch.int64)
+ features = self.wrapped(input_ids=tokens, attention_mask=attention_mask)
+ z = features['projection_state']
+
+ return z
+
+ def encode_embedding_init_text(self, init_text, nvpt):
+ embedding_layer = self.wrapped.roberta.embeddings
+ ids = self.wrapped.tokenizer(init_text, max_length=nvpt, return_tensors="pt", add_special_tokens=False)["input_ids"]
+ embedded = embedding_layer.token_embedding.wrapped(ids.to(devices.device)).squeeze(0)
+
+ return embedded
diff --git a/modules/sd_models.py b/modules/sd_models.py
index 34c57bfa7..76a89e88c 100644
--- a/modules/sd_models.py
+++ b/modules/sd_models.py
@@ -5,7 +5,11 @@ import gc
from collections import namedtuple
import torch
import re
+import safetensors.torch
from omegaconf import OmegaConf
+from os import mkdir
+from urllib import request
+import ldm.modules.midas as midas
from ldm.util import instantiate_from_config
@@ -16,7 +20,7 @@ from modules.sd_hijack_inpainting import do_inpainting_hijack, should_hijack_inp
model_dir = "Stable-diffusion"
model_path = os.path.abspath(os.path.join(models_path, model_dir))
-CheckpointInfo = namedtuple("CheckpointInfo", ['filename', 'title', 'hash', 'model_name', 'config'])
+CheckpointInfo = namedtuple("CheckpointInfo", ['filename', 'title', 'hash', 'model_name'])
checkpoints_list = {}
checkpoints_loaded = collections.OrderedDict()
@@ -35,6 +39,7 @@ def setup_model():
os.makedirs(model_path)
list_models()
+ enable_midas_autodownload()
def checkpoint_tiles():
@@ -43,9 +48,17 @@ def checkpoint_tiles():
return sorted([x.title for x in checkpoints_list.values()], key = alphanumeric_key)
+def find_checkpoint_config(info):
+ config = os.path.splitext(info.filename)[0] + ".yaml"
+ if os.path.exists(config):
+ return config
+
+ return shared.cmd_opts.config
+
+
def list_models():
checkpoints_list.clear()
- model_list = modelloader.load_models(model_path=model_path, command_path=shared.cmd_opts.ckpt_dir, ext_filter=[".ckpt"])
+ model_list = modelloader.load_models(model_path=model_path, command_path=shared.cmd_opts.ckpt_dir, ext_filter=[".ckpt", ".safetensors"])
def modeltitle(path, shorthash):
abspath = os.path.abspath(path)
@@ -68,7 +81,7 @@ def list_models():
if os.path.exists(cmd_ckpt):
h = model_hash(cmd_ckpt)
title, short_model_name = modeltitle(cmd_ckpt, h)
- checkpoints_list[title] = CheckpointInfo(cmd_ckpt, title, h, short_model_name, shared.cmd_opts.config)
+ checkpoints_list[title] = CheckpointInfo(cmd_ckpt, title, h, short_model_name)
shared.opts.data['sd_model_checkpoint'] = title
elif cmd_ckpt is not None and cmd_ckpt != shared.default_sd_model_file:
print(f"Checkpoint in --ckpt argument not found (Possible it was moved to {model_path}: {cmd_ckpt}", file=sys.stderr)
@@ -76,12 +89,7 @@ def list_models():
h = model_hash(filename)
title, short_model_name = modeltitle(filename, h)
- basename, _ = os.path.splitext(filename)
- config = basename + ".yaml"
- if not os.path.exists(config):
- config = shared.cmd_opts.config
-
- checkpoints_list[title] = CheckpointInfo(filename, title, h, short_model_name, config)
+ checkpoints_list[title] = CheckpointInfo(filename, title, h, short_model_name)
def get_closet_checkpoint_match(searchString):
@@ -106,18 +114,19 @@ def model_hash(filename):
def select_checkpoint():
model_checkpoint = shared.opts.sd_model_checkpoint
+
checkpoint_info = checkpoints_list.get(model_checkpoint, None)
if checkpoint_info is not None:
return checkpoint_info
if len(checkpoints_list) == 0:
- print(f"No checkpoints found. When searching for checkpoints, looked at:", file=sys.stderr)
+ print("No checkpoints found. When searching for checkpoints, looked at:", file=sys.stderr)
if shared.cmd_opts.ckpt is not None:
print(f" - file {os.path.abspath(shared.cmd_opts.ckpt)}", file=sys.stderr)
print(f" - directory {model_path}", file=sys.stderr)
if shared.cmd_opts.ckpt_dir is not None:
print(f" - directory {os.path.abspath(shared.cmd_opts.ckpt_dir)}", file=sys.stderr)
- print(f"Can't run without a checkpoint. Find and place a .ckpt file into any of those locations. The program will exit.", file=sys.stderr)
+ print("Can't run without a checkpoint. Find and place a .ckpt file into any of those locations. The program will exit.", file=sys.stderr)
exit(1)
checkpoint_info = next(iter(checkpoints_list.values()))
@@ -143,8 +152,8 @@ def transform_checkpoint_dict_key(k):
def get_state_dict_from_checkpoint(pl_sd):
- if "state_dict" in pl_sd:
- pl_sd = pl_sd["state_dict"]
+ pl_sd = pl_sd.pop("state_dict", pl_sd)
+ pl_sd.pop("state_dict", None)
sd = {}
for k, v in pl_sd.items():
@@ -159,27 +168,44 @@ def get_state_dict_from_checkpoint(pl_sd):
return pl_sd
+def read_state_dict(checkpoint_file, print_global_state=False, map_location=None):
+ _, extension = os.path.splitext(checkpoint_file)
+ if extension.lower() == ".safetensors":
+ device = map_location or shared.weight_load_location
+ if device is None:
+ device = devices.get_cuda_device_string() if torch.cuda.is_available() else "cpu"
+ pl_sd = safetensors.torch.load_file(checkpoint_file, device=device)
+ else:
+ pl_sd = torch.load(checkpoint_file, map_location=map_location or shared.weight_load_location)
+
+ if print_global_state and "global_step" in pl_sd:
+ print(f"Global Step: {pl_sd['global_step']}")
+
+ sd = get_state_dict_from_checkpoint(pl_sd)
+ return sd
+
+
def load_model_weights(model, checkpoint_info, vae_file="auto"):
checkpoint_file = checkpoint_info.filename
sd_model_hash = checkpoint_info.hash
- if shared.opts.sd_checkpoint_cache > 0 and hasattr(model, "sd_checkpoint_info"):
- sd_vae.restore_base_vae(model)
- checkpoints_loaded[model.sd_checkpoint_info] = model.state_dict().copy()
+ cache_enabled = shared.opts.sd_checkpoint_cache > 0
- vae_file = sd_vae.resolve_vae(checkpoint_file, vae_file=vae_file)
-
- if checkpoint_info not in checkpoints_loaded:
+ if cache_enabled and checkpoint_info in checkpoints_loaded:
+ # use checkpoint cache
+ print(f"Loading weights [{sd_model_hash}] from cache")
+ model.load_state_dict(checkpoints_loaded[checkpoint_info])
+ else:
+ # load from file
print(f"Loading weights [{sd_model_hash}] from {checkpoint_file}")
- pl_sd = torch.load(checkpoint_file, map_location=shared.weight_load_location)
- if "global_step" in pl_sd:
- print(f"Global Step: {pl_sd['global_step']}")
-
- sd = get_state_dict_from_checkpoint(pl_sd)
- del pl_sd
+ sd = read_state_dict(checkpoint_file)
model.load_state_dict(sd, strict=False)
del sd
+
+ if cache_enabled:
+ # cache newly loaded model
+ checkpoints_loaded[checkpoint_info] = model.state_dict().copy()
if shared.cmd_opts.opt_channelslast:
model.to(memory_format=torch.channels_last)
@@ -199,29 +225,73 @@ def load_model_weights(model, checkpoint_info, vae_file="auto"):
model.first_stage_model.to(devices.dtype_vae)
- else:
- vae_name = sd_vae.get_filename(vae_file) if vae_file else None
- vae_message = f" with {vae_name} VAE" if vae_name else ""
- print(f"Loading weights [{sd_model_hash}]{vae_message} from cache")
- model.load_state_dict(checkpoints_loaded[checkpoint_info])
-
- if shared.opts.sd_checkpoint_cache > 0:
- while len(checkpoints_loaded) > shared.opts.sd_checkpoint_cache:
+ # clean up cache if limit is reached
+ if cache_enabled:
+ while len(checkpoints_loaded) > shared.opts.sd_checkpoint_cache + 1: # we need to count the current model
checkpoints_loaded.popitem(last=False) # LRU
model.sd_model_hash = sd_model_hash
model.sd_model_checkpoint = checkpoint_file
model.sd_checkpoint_info = checkpoint_info
+ model.logvar = model.logvar.to(devices.device) # fix for training
+
+ sd_vae.delete_base_vae()
+ sd_vae.clear_loaded_vae()
+ vae_file = sd_vae.resolve_vae(checkpoint_file, vae_file=vae_file)
sd_vae.load_vae(model, vae_file)
+def enable_midas_autodownload():
+ """
+ Gives the ldm.modules.midas.api.load_model function automatic downloading.
+
+ When the 512-depth-ema model, and other future models like it, is loaded,
+ it calls midas.api.load_model to load the associated midas depth model.
+ This function applies a wrapper to download the model to the correct
+ location automatically.
+ """
+
+ midas_path = os.path.join(models_path, 'midas')
+
+ # stable-diffusion-stability-ai hard-codes the midas model path to
+ # a location that differs from where other scripts using this model look.
+ # HACK: Overriding the path here.
+ for k, v in midas.api.ISL_PATHS.items():
+ file_name = os.path.basename(v)
+ midas.api.ISL_PATHS[k] = os.path.join(midas_path, file_name)
+
+ midas_urls = {
+ "dpt_large": "https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt",
+ "dpt_hybrid": "https://github.com/intel-isl/DPT/releases/download/1_0/dpt_hybrid-midas-501f0c75.pt",
+ "midas_v21": "https://github.com/AlexeyAB/MiDaS/releases/download/midas_dpt/midas_v21-f6b98070.pt",
+ "midas_v21_small": "https://github.com/AlexeyAB/MiDaS/releases/download/midas_dpt/midas_v21_small-70d6b9c8.pt",
+ }
+
+ midas.api.load_model_inner = midas.api.load_model
+
+ def load_model_wrapper(model_type):
+ path = midas.api.ISL_PATHS[model_type]
+ if not os.path.exists(path):
+ if not os.path.exists(midas_path):
+ mkdir(midas_path)
+
+ print(f"Downloading midas model weights for {model_type} to {path}")
+ request.urlretrieve(midas_urls[model_type], path)
+ print(f"{model_type} downloaded")
+
+ return midas.api.load_model_inner(model_type)
+
+ midas.api.load_model = load_model_wrapper
+
+
def load_model(checkpoint_info=None):
from modules import lowvram, sd_hijack
checkpoint_info = checkpoint_info or select_checkpoint()
+ checkpoint_config = find_checkpoint_config(checkpoint_info)
- if checkpoint_info.config != shared.cmd_opts.config:
- print(f"Loading config from: {checkpoint_info.config}")
+ if checkpoint_config != shared.cmd_opts.config:
+ print(f"Loading config from: {checkpoint_config}")
if shared.sd_model:
sd_hijack.model_hijack.undo_hijack(shared.sd_model)
@@ -229,21 +299,25 @@ def load_model(checkpoint_info=None):
gc.collect()
devices.torch_gc()
- sd_config = OmegaConf.load(checkpoint_info.config)
+ sd_config = OmegaConf.load(checkpoint_config)
if should_hijack_inpainting(checkpoint_info):
# Hardcoded config for now...
sd_config.model.target = "ldm.models.diffusion.ddpm.LatentInpaintDiffusion"
- sd_config.model.params.use_ema = False
sd_config.model.params.conditioning_key = "hybrid"
sd_config.model.params.unet_config.params.in_channels = 9
+ sd_config.model.params.finetune_keys = None
- # Create a "fake" config with a different name so that we know to unload it when switching models.
- checkpoint_info = checkpoint_info._replace(config=checkpoint_info.config.replace(".yaml", "-inpainting.yaml"))
+ if not hasattr(sd_config.model.params, "use_ema"):
+ sd_config.model.params.use_ema = False
do_inpainting_hijack()
+ if shared.cmd_opts.no_half:
+ sd_config.model.params.unet_config.params.use_fp16 = False
+
sd_model = instantiate_from_config(sd_config.model)
+
load_model_weights(sd_model, checkpoint_info)
if shared.cmd_opts.lowvram or shared.cmd_opts.medvram:
@@ -256,23 +330,29 @@ def load_model(checkpoint_info=None):
sd_model.eval()
shared.sd_model = sd_model
+ sd_hijack.model_hijack.embedding_db.load_textual_inversion_embeddings(force_reload=True) # Reload embeddings after model load as they may or may not fit the model
+
script_callbacks.model_loaded_callback(sd_model)
- print(f"Model loaded.")
+ print("Model loaded.")
+
return sd_model
def reload_model_weights(sd_model=None, info=None):
from modules import lowvram, devices, sd_hijack
checkpoint_info = info or select_checkpoint()
-
+
if not sd_model:
sd_model = shared.sd_model
+ current_checkpoint_info = sd_model.sd_checkpoint_info
+ checkpoint_config = find_checkpoint_config(current_checkpoint_info)
+
if sd_model.sd_model_checkpoint == checkpoint_info.filename:
return
- if sd_model.sd_checkpoint_info.config != checkpoint_info.config or should_hijack_inpainting(checkpoint_info) != should_hijack_inpainting(sd_model.sd_checkpoint_info):
+ if checkpoint_config != find_checkpoint_config(checkpoint_info) or should_hijack_inpainting(checkpoint_info) != should_hijack_inpainting(sd_model.sd_checkpoint_info):
del sd_model
checkpoints_loaded.clear()
load_model(checkpoint_info)
@@ -285,13 +365,19 @@ def reload_model_weights(sd_model=None, info=None):
sd_hijack.model_hijack.undo_hijack(sd_model)
- load_model_weights(sd_model, checkpoint_info)
+ try:
+ load_model_weights(sd_model, checkpoint_info)
+ except Exception as e:
+ print("Failed to load checkpoint, restoring previous")
+ load_model_weights(sd_model, current_checkpoint_info)
+ raise
+ finally:
+ sd_hijack.model_hijack.hijack(sd_model)
+ script_callbacks.model_loaded_callback(sd_model)
- sd_hijack.model_hijack.hijack(sd_model)
- script_callbacks.model_loaded_callback(sd_model)
+ if not shared.cmd_opts.lowvram and not shared.cmd_opts.medvram:
+ sd_model.to(devices.device)
- if not shared.cmd_opts.lowvram and not shared.cmd_opts.medvram:
- sd_model.to(devices.device)
+ print("Weights loaded.")
- print(f"Weights loaded.")
return sd_model
diff --git a/modules/sd_samplers.py b/modules/sd_samplers.py
index 783992d2b..e904d8609 100644
--- a/modules/sd_samplers.py
+++ b/modules/sd_samplers.py
@@ -1,4 +1,4 @@
-from collections import namedtuple
+from collections import namedtuple, deque
import numpy as np
from math import floor
import torch
@@ -6,9 +6,10 @@ import tqdm
from PIL import Image
import inspect
import k_diffusion.sampling
+import torchsde._brownian.brownian_interval
import ldm.models.diffusion.ddim
import ldm.models.diffusion.plms
-from modules import prompt_parser, devices, processing, images
+from modules import prompt_parser, devices, processing, images, sd_vae_approx
from modules.shared import opts, cmd_opts, state
import modules.shared as shared
@@ -18,21 +19,23 @@ from modules.script_callbacks import CFGDenoiserParams, cfg_denoiser_callback
SamplerData = namedtuple('SamplerData', ['name', 'constructor', 'aliases', 'options'])
samplers_k_diffusion = [
- ('Euler a', 'sample_euler_ancestral', ['k_euler_a'], {}),
+ ('Euler a', 'sample_euler_ancestral', ['k_euler_a', 'k_euler_ancestral'], {}),
('Euler', 'sample_euler', ['k_euler'], {}),
('LMS', 'sample_lms', ['k_lms'], {}),
('Heun', 'sample_heun', ['k_heun'], {}),
- ('DPM2', 'sample_dpm_2', ['k_dpm_2'], {}),
- ('DPM2 a', 'sample_dpm_2_ancestral', ['k_dpm_2_a'], {}),
+ ('DPM2', 'sample_dpm_2', ['k_dpm_2'], {'discard_next_to_last_sigma': True}),
+ ('DPM2 a', 'sample_dpm_2_ancestral', ['k_dpm_2_a'], {'discard_next_to_last_sigma': True}),
('DPM++ 2S a', 'sample_dpmpp_2s_ancestral', ['k_dpmpp_2s_a'], {}),
('DPM++ 2M', 'sample_dpmpp_2m', ['k_dpmpp_2m'], {}),
+ ('DPM++ SDE', 'sample_dpmpp_sde', ['k_dpmpp_sde'], {}),
('DPM fast', 'sample_dpm_fast', ['k_dpm_fast'], {}),
('DPM adaptive', 'sample_dpm_adaptive', ['k_dpm_ad'], {}),
('LMS Karras', 'sample_lms', ['k_lms_ka'], {'scheduler': 'karras'}),
- ('DPM2 Karras', 'sample_dpm_2', ['k_dpm_2_ka'], {'scheduler': 'karras'}),
- ('DPM2 a Karras', 'sample_dpm_2_ancestral', ['k_dpm_2_a_ka'], {'scheduler': 'karras'}),
+ ('DPM2 Karras', 'sample_dpm_2', ['k_dpm_2_ka'], {'scheduler': 'karras', 'discard_next_to_last_sigma': True}),
+ ('DPM2 a Karras', 'sample_dpm_2_ancestral', ['k_dpm_2_a_ka'], {'scheduler': 'karras', 'discard_next_to_last_sigma': True}),
('DPM++ 2S a Karras', 'sample_dpmpp_2s_ancestral', ['k_dpmpp_2s_a_ka'], {'scheduler': 'karras'}),
('DPM++ 2M Karras', 'sample_dpmpp_2m', ['k_dpmpp_2m_ka'], {'scheduler': 'karras'}),
+ ('DPM++ SDE Karras', 'sample_dpmpp_sde', ['k_dpmpp_sde_ka'], {'scheduler': 'karras'}),
]
samplers_data_k_diffusion = [
@@ -46,16 +49,24 @@ all_samplers = [
SamplerData('DDIM', lambda model: VanillaStableDiffusionSampler(ldm.models.diffusion.ddim.DDIMSampler, model), [], {}),
SamplerData('PLMS', lambda model: VanillaStableDiffusionSampler(ldm.models.diffusion.plms.PLMSSampler, model), [], {}),
]
+all_samplers_map = {x.name: x for x in all_samplers}
samplers = []
samplers_for_img2img = []
+samplers_map = {}
-def create_sampler_with_index(list_of_configs, index, model):
- config = list_of_configs[index]
+def create_sampler(name, model):
+ if name is not None:
+ config = all_samplers_map.get(name, None)
+ else:
+ config = all_samplers[0]
+
+ assert config is not None, f'bad sampler name: {name}'
+
sampler = config.constructor(model)
sampler.config = config
-
+
return sampler
@@ -68,6 +79,12 @@ def set_samplers():
samplers = [x for x in all_samplers if x.name not in hidden]
samplers_for_img2img = [x for x in all_samplers if x.name not in hidden_img2img]
+ samplers_map.clear()
+ for sampler in all_samplers:
+ samplers_map[sampler.name.lower()] = sampler.name
+ for alias in sampler.aliases:
+ samplers_map[alias.lower()] = sampler.name
+
set_samplers()
@@ -89,20 +106,32 @@ def setup_img2img_steps(p, steps=None):
return steps, t_enc
-def single_sample_to_image(sample):
- x_sample = processing.decode_first_stage(shared.sd_model, sample.unsqueeze(0))[0]
+approximation_indexes = {"Full": 0, "Approx NN": 1, "Approx cheap": 2}
+
+
+def single_sample_to_image(sample, approximation=None):
+ if approximation is None:
+ approximation = approximation_indexes.get(opts.show_progress_type, 0)
+
+ if approximation == 2:
+ x_sample = sd_vae_approx.cheap_approximation(sample)
+ elif approximation == 1:
+ x_sample = sd_vae_approx.model()(sample.to(devices.device, devices.dtype).unsqueeze(0))[0].detach()
+ else:
+ x_sample = processing.decode_first_stage(shared.sd_model, sample.unsqueeze(0))[0]
+
x_sample = torch.clamp((x_sample + 1.0) / 2.0, min=0.0, max=1.0)
x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2)
x_sample = x_sample.astype(np.uint8)
return Image.fromarray(x_sample)
-def sample_to_image(samples, index=0):
- return single_sample_to_image(samples[index])
+def sample_to_image(samples, index=0, approximation=None):
+ return single_sample_to_image(samples[index], approximation)
-def samples_to_image_grid(samples):
- return images.image_grid([single_sample_to_image(sample) for sample in samples])
+def samples_to_image_grid(samples, approximation=None):
+ return images.image_grid([single_sample_to_image(sample, approximation) for sample in samples])
def store_latent(decoded):
@@ -120,7 +149,8 @@ class InterruptedException(BaseException):
class VanillaStableDiffusionSampler:
def __init__(self, constructor, sd_model):
self.sampler = constructor(sd_model)
- self.orig_p_sample_ddim = self.sampler.p_sample_ddim if hasattr(self.sampler, 'p_sample_ddim') else self.sampler.p_sample_plms
+ self.is_plms = hasattr(self.sampler, 'p_sample_plms')
+ self.orig_p_sample_ddim = self.sampler.p_sample_plms if self.is_plms else self.sampler.p_sample_ddim
self.mask = None
self.nmask = None
self.init_latent = None
@@ -211,7 +241,6 @@ class VanillaStableDiffusionSampler:
self.mask = p.mask if hasattr(p, 'mask') else None
self.nmask = p.nmask if hasattr(p, 'nmask') else None
-
def adjust_steps_if_invalid(self, p, num_steps):
if (self.config.name == 'DDIM' and p.ddim_discretize == 'uniform') or (self.config.name == 'PLMS'):
valid_step = 999 / (1000 // num_steps)
@@ -220,7 +249,6 @@ class VanillaStableDiffusionSampler:
return num_steps
-
def sample_img2img(self, p, x, noise, conditioning, unconditional_conditioning, steps=None, image_conditioning=None):
steps, t_enc = setup_img2img_steps(p, steps)
steps = self.adjust_steps_if_invalid(p, steps)
@@ -253,9 +281,10 @@ class VanillaStableDiffusionSampler:
steps = self.adjust_steps_if_invalid(p, steps or p.steps)
# Wrap the conditioning models with additional image conditioning for inpainting model
+ # dummy_for_plms is needed because PLMS code checks the first item in the dict to have the right shape
if image_conditioning is not None:
- conditioning = {"c_concat": [image_conditioning], "c_crossattn": [conditioning]}
- unconditional_conditioning = {"c_concat": [image_conditioning], "c_crossattn": [unconditional_conditioning]}
+ conditioning = {"dummy_for_plms": np.zeros((conditioning.shape[0],)), "c_crossattn": [conditioning], "c_concat": [image_conditioning]}
+ unconditional_conditioning = {"c_crossattn": [unconditional_conditioning], "c_concat": [image_conditioning]}
samples_ddim = self.launch_sampling(steps, lambda: self.sampler.sample(S=steps, conditioning=conditioning, batch_size=int(x.shape[0]), shape=x[0].shape, verbose=False, unconditional_guidance_scale=p.cfg_scale, unconditional_conditioning=unconditional_conditioning, x_T=x, eta=self.eta)[0])
@@ -271,6 +300,16 @@ class CFGDenoiser(torch.nn.Module):
self.init_latent = None
self.step = 0
+ def combine_denoised(self, x_out, conds_list, uncond, cond_scale):
+ denoised_uncond = x_out[-uncond.shape[0]:]
+ denoised = torch.clone(denoised_uncond)
+
+ for i, conds in enumerate(conds_list):
+ for cond_index, weight in conds:
+ denoised[i] += (x_out[cond_index] - denoised_uncond[i]) * (weight * cond_scale)
+
+ return denoised
+
def forward(self, x, sigma, uncond, cond, cond_scale, image_cond):
if state.interrupted or state.skipped:
raise InterruptedException
@@ -312,12 +351,7 @@ class CFGDenoiser(torch.nn.Module):
x_out[-uncond.shape[0]:] = self.inner_model(x_in[-uncond.shape[0]:], sigma_in[-uncond.shape[0]:], cond={"c_crossattn": [uncond], "c_concat": [image_cond_in[-uncond.shape[0]:]]})
- denoised_uncond = x_out[-uncond.shape[0]:]
- denoised = torch.clone(denoised_uncond)
-
- for i, conds in enumerate(conds_list):
- for cond_index, weight in conds:
- denoised[i] += (x_out[cond_index] - denoised_uncond[i]) * (weight * cond_scale)
+ denoised = self.combine_denoised(x_out, conds_list, uncond, cond_scale)
if self.mask is not None:
denoised = self.init_latent * self.mask + self.nmask * denoised
@@ -328,28 +362,55 @@ class CFGDenoiser(torch.nn.Module):
class TorchHijack:
- def __init__(self, kdiff_sampler):
- self.kdiff_sampler = kdiff_sampler
+ def __init__(self, sampler_noises):
+ # Using a deque to efficiently receive the sampler_noises in the same order as the previous index-based
+ # implementation.
+ self.sampler_noises = deque(sampler_noises)
def __getattr__(self, item):
if item == 'randn_like':
- return self.kdiff_sampler.randn_like
+ return self.randn_like
if hasattr(torch, item):
return getattr(torch, item)
raise AttributeError("'{}' object has no attribute '{}'".format(type(self).__name__, item))
+ def randn_like(self, x):
+ if self.sampler_noises:
+ noise = self.sampler_noises.popleft()
+ if noise.shape == x.shape:
+ return noise
+
+ if x.device.type == 'mps':
+ return torch.randn_like(x, device=devices.cpu).to(x.device)
+ else:
+ return torch.randn_like(x)
+
+
+# MPS fix for randn in torchsde
+def torchsde_randn(size, dtype, device, seed):
+ if device.type == 'mps':
+ generator = torch.Generator(devices.cpu).manual_seed(int(seed))
+ return torch.randn(size, dtype=dtype, device=devices.cpu, generator=generator).to(device)
+ else:
+ generator = torch.Generator(device).manual_seed(int(seed))
+ return torch.randn(size, dtype=dtype, device=device, generator=generator)
+
+
+torchsde._brownian.brownian_interval._randn = torchsde_randn
+
class KDiffusionSampler:
def __init__(self, funcname, sd_model):
- self.model_wrap = k_diffusion.external.CompVisDenoiser(sd_model, quantize=shared.opts.enable_quantization)
+ denoiser = k_diffusion.external.CompVisVDenoiser if sd_model.parameterization == "v" else k_diffusion.external.CompVisDenoiser
+
+ self.model_wrap = denoiser(sd_model, quantize=shared.opts.enable_quantization)
self.funcname = funcname
self.func = getattr(k_diffusion.sampling, self.funcname)
self.extra_params = sampler_extra_params.get(funcname, [])
self.model_wrap_cfg = CFGDenoiser(self.model_wrap)
self.sampler_noises = None
- self.sampler_noise_index = 0
self.stop_at = None
self.eta = None
self.default_eta = 1.0
@@ -382,26 +443,13 @@ class KDiffusionSampler:
def number_of_needed_noises(self, p):
return p.steps
- def randn_like(self, x):
- noise = self.sampler_noises[self.sampler_noise_index] if self.sampler_noises is not None and self.sampler_noise_index < len(self.sampler_noises) else None
-
- if noise is not None and x.shape == noise.shape:
- res = noise
- else:
- res = torch.randn_like(x)
-
- self.sampler_noise_index += 1
- return res
-
def initialize(self, p):
self.model_wrap_cfg.mask = p.mask if hasattr(p, 'mask') else None
self.model_wrap_cfg.nmask = p.nmask if hasattr(p, 'nmask') else None
self.model_wrap.step = 0
- self.sampler_noise_index = 0
self.eta = p.eta or opts.eta_ancestral
- if self.sampler_noises is not None:
- k_diffusion.sampling.torch = TorchHijack(self)
+ k_diffusion.sampling.torch = TorchHijack(self.sampler_noises if self.sampler_noises is not None else [])
extra_params_kwargs = {}
for param_name in self.extra_params:
@@ -413,16 +461,26 @@ class KDiffusionSampler:
return extra_params_kwargs
- def sample_img2img(self, p, x, noise, conditioning, unconditional_conditioning, steps=None, image_conditioning=None):
- steps, t_enc = setup_img2img_steps(p, steps)
-
+ def get_sigmas(self, p, steps):
if p.sampler_noise_scheduler_override:
sigmas = p.sampler_noise_scheduler_override(steps)
elif self.config is not None and self.config.options.get('scheduler', None) == 'karras':
- sigmas = k_diffusion.sampling.get_sigmas_karras(n=steps, sigma_min=0.1, sigma_max=10, device=shared.device)
+ sigma_min, sigma_max = (0.1, 10) if opts.use_old_karras_scheduler_sigmas else (self.model_wrap.sigmas[0].item(), self.model_wrap.sigmas[-1].item())
+
+ sigmas = k_diffusion.sampling.get_sigmas_karras(n=steps, sigma_min=sigma_min, sigma_max=sigma_max, device=shared.device)
else:
sigmas = self.model_wrap.get_sigmas(steps)
+ if self.config is not None and self.config.options.get('discard_next_to_last_sigma', False):
+ sigmas = torch.cat([sigmas[:-2], sigmas[-1:]])
+
+ return sigmas
+
+ def sample_img2img(self, p, x, noise, conditioning, unconditional_conditioning, steps=None, image_conditioning=None):
+ steps, t_enc = setup_img2img_steps(p, steps)
+
+ sigmas = self.get_sigmas(p, steps)
+
sigma_sched = sigmas[steps - t_enc - 1:]
xi = x + noise * sigma_sched[0]
@@ -454,12 +512,7 @@ class KDiffusionSampler:
def sample(self, p, x, conditioning, unconditional_conditioning, steps=None, image_conditioning = None):
steps = steps or p.steps
- if p.sampler_noise_scheduler_override:
- sigmas = p.sampler_noise_scheduler_override(steps)
- elif self.config is not None and self.config.options.get('scheduler', None) == 'karras':
- sigmas = k_diffusion.sampling.get_sigmas_karras(n=steps, sigma_min=0.1, sigma_max=10, device=shared.device)
- else:
- sigmas = self.model_wrap.get_sigmas(steps)
+ sigmas = self.get_sigmas(p, steps)
x = x * sigmas[0]
diff --git a/modules/sd_vae.py b/modules/sd_vae.py
index 71e7a6e63..ac71d62db 100644
--- a/modules/sd_vae.py
+++ b/modules/sd_vae.py
@@ -1,9 +1,11 @@
import torch
import os
+import collections
from collections import namedtuple
from modules import shared, devices, script_callbacks
from modules.paths import models_path
import glob
+from copy import deepcopy
model_dir = "Stable-diffusion"
@@ -15,7 +17,7 @@ vae_path = os.path.abspath(os.path.join(models_path, vae_dir))
vae_ignore_keys = {"model_ema.decay", "model_ema.num_updates"}
-default_vae_dict = {"auto": "auto", "None": "None"}
+default_vae_dict = {"auto": "auto", "None": None, None: None}
default_vae_list = ["auto", "None"]
@@ -29,6 +31,7 @@ base_vae = None
loaded_vae_file = None
checkpoint_info = None
+checkpoints_loaded = collections.OrderedDict()
def get_base_vae(model):
if base_vae is not None and checkpoint_info == model.sd_checkpoint_info and model:
@@ -39,7 +42,8 @@ def get_base_vae(model):
def store_base_vae(model):
global base_vae, checkpoint_info
if checkpoint_info != model.sd_checkpoint_info:
- base_vae = model.first_stage_model.state_dict().copy()
+ assert not loaded_vae_file, "Trying to store non-base VAE!"
+ base_vae = deepcopy(model.first_stage_model.state_dict())
checkpoint_info = model.sd_checkpoint_info
@@ -50,9 +54,11 @@ def delete_base_vae():
def restore_base_vae(model):
- global base_vae, checkpoint_info
+ global loaded_vae_file
if base_vae is not None and checkpoint_info == model.sd_checkpoint_info:
- load_vae_dict(model, base_vae)
+ print("Restoring base VAE")
+ _load_vae_dict(model, base_vae)
+ loaded_vae_file = None
delete_base_vae()
@@ -83,47 +89,54 @@ def refresh_vae_list(vae_path=vae_path, model_path=model_path):
return vae_list
-def resolve_vae(checkpoint_file, vae_file="auto"):
- global first_load, vae_dict, vae_list
-
- # if vae_file argument is provided, it takes priority, but not saved
- if vae_file and vae_file not in default_vae_list:
- if not os.path.isfile(vae_file):
- vae_file = "auto"
- print("VAE provided as function argument doesn't exist")
- # for the first load, if vae-path is provided, it takes priority, saved, and failure is reported
- if first_load and shared.cmd_opts.vae_path is not None:
- if os.path.isfile(shared.cmd_opts.vae_path):
- vae_file = shared.cmd_opts.vae_path
- shared.opts.data['sd_vae'] = get_filename(vae_file)
- else:
- print("VAE provided as command line argument doesn't exist")
- # else, we load from settings
+def get_vae_from_settings(vae_file="auto"):
+ # else, we load from settings, if not set to be default
if vae_file == "auto" and shared.opts.sd_vae is not None:
# if saved VAE settings isn't recognized, fallback to auto
vae_file = vae_dict.get(shared.opts.sd_vae, "auto")
# if VAE selected but not found, fallback to auto
if vae_file not in default_vae_values and not os.path.isfile(vae_file):
vae_file = "auto"
- print("Selected VAE doesn't exist")
+ print(f"Selected VAE doesn't exist: {vae_file}")
+ return vae_file
+
+
+def resolve_vae(checkpoint_file=None, vae_file="auto"):
+ global first_load, vae_dict, vae_list
+
+ # if vae_file argument is provided, it takes priority, but not saved
+ if vae_file and vae_file not in default_vae_list:
+ if not os.path.isfile(vae_file):
+ print(f"VAE provided as function argument doesn't exist: {vae_file}")
+ vae_file = "auto"
+ # for the first load, if vae-path is provided, it takes priority, saved, and failure is reported
+ if first_load and shared.cmd_opts.vae_path is not None:
+ if os.path.isfile(shared.cmd_opts.vae_path):
+ vae_file = shared.cmd_opts.vae_path
+ shared.opts.data['sd_vae'] = get_filename(vae_file)
+ else:
+ print(f"VAE provided as command line argument doesn't exist: {vae_file}")
+ # fallback to selector in settings, if vae selector not set to act as default fallback
+ if not shared.opts.sd_vae_as_default:
+ vae_file = get_vae_from_settings(vae_file)
# vae-path cmd arg takes priority for auto
if vae_file == "auto" and shared.cmd_opts.vae_path is not None:
if os.path.isfile(shared.cmd_opts.vae_path):
vae_file = shared.cmd_opts.vae_path
- print("Using VAE provided as command line argument")
+ print(f"Using VAE provided as command line argument: {vae_file}")
# if still not found, try look for ".vae.pt" beside model
model_path = os.path.splitext(checkpoint_file)[0]
if vae_file == "auto":
vae_file_try = model_path + ".vae.pt"
if os.path.isfile(vae_file_try):
vae_file = vae_file_try
- print("Using VAE found beside selected model")
+ print(f"Using VAE found similar to selected model: {vae_file}")
# if still not found, try look for ".vae.ckpt" beside model
if vae_file == "auto":
vae_file_try = model_path + ".vae.ckpt"
if os.path.isfile(vae_file_try):
vae_file = vae_file_try
- print("Using VAE found beside selected model")
+ print(f"Using VAE found similar to selected model: {vae_file}")
# No more fallbacks for auto
if vae_file == "auto":
vae_file = None
@@ -138,11 +151,30 @@ def load_vae(model, vae_file=None):
global first_load, vae_dict, vae_list, loaded_vae_file
# save_settings = False
+ cache_enabled = shared.opts.sd_vae_checkpoint_cache > 0
+
if vae_file:
- print(f"Loading VAE weights from: {vae_file}")
- vae_ckpt = torch.load(vae_file, map_location=shared.weight_load_location)
- vae_dict_1 = {k: v for k, v in vae_ckpt["state_dict"].items() if k[0:4] != "loss" and k not in vae_ignore_keys}
- load_vae_dict(model, vae_dict_1)
+ if cache_enabled and vae_file in checkpoints_loaded:
+ # use vae checkpoint cache
+ print(f"Loading VAE weights [{get_filename(vae_file)}] from cache")
+ store_base_vae(model)
+ _load_vae_dict(model, checkpoints_loaded[vae_file])
+ else:
+ assert os.path.isfile(vae_file), f"VAE file doesn't exist: {vae_file}"
+ print(f"Loading VAE weights from: {vae_file}")
+ store_base_vae(model)
+ vae_ckpt = torch.load(vae_file, map_location=shared.weight_load_location)
+ vae_dict_1 = {k: v for k, v in vae_ckpt["state_dict"].items() if k[0:4] != "loss" and k not in vae_ignore_keys}
+ _load_vae_dict(model, vae_dict_1)
+
+ if cache_enabled:
+ # cache newly loaded vae
+ checkpoints_loaded[vae_file] = vae_dict_1.copy()
+
+ # clean up cache if limit is reached
+ if cache_enabled:
+ while len(checkpoints_loaded) > shared.opts.sd_vae_checkpoint_cache + 1: # we need to count the current model
+ checkpoints_loaded.popitem(last=False) # LRU
# If vae used is not in dict, update it
# It will be removed on refresh though
@@ -150,30 +182,22 @@ def load_vae(model, vae_file=None):
if vae_opt not in vae_dict:
vae_dict[vae_opt] = vae_file
vae_list.append(vae_opt)
+ elif loaded_vae_file:
+ restore_base_vae(model)
loaded_vae_file = vae_file
- """
- # Save current VAE to VAE settings, maybe? will it work?
- if save_settings:
- if vae_file is None:
- vae_opt = "None"
-
- # shared.opts.sd_vae = vae_opt
- """
-
first_load = False
# don't call this from outside
-def load_vae_dict(model, vae_dict_1=None):
- if vae_dict_1:
- store_base_vae(model)
- model.first_stage_model.load_state_dict(vae_dict_1)
- else:
- restore_base_vae()
+def _load_vae_dict(model, vae_dict_1):
+ model.first_stage_model.load_state_dict(vae_dict_1)
model.first_stage_model.to(devices.dtype_vae)
+def clear_loaded_vae():
+ global loaded_vae_file
+ loaded_vae_file = None
def reload_vae_weights(sd_model=None, vae_file="auto"):
from modules import lowvram, devices, sd_hijack
@@ -203,5 +227,5 @@ def reload_vae_weights(sd_model=None, vae_file="auto"):
if not shared.cmd_opts.lowvram and not shared.cmd_opts.medvram:
sd_model.to(devices.device)
- print(f"VAE Weights loaded.")
+ print("VAE Weights loaded.")
return sd_model
diff --git a/modules/sd_vae_approx.py b/modules/sd_vae_approx.py
new file mode 100644
index 000000000..0a58542d1
--- /dev/null
+++ b/modules/sd_vae_approx.py
@@ -0,0 +1,58 @@
+import os
+
+import torch
+from torch import nn
+from modules import devices, paths
+
+sd_vae_approx_model = None
+
+
+class VAEApprox(nn.Module):
+ def __init__(self):
+ super(VAEApprox, self).__init__()
+ self.conv1 = nn.Conv2d(4, 8, (7, 7))
+ self.conv2 = nn.Conv2d(8, 16, (5, 5))
+ self.conv3 = nn.Conv2d(16, 32, (3, 3))
+ self.conv4 = nn.Conv2d(32, 64, (3, 3))
+ self.conv5 = nn.Conv2d(64, 32, (3, 3))
+ self.conv6 = nn.Conv2d(32, 16, (3, 3))
+ self.conv7 = nn.Conv2d(16, 8, (3, 3))
+ self.conv8 = nn.Conv2d(8, 3, (3, 3))
+
+ def forward(self, x):
+ extra = 11
+ x = nn.functional.interpolate(x, (x.shape[2] * 2, x.shape[3] * 2))
+ x = nn.functional.pad(x, (extra, extra, extra, extra))
+
+ for layer in [self.conv1, self.conv2, self.conv3, self.conv4, self.conv5, self.conv6, self.conv7, self.conv8, ]:
+ x = layer(x)
+ x = nn.functional.leaky_relu(x, 0.1)
+
+ return x
+
+
+def model():
+ global sd_vae_approx_model
+
+ if sd_vae_approx_model is None:
+ sd_vae_approx_model = VAEApprox()
+ sd_vae_approx_model.load_state_dict(torch.load(os.path.join(paths.models_path, "VAE-approx", "model.pt")))
+ sd_vae_approx_model.eval()
+ sd_vae_approx_model.to(devices.device, devices.dtype)
+
+ return sd_vae_approx_model
+
+
+def cheap_approximation(sample):
+ # https://discuss.huggingface.co/t/decoding-latents-to-rgb-without-upscaling/23204/2
+
+ coefs = torch.tensor([
+ [0.298, 0.207, 0.208],
+ [0.187, 0.286, 0.173],
+ [-0.158, 0.189, 0.264],
+ [-0.184, -0.271, -0.473],
+ ]).to(sample.device)
+
+ x_sample = torch.einsum("lxy,lr -> rxy", sample, coefs)
+
+ return x_sample
diff --git a/modules/shared.py b/modules/shared.py
index e8bacd3c9..54a6ba23b 100644
--- a/modules/shared.py
+++ b/modules/shared.py
@@ -3,26 +3,27 @@ import datetime
import json
import os
import sys
-from collections import OrderedDict
import time
+from PIL import Image
import gradio as gr
import tqdm
import modules.artists
import modules.interrogate
import modules.memmon
-import modules.sd_models
import modules.styles
import modules.devices as devices
-from modules import sd_samplers, sd_models, localization, sd_vae
-from modules.hypernetworks import hypernetwork
+from modules import localization, sd_vae, extensions, script_loading, errors
from modules.paths import models_path, script_path, sd_path
+
+demo = None
+
sd_model_file = os.path.join(script_path, 'model.ckpt')
default_sd_model_file = sd_model_file
parser = argparse.ArgumentParser()
-parser.add_argument("--config", type=str, default=os.path.join(sd_path, "configs/stable-diffusion/v1-inference.yaml"), help="path to config which constructs model",)
+parser.add_argument("--config", type=str, default=os.path.join(script_path, "configs/v1-inference.yaml"), help="path to config which constructs model",)
parser.add_argument("--ckpt", type=str, default=sd_model_file, help="path to checkpoint of stable diffusion model; if specified, this checkpoint will be added to the list of checkpoints and loaded",)
parser.add_argument("--ckpt-dir", type=str, default=None, help="Path to directory with stable diffusion checkpoints")
parser.add_argument("--gfpgan-dir", type=str, help="GFPGAN directory", default=('./src/gfpgan' if os.path.exists('./src/gfpgan') else './GFPGAN'))
@@ -50,18 +51,15 @@ parser.add_argument("--gfpgan-models-path", type=str, help="Path to directory wi
parser.add_argument("--esrgan-models-path", type=str, help="Path to directory with ESRGAN model file(s).", default=os.path.join(models_path, 'ESRGAN'))
parser.add_argument("--bsrgan-models-path", type=str, help="Path to directory with BSRGAN model file(s).", default=os.path.join(models_path, 'BSRGAN'))
parser.add_argument("--realesrgan-models-path", type=str, help="Path to directory with RealESRGAN model file(s).", default=os.path.join(models_path, 'RealESRGAN'))
-parser.add_argument("--scunet-models-path", type=str, help="Path to directory with ScuNET model file(s).", default=os.path.join(models_path, 'ScuNET'))
-parser.add_argument("--swinir-models-path", type=str, help="Path to directory with SwinIR model file(s).", default=os.path.join(models_path, 'SwinIR'))
-parser.add_argument("--ldsr-models-path", type=str, help="Path to directory with LDSR model file(s).", default=os.path.join(models_path, 'LDSR'))
parser.add_argument("--clip-models-path", type=str, help="Path to directory with CLIP model file(s).", default=None)
parser.add_argument("--xformers", action='store_true', help="enable xformers for cross attention layers")
parser.add_argument("--force-enable-xformers", action='store_true', help="enable xformers for cross attention layers regardless of whether the checking code thinks you can run it; do not make bug reports if this fails to work")
-parser.add_argument("--deepdanbooru", action='store_true', help="enable deepdanbooru interrogator")
+parser.add_argument("--deepdanbooru", action='store_true', help="does not do anything")
parser.add_argument("--opt-split-attention", action='store_true', help="force-enables Doggettx's cross-attention layer optimization. By default, it's on for torch cuda.")
parser.add_argument("--opt-split-attention-invokeai", action='store_true', help="force-enables InvokeAI's cross-attention layer optimization. By default, it's on when cuda is unavailable.")
parser.add_argument("--opt-split-attention-v1", action='store_true', help="enable older version of split attention optimization that does not consume all the VRAM it can find")
parser.add_argument("--disable-opt-split-attention", action='store_true', help="force-disables cross-attention layer optimization")
-parser.add_argument("--use-cpu", nargs='+',choices=['all', 'sd', 'interrogate', 'gfpgan', 'swinir', 'esrgan', 'scunet', 'codeformer'], help="use CPU as torch device for specified modules", default=[], type=str.lower)
+parser.add_argument("--use-cpu", nargs='+', help="use CPU as torch device for specified modules", default=[], type=str.lower)
parser.add_argument("--listen", action='store_true', help="launch gradio with 0.0.0.0 as server name, allowing to respond to network requests")
parser.add_argument("--port", type=int, help="launch gradio with given server port, you need root/admin rights for ports < 1024, defaults to 7860 if available", default=None)
parser.add_argument("--show-negative-prompt", action='store_true', help="does not do anything", default=False)
@@ -72,6 +70,7 @@ parser.add_argument("--ui-settings-file", type=str, help="filename to use for ui
parser.add_argument("--gradio-debug", action='store_true', help="launch gradio with --debug option")
parser.add_argument("--gradio-auth", type=str, help='set gradio authentication like "username:password"; or comma-delimit multiple like "u1:p1,u2:p2,u3:p3"', default=None)
parser.add_argument("--gradio-img2img-tool", type=str, help='gradio image uploader tool: can be either editor for ctopping, or color-sketch for drawing', choices=["color-sketch", "editor"], default="editor")
+parser.add_argument("--gradio-inpaint-tool", type=str, choices=["sketch", "color-sketch"], default="sketch", help="gradio inpainting editor: can be either sketch to only blur/noise the input, or color-sketch to paint over it")
parser.add_argument("--opt-channelslast", action='store_true', help="change memory type for stable diffusion to channels last")
parser.add_argument("--styles-file", type=str, help="filename to use for styles", default=os.path.join(script_path, 'styles.csv'))
parser.add_argument("--autolaunch", action='store_true', help="open the webui URL in the system's default browser upon launch", default=False)
@@ -81,17 +80,24 @@ parser.add_argument("--disable-console-progressbars", action='store_true', help=
parser.add_argument("--enable-console-prompts", action='store_true', help="print prompts to console when generating with txt2img and img2img", default=False)
parser.add_argument('--vae-path', type=str, help='Path to Variational Autoencoders model', default=None)
parser.add_argument("--disable-safe-unpickle", action='store_true', help="disable checking pytorch models for malicious code", default=False)
-parser.add_argument("--api", action='store_true', help="use api=True to launch the api with the webui")
-parser.add_argument("--nowebui", action='store_true', help="use api=True to launch the api instead of the webui")
+parser.add_argument("--api", action='store_true', help="use api=True to launch the API together with the webui (use --nowebui instead for only the API)")
+parser.add_argument("--api-auth", type=str, help='Set authentication for API like "username:password"; or comma-delimit multiple like "u1:p1,u2:p2,u3:p3"', default=None)
+parser.add_argument("--api-log", action='store_true', help="use api-log=True to enable logging of all API requests")
+parser.add_argument("--nowebui", action='store_true', help="use api=True to launch the API instead of the webui")
parser.add_argument("--ui-debug-mode", action='store_true', help="Don't load model to quickly launch UI")
parser.add_argument("--device-id", type=str, help="Select the default CUDA device to use (export CUDA_VISIBLE_DEVICES=0,1,etc might be needed before)", default=None)
parser.add_argument("--administrator", action='store_true', help="Administrator rights", default=False)
-parser.add_argument("--cors-allow-origins", type=str, help="Allowed CORS origins", default=None)
+parser.add_argument("--cors-allow-origins", type=str, help="Allowed CORS origin(s) in the form of a comma-separated list (no spaces)", default=None)
+parser.add_argument("--cors-allow-origins-regex", type=str, help="Allowed CORS origin(s) in the form of a single regular expression", default=None)
parser.add_argument("--tls-keyfile", type=str, help="Partially enables TLS, requires --tls-certfile to fully function", default=None)
parser.add_argument("--tls-certfile", type=str, help="Partially enables TLS, requires --tls-keyfile to fully function", default=None)
parser.add_argument("--server-name", type=str, help="Sets hostname of server", default=None)
+script_loading.preload_extensions(extensions.extensions_dir, parser)
+script_loading.preload_extensions(extensions.extensions_builtin_dir, parser)
+
cmd_opts = parser.parse_args()
+
restricted_opts = {
"samples_filename_pattern",
"directories_filename_pattern",
@@ -104,10 +110,21 @@ restricted_opts = {
"outdir_save",
}
-cmd_opts.disable_extension_access = (cmd_opts.share or cmd_opts.listen) and not cmd_opts.enable_insecure_extension_access
+ui_reorder_categories = [
+ "sampler",
+ "dimensions",
+ "cfg",
+ "seed",
+ "checkboxes",
+ "hires_fix",
+ "batch",
+ "scripts",
+]
-devices.device, devices.device_interrogate, devices.device_gfpgan, devices.device_swinir, devices.device_esrgan, devices.device_scunet, devices.device_codeformer = \
-(devices.cpu if any(y in cmd_opts.use_cpu for y in [x, 'all']) else devices.get_optimal_device() for x in ['sd', 'interrogate', 'gfpgan', 'swinir', 'esrgan', 'scunet', 'codeformer'])
+cmd_opts.disable_extension_access = (cmd_opts.share or cmd_opts.listen or cmd_opts.server_name) and not cmd_opts.enable_insecure_extension_access
+
+devices.device, devices.device_interrogate, devices.device_gfpgan, devices.device_esrgan, devices.device_codeformer = \
+ (devices.cpu if any(y in cmd_opts.use_cpu for y in [x, 'all']) else devices.get_optimal_device() for x in ['sd', 'interrogate', 'gfpgan', 'esrgan', 'codeformer'])
device = devices.device
weight_load_location = None if cmd_opts.lowram else "cpu"
@@ -118,10 +135,12 @@ xformers_available = False
config_filename = cmd_opts.ui_settings_file
os.makedirs(cmd_opts.hypernetwork_dir, exist_ok=True)
-hypernetworks = hypernetwork.list_hypernetworks(cmd_opts.hypernetwork_dir)
+hypernetworks = {}
loaded_hypernetwork = None
+
def reload_hypernetworks():
+ from modules.hypernetworks import hypernetwork
global hypernetworks
hypernetworks = hypernetwork.list_hypernetworks(cmd_opts.hypernetwork_dir)
@@ -161,9 +180,10 @@ class State:
def dict(self):
obj = {
"skipped": self.skipped,
- "interrupted": self.skipped,
+ "interrupted": self.interrupted,
"job": self.job,
"job_count": self.job_count,
+ "job_timestamp": self.job_timestamp,
"job_no": self.job_no,
"sampling_step": self.sampling_step,
"sampling_steps": self.sampling_steps,
@@ -194,22 +214,25 @@ class State:
"""sets self.current_image from self.current_latent if enough sampling steps have been made after the last call to this"""
def set_current_image(self):
+ if not parallel_processing_allowed:
+ return
+
if self.sampling_step - self.current_image_sampling_step >= opts.show_progress_every_n_steps and opts.show_progress_every_n_steps > 0:
self.do_set_current_image()
def do_set_current_image(self):
- if not parallel_processing_allowed:
- return
if self.current_latent is None:
return
+ import modules.sd_samplers
if opts.show_progress_grid:
- self.current_image = sd_samplers.samples_to_image_grid(self.current_latent)
+ self.current_image = modules.sd_samplers.samples_to_image_grid(self.current_latent)
else:
- self.current_image = sd_samplers.sample_to_image(self.current_latent)
+ self.current_image = modules.sd_samplers.sample_to_image(self.current_latent)
self.current_image_sampling_step = self.sampling_step
+
state = State()
artist_db = modules.artists.ArtistsDatabase(os.path.join(script_path, 'artists.csv'))
@@ -245,6 +268,21 @@ def options_section(section_identifier, options_dict):
return options_dict
+def list_checkpoint_tiles():
+ import modules.sd_models
+ return modules.sd_models.checkpoint_tiles()
+
+
+def refresh_checkpoints():
+ import modules.sd_models
+ return modules.sd_models.list_models()
+
+
+def list_samplers():
+ import modules.sd_samplers
+ return modules.sd_samplers.all_samplers
+
+
hide_dirs = {"visible": not cmd_opts.hide_ui_dir_config}
options_templates = {}
@@ -271,8 +309,13 @@ options_templates.update(options_section(('saving-images', "Saving images/grids"
"export_for_4chan": OptionInfo(True, "If PNG image is larger than 4MB or any dimension is larger than 4000, downscale and save copy as JPG"),
"use_original_name_batch": OptionInfo(False, "Use original name for output filename during batch process in extras tab"),
+ "use_upscaler_name_as_suffix": OptionInfo(False, "Use upscaler name as filename suffix in the extras tab"),
"save_selected_only": OptionInfo(True, "When using 'Save' button, only save a single selected image"),
"do_not_add_watermark": OptionInfo(False, "Do not add watermark to images"),
+
+ "temp_dir": OptionInfo("", "Directory for temporary images; leave empty for default"),
+ "clean_temp_dir_at_start": OptionInfo(False, "Cleanup non-default temporary directory when starting webui"),
+
}))
options_templates.update(options_section(('saving-paths', "Paths for saving"), {
@@ -297,12 +340,8 @@ options_templates.update(options_section(('saving-to-dirs', "Saving to a directo
options_templates.update(options_section(('upscaling', "Upscaling"), {
"ESRGAN_tile": OptionInfo(192, "Tile size for ESRGAN upscalers. 0 = no tiling.", gr.Slider, {"minimum": 0, "maximum": 512, "step": 16}),
"ESRGAN_tile_overlap": OptionInfo(8, "Tile overlap, in pixels for ESRGAN upscalers. Low values = visible seam.", gr.Slider, {"minimum": 0, "maximum": 48, "step": 1}),
- "realesrgan_enabled_models": OptionInfo(["R-ESRGAN x4+", "R-ESRGAN x4+ Anime6B"], "Select which Real-ESRGAN models to show in the web UI. (Requires restart)", gr.CheckboxGroup, lambda: {"choices": realesrgan_models_names()}),
- "SWIN_tile": OptionInfo(192, "Tile size for all SwinIR.", gr.Slider, {"minimum": 16, "maximum": 512, "step": 16}),
- "SWIN_tile_overlap": OptionInfo(8, "Tile overlap, in pixels for SwinIR. Low values = visible seam.", gr.Slider, {"minimum": 0, "maximum": 48, "step": 1}),
- "ldsr_steps": OptionInfo(100, "LDSR processing steps. Lower = faster", gr.Slider, {"minimum": 1, "maximum": 200, "step": 1}),
+ "realesrgan_enabled_models": OptionInfo(["R-ESRGAN 4x+", "R-ESRGAN 4x+ Anime6B"], "Select which Real-ESRGAN models to show in the web UI. (Requires restart)", gr.CheckboxGroup, lambda: {"choices": realesrgan_models_names()}),
"upscaler_for_img2img": OptionInfo(None, "Upscaler for img2img", gr.Dropdown, lambda: {"choices": [x.name for x in sd_upscalers]}),
- "use_scale_latent_for_hires_fix": OptionInfo(False, "Upscale latent space image when doing hires. fix"),
}))
options_templates.update(options_section(('face-restoration', "Face restoration"), {
@@ -319,7 +358,8 @@ options_templates.update(options_section(('system', "System"), {
options_templates.update(options_section(('training', "Training"), {
"unload_models_when_training": OptionInfo(False, "Move VAE and CLIP to RAM when training if possible. Saves VRAM."),
- "save_optimizer_state": OptionInfo(False, "Saves Optimizer state as separate *.optim file. Training can be resumed with HN itself and matching optim file."),
+ "pin_memory": OptionInfo(False, "Turn on pin_memory for DataLoader. Makes training slightly faster but can increase memory usage."),
+ "save_optimizer_state": OptionInfo(False, "Saves Optimizer state as separate *.optim file. Training of embedding or HN can be resumed with the matching optim file."),
"dataset_filename_word_regex": OptionInfo("", "Filename word regex"),
"dataset_filename_join_string": OptionInfo(" ", "Filename join string"),
"training_image_repeats_per_epoch": OptionInfo(1, "Number of repeats for a single input image per epoch; used only for displaying epoch number", gr.Number, {"precision": 0}),
@@ -328,24 +368,31 @@ options_templates.update(options_section(('training', "Training"), {
}))
options_templates.update(options_section(('sd', "Stable Diffusion"), {
- "sd_model_checkpoint": OptionInfo(None, "Stable Diffusion checkpoint", gr.Dropdown, lambda: {"choices": modules.sd_models.checkpoint_tiles()}, refresh=sd_models.list_models),
+ "sd_model_checkpoint": OptionInfo(None, "Stable Diffusion checkpoint", gr.Dropdown, lambda: {"choices": list_checkpoint_tiles()}, refresh=refresh_checkpoints),
"sd_checkpoint_cache": OptionInfo(0, "Checkpoints to cache in RAM", gr.Slider, {"minimum": 0, "maximum": 10, "step": 1}),
- "sd_vae": OptionInfo("auto", "SD VAE", gr.Dropdown, lambda: {"choices": list(sd_vae.vae_list)}, refresh=sd_vae.refresh_vae_list),
+ "sd_vae_checkpoint_cache": OptionInfo(0, "VAE Checkpoints to cache in RAM", gr.Slider, {"minimum": 0, "maximum": 10, "step": 1}),
+ "sd_vae": OptionInfo("auto", "SD VAE", gr.Dropdown, lambda: {"choices": sd_vae.vae_list}, refresh=sd_vae.refresh_vae_list),
+ "sd_vae_as_default": OptionInfo(False, "Ignore selected VAE for stable diffusion checkpoints that have their own .vae.pt next to them"),
"sd_hypernetwork": OptionInfo("None", "Hypernetwork", gr.Dropdown, lambda: {"choices": ["None"] + [x for x in hypernetworks.keys()]}, refresh=reload_hypernetworks),
"sd_hypernetwork_strength": OptionInfo(1.0, "Hypernetwork strength", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.001}),
"inpainting_mask_weight": OptionInfo(1.0, "Inpainting conditioning mask strength", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
+ "initial_noise_multiplier": OptionInfo(1.0, "Noise multiplier for img2img", gr.Slider, {"minimum": 0.5, "maximum": 1.5, "step": 0.01 }),
"img2img_color_correction": OptionInfo(False, "Apply color correction to img2img results to match original colors."),
"img2img_fix_steps": OptionInfo(False, "With img2img, do exactly the amount of steps the slider specifies (normally you'd do less with less denoising)."),
+ "img2img_background_color": OptionInfo("#ffffff", "With img2img, fill image's transparent parts with this color.", gr.ColorPicker, {}),
"enable_quantization": OptionInfo(False, "Enable quantization in K samplers for sharper and cleaner results. This may change existing seeds. Requires restart to apply."),
"enable_emphasis": OptionInfo(True, "Emphasis: use (text) to make model pay more attention to text and [text] to make it pay less attention"),
- "use_old_emphasis_implementation": OptionInfo(False, "Use old emphasis implementation. Can be useful to reproduce old seeds."),
"enable_batch_seeds": OptionInfo(True, "Make K-diffusion samplers produce same images in a batch as when making a single image"),
"comma_padding_backtrack": OptionInfo(20, "Increase coherency by padding from the last comma within n tokens when using more than 75 tokens", gr.Slider, {"minimum": 0, "maximum": 74, "step": 1 }),
- "filter_nsfw": OptionInfo(False, "Filter NSFW content"),
- 'CLIP_stop_at_last_layers': OptionInfo(1, "Stop At last layers of CLIP model", gr.Slider, {"minimum": 1, "maximum": 12, "step": 1}),
+ 'CLIP_stop_at_last_layers': OptionInfo(1, "Clip skip", gr.Slider, {"minimum": 1, "maximum": 12, "step": 1}),
"random_artist_categories": OptionInfo([], "Allowed categories for random artists selection when using the Roll button", gr.CheckboxGroup, {"choices": artist_db.categories()}),
}))
+options_templates.update(options_section(('compatibility', "Compatibility"), {
+ "use_old_emphasis_implementation": OptionInfo(False, "Use old emphasis implementation. Can be useful to reproduce old seeds."),
+ "use_old_karras_scheduler_sigmas": OptionInfo(False, "Use old karras scheduler sigmas (0.1 to 10)."),
+}))
+
options_templates.update(options_section(('interrogate', "Interrogate Options"), {
"interrogate_keep_models_in_memory": OptionInfo(False, "Interrogate: keep models in VRAM"),
"interrogate_use_builtin_artists": OptionInfo(True, "Interrogate: use artists from artists.csv"),
@@ -358,11 +405,13 @@ options_templates.update(options_section(('interrogate', "Interrogate Options"),
"deepbooru_sort_alpha": OptionInfo(True, "Interrogate: deepbooru sort alphabetically"),
"deepbooru_use_spaces": OptionInfo(False, "use spaces for tags in deepbooru"),
"deepbooru_escape": OptionInfo(True, "escape (\\) brackets in deepbooru (so they are used as literal brackets and not for emphasis)"),
+ "deepbooru_filter_tags": OptionInfo("", "filter out those tags from deepbooru output (separated by comma)"),
}))
options_templates.update(options_section(('ui', "User interface"), {
"show_progressbar": OptionInfo(True, "Show progressbar"),
"show_progress_every_n_steps": OptionInfo(0, "Show image creation progress every N sampling steps. Set to 0 to disable. Set to -1 to show after completion of batch.", gr.Slider, {"minimum": -1, "maximum": 32, "step": 1}),
+ "show_progress_type": OptionInfo("Full", "Image creation progress preview mode", gr.Radio, {"choices": ["Full", "Approx NN", "Approx cheap"]}),
"show_progress_grid": OptionInfo(True, "Show previews of all images generated in a batch as a grid"),
"return_grid": OptionInfo(True, "Show grid in results for web"),
"do_not_show_images": OptionInfo(False, "Do not show any images in results for web"),
@@ -370,16 +419,20 @@ options_templates.update(options_section(('ui', "User interface"), {
"add_model_name_to_info": OptionInfo(False, "Add model name to generation information"),
"disable_weights_auto_swap": OptionInfo(False, "When reading generation parameters from text into UI (from PNG info or pasted text), do not change the selected model/checkpoint."),
"send_seed": OptionInfo(True, "Send seed when sending prompt or image to other interface"),
+ "send_size": OptionInfo(True, "Send size when sending prompt or image to another interface"),
"font": OptionInfo("", "Font for image grids that have text"),
"js_modal_lightbox": OptionInfo(True, "Enable full page image viewer"),
"js_modal_lightbox_initially_zoomed": OptionInfo(True, "Show images zoomed in by default in full page image viewer"),
"show_progress_in_title": OptionInfo(True, "Show generation progress in window title."),
+ "samplers_in_dropdown": OptionInfo(True, "Use dropdown for sampler selection instead of radio group"),
+ "dimensions_and_batch_together": OptionInfo(True, "Show Witdth/Height and Batch sliders in same row"),
'quicksettings': OptionInfo("sd_model_checkpoint", "Quicksettings list"),
+ 'ui_reorder': OptionInfo(", ".join(ui_reorder_categories), "txt2img/ing2img UI item order"),
'localization': OptionInfo("None", "Localization (requires restart)", gr.Dropdown, lambda: {"choices": ["None"] + list(localization.localizations.keys())}, refresh=lambda: localization.list_localizations(cmd_opts.localizations_dir)),
}))
options_templates.update(options_section(('sampler-params', "Sampler parameters"), {
- "hide_samplers": OptionInfo([], "Hide samplers in user interface (requires restart)", gr.CheckboxGroup, lambda: {"choices": [x.name for x in sd_samplers.all_samplers]}),
+ "hide_samplers": OptionInfo([], "Hide samplers in user interface (requires restart)", gr.CheckboxGroup, lambda: {"choices": [x.name for x in list_samplers()]}),
"eta_ddim": OptionInfo(0.0, "eta (noise multiplier) for DDIM", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
"eta_ancestral": OptionInfo(1.0, "eta (noise multiplier) for ancestral samplers", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
"ddim_discretize": OptionInfo('uniform', "img2img DDIM discretize", gr.Radio, {"choices": ['uniform', 'quad']}),
@@ -432,6 +485,28 @@ class Options:
return super(Options, self).__getattribute__(item)
+ def set(self, key, value):
+ """sets an option and calls its onchange callback, returning True if the option changed and False otherwise"""
+
+ oldval = self.data.get(key, None)
+ if oldval == value:
+ return False
+
+ try:
+ setattr(self, key, value)
+ except RuntimeError:
+ return False
+
+ if self.data_labels[key].onchange is not None:
+ try:
+ self.data_labels[key].onchange()
+ except Exception as e:
+ errors.display(e, f"changing setting {key} to {value}")
+ setattr(self, key, oldval)
+ return False
+
+ return True
+
def save(self, filename):
assert not cmd_opts.freeze_settings, "saving settings is disabled"
@@ -491,6 +566,15 @@ opts = Options()
if os.path.exists(config_filename):
opts.load(config_filename)
+latent_upscale_default_mode = "Latent"
+latent_upscale_modes = {
+ "Latent": {"mode": "bilinear", "antialias": False},
+ "Latent (antialiased)": {"mode": "bilinear", "antialias": True},
+ "Latent (bicubic)": {"mode": "bicubic", "antialias": False},
+ "Latent (bicubic antialiased)": {"mode": "bicubic", "antialias": True},
+ "Latent (nearest)": {"mode": "nearest", "antialias": False},
+}
+
sd_upscalers = []
sd_model = None
diff --git a/modules/styles.py b/modules/styles.py
index 3bf5c5b60..ce6e71ca1 100644
--- a/modules/styles.py
+++ b/modules/styles.py
@@ -65,17 +65,6 @@ class StyleDatabase:
def apply_negative_styles_to_prompt(self, prompt, styles):
return apply_styles_to_prompt(prompt, [self.styles.get(x, self.no_style).negative_prompt for x in styles])
- def apply_styles(self, p: StableDiffusionProcessing) -> None:
- if isinstance(p.prompt, list):
- p.prompt = [self.apply_styles_to_prompt(prompt, p.styles) for prompt in p.prompt]
- else:
- p.prompt = self.apply_styles_to_prompt(p.prompt, p.styles)
-
- if isinstance(p.negative_prompt, list):
- p.negative_prompt = [self.apply_negative_styles_to_prompt(prompt, p.styles) for prompt in p.negative_prompt]
- else:
- p.negative_prompt = self.apply_negative_styles_to_prompt(p.negative_prompt, p.styles)
-
def save_styles(self, path: str) -> None:
# Write to temporary file first, so we don't nuke the file if something goes wrong
fd, temp_path = tempfile.mkstemp(".csv")
diff --git a/modules/textual_inversion/autocrop.py b/modules/textual_inversion/autocrop.py
index 9859974ad..68e1103c5 100644
--- a/modules/textual_inversion/autocrop.py
+++ b/modules/textual_inversion/autocrop.py
@@ -276,8 +276,8 @@ def poi_average(pois, settings):
weight += poi.weight
x += poi.x * poi.weight
y += poi.y * poi.weight
- avg_x = round(x / weight)
- avg_y = round(y / weight)
+ avg_x = round(weight and x / weight)
+ avg_y = round(weight and y / weight)
return PointOfInterest(avg_x, avg_y)
@@ -338,4 +338,4 @@ class Settings:
self.face_points_weight = face_points_weight
self.annotate_image = annotate_image
self.destop_view_image = False
- self.dnn_model_path = dnn_model_path
\ No newline at end of file
+ self.dnn_model_path = dnn_model_path
diff --git a/modules/textual_inversion/dataset.py b/modules/textual_inversion/dataset.py
index ad7265778..88d68c76c 100644
--- a/modules/textual_inversion/dataset.py
+++ b/modules/textual_inversion/dataset.py
@@ -3,7 +3,7 @@ import numpy as np
import PIL
import torch
from PIL import Image
-from torch.utils.data import Dataset
+from torch.utils.data import Dataset, DataLoader
from torchvision import transforms
import random
@@ -11,25 +11,28 @@ import tqdm
from modules import devices, shared
import re
+from ldm.modules.distributions.distributions import DiagonalGaussianDistribution
+
re_numbers_at_start = re.compile(r"^[-\d]+\s*")
class DatasetEntry:
- def __init__(self, filename=None, latent=None, filename_text=None):
+ def __init__(self, filename=None, filename_text=None, latent_dist=None, latent_sample=None, cond=None, cond_text=None, pixel_values=None):
self.filename = filename
- self.latent = latent
self.filename_text = filename_text
- self.cond = None
- self.cond_text = None
+ self.latent_dist = latent_dist
+ self.latent_sample = latent_sample
+ self.cond = cond
+ self.cond_text = cond_text
+ self.pixel_values = pixel_values
class PersonalizedBase(Dataset):
- def __init__(self, data_root, width, height, repeats, flip_p=0.5, placeholder_token="*", model=None, device=None, template_file=None, include_cond=False, batch_size=1):
+ def __init__(self, data_root, width, height, repeats, flip_p=0.5, placeholder_token="*", model=None, cond_model=None, device=None, template_file=None, include_cond=False, batch_size=1, gradient_step=1, shuffle_tags=False, tag_drop_out=0, latent_sampling_method='once'):
re_word = re.compile(shared.opts.dataset_filename_word_regex) if len(shared.opts.dataset_filename_word_regex) > 0 else None
self.placeholder_token = placeholder_token
- self.batch_size = batch_size
self.width = width
self.height = height
self.flip = transforms.RandomHorizontalFlip(p=flip_p)
@@ -45,11 +48,16 @@ class PersonalizedBase(Dataset):
assert os.path.isdir(data_root), "Dataset directory doesn't exist"
assert os.listdir(data_root), "Dataset directory is empty"
- cond_model = shared.sd_model.cond_stage_model
-
self.image_paths = [os.path.join(data_root, file_path) for file_path in os.listdir(data_root)]
+
+
+ self.shuffle_tags = shuffle_tags
+ self.tag_drop_out = tag_drop_out
+
print("Preparing dataset...")
for path in tqdm.tqdm(self.image_paths):
+ if shared.state.interrupted:
+ raise Exception("interrupted")
try:
image = Image.open(path).convert('RGB').resize((self.width, self.height), PIL.Image.BICUBIC)
except Exception:
@@ -71,53 +79,94 @@ class PersonalizedBase(Dataset):
npimage = np.array(image).astype(np.uint8)
npimage = (npimage / 127.5 - 1.0).astype(np.float32)
- torchdata = torch.from_numpy(npimage).to(device=device, dtype=torch.float32)
- torchdata = torch.moveaxis(torchdata, 2, 0)
+ torchdata = torch.from_numpy(npimage).permute(2, 0, 1).to(device=device, dtype=torch.float32)
+ latent_sample = None
- init_latent = model.get_first_stage_encoding(model.encode_first_stage(torchdata.unsqueeze(dim=0))).squeeze()
- init_latent = init_latent.to(devices.cpu)
+ with devices.autocast():
+ latent_dist = model.encode_first_stage(torchdata.unsqueeze(dim=0))
- entry = DatasetEntry(filename=path, filename_text=filename_text, latent=init_latent)
+ if latent_sampling_method == "once" or (latent_sampling_method == "deterministic" and not isinstance(latent_dist, DiagonalGaussianDistribution)):
+ latent_sample = model.get_first_stage_encoding(latent_dist).squeeze().to(devices.cpu)
+ latent_sampling_method = "once"
+ entry = DatasetEntry(filename=path, filename_text=filename_text, latent_sample=latent_sample)
+ elif latent_sampling_method == "deterministic":
+ # Works only for DiagonalGaussianDistribution
+ latent_dist.std = 0
+ latent_sample = model.get_first_stage_encoding(latent_dist).squeeze().to(devices.cpu)
+ entry = DatasetEntry(filename=path, filename_text=filename_text, latent_sample=latent_sample)
+ elif latent_sampling_method == "random":
+ entry = DatasetEntry(filename=path, filename_text=filename_text, latent_dist=latent_dist)
- if include_cond:
+ if not (self.tag_drop_out != 0 or self.shuffle_tags):
entry.cond_text = self.create_text(filename_text)
- entry.cond = cond_model([entry.cond_text]).to(devices.cpu).squeeze(0)
+
+ if include_cond and not (self.tag_drop_out != 0 or self.shuffle_tags):
+ with devices.autocast():
+ entry.cond = cond_model([entry.cond_text]).to(devices.cpu).squeeze(0)
self.dataset.append(entry)
+ del torchdata
+ del latent_dist
+ del latent_sample
- assert len(self.dataset) > 0, "No images have been found in the dataset."
- self.length = len(self.dataset) * repeats // batch_size
-
- self.dataset_length = len(self.dataset)
- self.indexes = None
- self.shuffle()
-
- def shuffle(self):
- self.indexes = np.random.permutation(self.dataset_length)
+ self.length = len(self.dataset)
+ assert self.length > 0, "No images have been found in the dataset."
+ self.batch_size = min(batch_size, self.length)
+ self.gradient_step = min(gradient_step, self.length // self.batch_size)
+ self.latent_sampling_method = latent_sampling_method
def create_text(self, filename_text):
text = random.choice(self.lines)
+ tags = filename_text.split(',')
+ if self.tag_drop_out != 0:
+ tags = [t for t in tags if random.random() > self.tag_drop_out]
+ if self.shuffle_tags:
+ random.shuffle(tags)
+ text = text.replace("[filewords]", ','.join(tags))
text = text.replace("[name]", self.placeholder_token)
- text = text.replace("[filewords]", filename_text)
return text
def __len__(self):
return self.length
def __getitem__(self, i):
- res = []
+ entry = self.dataset[i]
+ if self.tag_drop_out != 0 or self.shuffle_tags:
+ entry.cond_text = self.create_text(entry.filename_text)
+ if self.latent_sampling_method == "random":
+ entry.latent_sample = shared.sd_model.get_first_stage_encoding(entry.latent_dist).to(devices.cpu)
+ return entry
- for j in range(self.batch_size):
- position = i * self.batch_size + j
- if position % len(self.indexes) == 0:
- self.shuffle()
+class PersonalizedDataLoader(DataLoader):
+ def __init__(self, dataset, latent_sampling_method="once", batch_size=1, pin_memory=False):
+ super(PersonalizedDataLoader, self).__init__(dataset, shuffle=True, drop_last=True, batch_size=batch_size, pin_memory=pin_memory)
+ if latent_sampling_method == "random":
+ self.collate_fn = collate_wrapper_random
+ else:
+ self.collate_fn = collate_wrapper
- index = self.indexes[position % len(self.indexes)]
- entry = self.dataset[index]
- if entry.cond is None:
- entry.cond_text = self.create_text(entry.filename_text)
+class BatchLoader:
+ def __init__(self, data):
+ self.cond_text = [entry.cond_text for entry in data]
+ self.cond = [entry.cond for entry in data]
+ self.latent_sample = torch.stack([entry.latent_sample for entry in data]).squeeze(1)
+ #self.emb_index = [entry.emb_index for entry in data]
+ #print(self.latent_sample.device)
- res.append(entry)
+ def pin_memory(self):
+ self.latent_sample = self.latent_sample.pin_memory()
+ return self
- return res
+def collate_wrapper(batch):
+ return BatchLoader(batch)
+
+class BatchLoaderRandom(BatchLoader):
+ def __init__(self, data):
+ super().__init__(data)
+
+ def pin_memory(self):
+ return self
+
+def collate_wrapper_random(batch):
+ return BatchLoaderRandom(batch)
\ No newline at end of file
diff --git a/modules/textual_inversion/preprocess.py b/modules/textual_inversion/preprocess.py
index 488aa5b5f..feb876c62 100644
--- a/modules/textual_inversion/preprocess.py
+++ b/modules/textual_inversion/preprocess.py
@@ -6,12 +6,10 @@ import sys
import tqdm
import time
-from modules import shared, images
+from modules import shared, images, deepbooru
from modules.paths import models_path
from modules.shared import opts, cmd_opts
from modules.textual_inversion import autocrop
-if cmd_opts.deepdanbooru:
- import modules.deepbooru as deepbooru
def preprocess(process_src, process_dst, process_width, process_height, preprocess_txt_action, process_flip, process_split, process_caption, process_caption_deepbooru=False, split_threshold=0.5, overlap_ratio=0.2, process_focal_crop=False, process_focal_crop_face_weight=0.9, process_focal_crop_entropy_weight=0.3, process_focal_crop_edges_weight=0.5, process_focal_crop_debug=False):
@@ -20,9 +18,7 @@ def preprocess(process_src, process_dst, process_width, process_height, preproce
shared.interrogator.load()
if process_caption_deepbooru:
- db_opts = deepbooru.create_deepbooru_opts()
- db_opts[deepbooru.OPT_INCLUDE_RANKS] = False
- deepbooru.create_deepbooru_process(opts.interrogate_deepbooru_score_threshold, db_opts)
+ deepbooru.model.start()
preprocess_work(process_src, process_dst, process_width, process_height, preprocess_txt_action, process_flip, process_split, process_caption, process_caption_deepbooru, split_threshold, overlap_ratio, process_focal_crop, process_focal_crop_face_weight, process_focal_crop_entropy_weight, process_focal_crop_edges_weight, process_focal_crop_debug)
@@ -32,7 +28,7 @@ def preprocess(process_src, process_dst, process_width, process_height, preproce
shared.interrogator.send_blip_to_ram()
if process_caption_deepbooru:
- deepbooru.release_process()
+ deepbooru.model.stop()
def listfiles(dirname):
@@ -58,7 +54,7 @@ def save_pic_with_caption(image, index, params: PreprocessParams, existing_capti
if params.process_caption_deepbooru:
if len(caption) > 0:
caption += ", "
- caption += deepbooru.get_tags_from_process(image)
+ caption += deepbooru.model.tag_multi(image)
filename_part = params.src
filename_part = os.path.splitext(filename_part)[0]
@@ -128,6 +124,7 @@ def preprocess_work(process_src, process_dst, process_width, process_height, pre
files = listfiles(src)
+ shared.state.job = "preprocess"
shared.state.textinfo = "Preprocessing..."
shared.state.job_count = len(files)
diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py
index 687d97bbb..71e07bcc2 100644
--- a/modules/textual_inversion/textual_inversion.py
+++ b/modules/textual_inversion/textual_inversion.py
@@ -10,7 +10,7 @@ import csv
from PIL import Image, PngImagePlugin
-from modules import shared, devices, sd_hijack, processing, sd_models, images
+from modules import shared, devices, sd_hijack, processing, sd_models, images, sd_samplers
import modules.textual_inversion.dataset
from modules.textual_inversion.learn_schedule import LearnRateScheduler
@@ -23,9 +23,12 @@ class Embedding:
self.vec = vec
self.name = name
self.step = step
+ self.shape = None
+ self.vectors = 0
self.cached_checksum = None
self.sd_checkpoint = None
self.sd_checkpoint_name = None
+ self.optimizer_state_dict = None
def save(self, filename):
embedding_data = {
@@ -39,6 +42,13 @@ class Embedding:
torch.save(embedding_data, filename)
+ if shared.opts.save_optimizer_state and self.optimizer_state_dict is not None:
+ optimizer_saved_dict = {
+ 'hash': self.checksum(),
+ 'optimizer_state_dict': self.optimizer_state_dict,
+ }
+ torch.save(optimizer_saved_dict, filename + '.optim')
+
def checksum(self):
if self.cached_checksum is not None:
return self.cached_checksum
@@ -57,14 +67,17 @@ class EmbeddingDatabase:
def __init__(self, embeddings_dir):
self.ids_lookup = {}
self.word_embeddings = {}
+ self.skipped_embeddings = {}
self.dir_mtime = None
self.embeddings_dir = embeddings_dir
+ self.expected_shape = -1
def register_embedding(self, embedding, model):
self.word_embeddings[embedding.name] = embedding
- ids = model.cond_stage_model.tokenizer([embedding.name], add_special_tokens=False)['input_ids'][0]
+ # TODO changing between clip and open clip changes tokenization, which will cause embeddings to stop working
+ ids = model.cond_stage_model.tokenize([embedding.name])[0]
first_id = ids[0]
if first_id not in self.ids_lookup:
@@ -74,21 +87,26 @@ class EmbeddingDatabase:
return embedding
- def load_textual_inversion_embeddings(self):
+ def get_expected_shape(self):
+ vec = shared.sd_model.cond_stage_model.encode_embedding_init_text(",", 1)
+ return vec.shape[1]
+
+ def load_textual_inversion_embeddings(self, force_reload = False):
mt = os.path.getmtime(self.embeddings_dir)
- if self.dir_mtime is not None and mt <= self.dir_mtime:
+ if not force_reload and self.dir_mtime is not None and mt <= self.dir_mtime:
return
self.dir_mtime = mt
self.ids_lookup.clear()
self.word_embeddings.clear()
+ self.skipped_embeddings.clear()
+ self.expected_shape = self.get_expected_shape()
def process_file(path, filename):
- name = os.path.splitext(filename)[0]
+ name, ext = os.path.splitext(filename)
+ ext = ext.upper()
- data = []
-
- if os.path.splitext(filename.upper())[-1] in ['.PNG', '.WEBP', '.JXL', '.AVIF']:
+ if ext in ['.PNG', '.WEBP', '.JXL', '.AVIF']:
embed_image = Image.open(path)
if hasattr(embed_image, 'text') and 'sd-ti-embedding' in embed_image.text:
data = embedding_from_b64(embed_image.text['sd-ti-embedding'])
@@ -96,8 +114,10 @@ class EmbeddingDatabase:
else:
data = extract_image_data_embed(embed_image)
name = data.get('name', name)
- else:
+ elif ext in ['.BIN', '.PT']:
data = torch.load(path, map_location="cpu")
+ else:
+ return
# textual inversion embeddings
if 'string_to_param' in data:
@@ -121,7 +141,13 @@ class EmbeddingDatabase:
embedding.step = data.get('step', None)
embedding.sd_checkpoint = data.get('sd_checkpoint', None)
embedding.sd_checkpoint_name = data.get('sd_checkpoint_name', None)
- self.register_embedding(embedding, shared.sd_model)
+ embedding.vectors = vec.shape[0]
+ embedding.shape = vec.shape[-1]
+
+ if self.expected_shape == -1 or self.expected_shape == embedding.shape:
+ self.register_embedding(embedding, shared.sd_model)
+ else:
+ self.skipped_embeddings[name] = embedding
for fn in os.listdir(self.embeddings_dir):
try:
@@ -132,12 +158,13 @@ class EmbeddingDatabase:
process_file(fullfn, fn)
except Exception:
- print(f"Error loading emedding {fn}:", file=sys.stderr)
+ print(f"Error loading embedding {fn}:", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
continue
- print(f"Loaded a total of {len(self.word_embeddings)} textual inversion embeddings.")
- print("Embeddings:", ', '.join(self.word_embeddings.keys()))
+ print(f"Textual inversion embeddings loaded({len(self.word_embeddings)}): {', '.join(self.word_embeddings.keys())}")
+ if len(self.skipped_embeddings) > 0:
+ print(f"Textual inversion embeddings skipped({len(self.skipped_embeddings)}): {', '.join(self.skipped_embeddings.keys())}")
def find_embedding_at_position(self, tokens, offset):
token = tokens[offset]
@@ -155,13 +182,11 @@ class EmbeddingDatabase:
def create_embedding(name, num_vectors_per_token, overwrite_old, init_text='*'):
cond_model = shared.sd_model.cond_stage_model
- embedding_layer = cond_model.wrapped.transformer.text_model.embeddings
with devices.autocast():
cond_model([""]) # will send cond model to GPU if lowvram/medvram is active
- ids = cond_model.tokenizer(init_text, max_length=num_vectors_per_token, return_tensors="pt", add_special_tokens=False)["input_ids"]
- embedded = embedding_layer.token_embedding.wrapped(ids.to(devices.device)).squeeze(0)
+ embedded = cond_model.encode_embedding_init_text(init_text, num_vectors_per_token)
vec = torch.zeros((num_vectors_per_token, embedded.shape[1]), device=devices.device)
for i in range(num_vectors_per_token):
@@ -184,7 +209,7 @@ def write_loss(log_directory, filename, step, epoch_len, values):
if shared.opts.training_write_csv_every == 0:
return
- if (step + 1) % shared.opts.training_write_csv_every != 0:
+ if step % shared.opts.training_write_csv_every != 0:
return
write_csv_header = False if os.path.exists(os.path.join(log_directory, filename)) else True
@@ -194,21 +219,23 @@ def write_loss(log_directory, filename, step, epoch_len, values):
if write_csv_header:
csv_writer.writeheader()
- epoch = step // epoch_len
- epoch_step = step % epoch_len
+ epoch = (step - 1) // epoch_len
+ epoch_step = (step - 1) % epoch_len
csv_writer.writerow({
- "step": step + 1,
+ "step": step,
"epoch": epoch,
- "epoch_step": epoch_step + 1,
+ "epoch_step": epoch_step,
**values,
})
-def validate_train_inputs(model_name, learn_rate, batch_size, data_root, template_file, steps, save_model_every, create_image_every, log_directory, name="embedding"):
+def validate_train_inputs(model_name, learn_rate, batch_size, gradient_step, data_root, template_file, steps, save_model_every, create_image_every, log_directory, name="embedding"):
assert model_name, f"{name} not selected"
assert learn_rate, "Learning rate is empty or 0"
assert isinstance(batch_size, int), "Batch size must be integer"
assert batch_size > 0, "Batch size must be positive"
+ assert isinstance(gradient_step, int), "Gradient accumulation step must be integer"
+ assert gradient_step > 0, "Gradient accumulation step must be positive"
assert data_root, "Dataset directory is empty"
assert os.path.isdir(data_root), "Dataset directory doesn't exist"
assert os.listdir(data_root), "Dataset directory is empty"
@@ -224,11 +251,12 @@ def validate_train_inputs(model_name, learn_rate, batch_size, data_root, templat
if save_model_every or create_image_every:
assert log_directory, "Log directory is empty"
-def train_embedding(embedding_name, learn_rate, batch_size, data_root, log_directory, training_width, training_height, steps, clip_grad_mode, clip_grad_value, create_image_every, save_embedding_every, template_file, save_image_with_stored_embedding, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height):
+def train_embedding(embedding_name, learn_rate, batch_size, gradient_step, data_root, log_directory, training_width, training_height, steps, clip_grad_mode, clip_grad_value, shuffle_tags, tag_drop_out, latent_sampling_method, create_image_every, save_embedding_every, template_file, save_image_with_stored_embedding, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height):
save_embedding_every = save_embedding_every or 0
create_image_every = create_image_every or 0
- validate_train_inputs(embedding_name, learn_rate, batch_size, data_root, template_file, steps, save_embedding_every, create_image_every, log_directory, name="embedding")
+ validate_train_inputs(embedding_name, learn_rate, batch_size, gradient_step, data_root, template_file, steps, save_embedding_every, create_image_every, log_directory, name="embedding")
+ shared.state.job = "train-embedding"
shared.state.textinfo = "Initializing textual inversion training..."
shared.state.job_count = steps
@@ -255,19 +283,16 @@ def train_embedding(embedding_name, learn_rate, batch_size, data_root, log_direc
else:
images_embeds_dir = None
- cond_model = shared.sd_model.cond_stage_model
-
hijack = sd_hijack.model_hijack
embedding = hijack.embedding_db.word_embeddings[embedding_name]
checkpoint = sd_models.select_checkpoint()
- ititial_step = embedding.step or 0
- if ititial_step >= steps:
- shared.state.textinfo = f"Model has already been trained beyond specified max steps"
+ initial_step = embedding.step or 0
+ if initial_step >= steps:
+ shared.state.textinfo = "Model has already been trained beyond specified max steps"
return embedding, filename
-
- scheduler = LearnRateScheduler(learn_rate, steps, ititial_step)
+ scheduler = LearnRateScheduler(learn_rate, steps, initial_step)
clip_grad = torch.nn.utils.clip_grad_value_ if clip_grad_mode == "value" else \
torch.nn.utils.clip_grad_norm_ if clip_grad_mode == "norm" else \
@@ -276,156 +301,219 @@ def train_embedding(embedding_name, learn_rate, batch_size, data_root, log_direc
clip_grad_sched = LearnRateScheduler(clip_grad_value, steps, ititial_step, verbose=False)
# dataset loading may take a while, so input validations and early returns should be done before this
shared.state.textinfo = f"Preparing dataset from {html.escape(data_root)}..."
- with torch.autocast("cuda"):
- ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=training_width, height=training_height, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=embedding_name, model=shared.sd_model, device=devices.device, template_file=template_file, batch_size=batch_size)
+ old_parallel_processing_allowed = shared.parallel_processing_allowed
+
+ pin_memory = shared.opts.pin_memory
+
+ ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=training_width, height=training_height, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=embedding_name, model=shared.sd_model, cond_model=shared.sd_model.cond_stage_model, device=devices.device, template_file=template_file, batch_size=batch_size, gradient_step=gradient_step, shuffle_tags=shuffle_tags, tag_drop_out=tag_drop_out, latent_sampling_method=latent_sampling_method)
+
+ latent_sampling_method = ds.latent_sampling_method
+
+ dl = modules.textual_inversion.dataset.PersonalizedDataLoader(ds, latent_sampling_method=latent_sampling_method, batch_size=ds.batch_size, pin_memory=pin_memory)
+
if unload:
+ shared.parallel_processing_allowed = False
shared.sd_model.first_stage_model.to(devices.cpu)
embedding.vec.requires_grad = True
- optimizer = torch.optim.AdamW([embedding.vec], lr=scheduler.learn_rate)
+ optimizer = torch.optim.AdamW([embedding.vec], lr=scheduler.learn_rate, weight_decay=0.0)
+ if shared.opts.save_optimizer_state:
+ optimizer_state_dict = None
+ if os.path.exists(filename + '.optim'):
+ optimizer_saved_dict = torch.load(filename + '.optim', map_location='cpu')
+ if embedding.checksum() == optimizer_saved_dict.get('hash', None):
+ optimizer_state_dict = optimizer_saved_dict.get('optimizer_state_dict', None)
+
+ if optimizer_state_dict is not None:
+ optimizer.load_state_dict(optimizer_state_dict)
+ print("Loaded existing optimizer from checkpoint")
+ else:
+ print("No saved optimizer exists in checkpoint")
- losses = torch.zeros((32,))
+ scaler = torch.cuda.amp.GradScaler()
+
+ batch_size = ds.batch_size
+ gradient_step = ds.gradient_step
+ # n steps = batch_size * gradient_step * n image processed
+ steps_per_epoch = len(ds) // batch_size // gradient_step
+ max_steps_per_epoch = len(ds) // batch_size - (len(ds) // batch_size) % gradient_step
+ loss_step = 0
+ _loss_step = 0 #internal
last_saved_file = ""
last_saved_image = ""
forced_filename = ""
embedding_yet_to_be_embedded = False
- pbar = tqdm.tqdm(enumerate(ds), total=steps-ititial_step)
- for i, entries in pbar:
- embedding.step = i + ititial_step
+ is_training_inpainting_model = shared.sd_model.model.conditioning_key in {'hybrid', 'concat'}
+ img_c = None
- scheduler.apply(optimizer, embedding.step)
- if scheduler.finished:
- break
+ pbar = tqdm.tqdm(total=steps - initial_step)
+ try:
+ for i in range((steps-initial_step) * gradient_step):
+ if scheduler.finished:
+ break
+ if shared.state.interrupted:
+ break
+ for j, batch in enumerate(dl):
+ # works as a drop_last=True for gradient accumulation
+ if j == max_steps_per_epoch:
+ break
+ scheduler.apply(optimizer, embedding.step)
+ if scheduler.finished:
+ break
+ if shared.state.interrupted:
+ break
- if shared.state.interrupted:
- break
+ if clip_grad:
+ clip_grad_sched.step(embedding.step)
+
+ with devices.autocast():
+ x = batch.latent_sample.to(devices.device, non_blocking=pin_memory)
+ c = shared.sd_model.cond_stage_model(batch.cond_text)
- if clip_grad:
- clip_grad_sched.step(embedding.step)
+ if is_training_inpainting_model:
+ if img_c is None:
+ img_c = processing.txt2img_image_conditioning(shared.sd_model, c, training_width, training_height)
- with torch.autocast("cuda"):
- c = cond_model([entry.cond_text for entry in entries])
- x = torch.stack([entry.latent for entry in entries]).to(devices.device)
- loss = shared.sd_model(x, c)[0]
- del x
+ cond = {"c_concat": [img_c], "c_crossattn": [c]}
+ else:
+ cond = c
- losses[embedding.step % losses.shape[0]] = loss.item()
+ loss = shared.sd_model(x, cond)[0] / gradient_step
+ del x
- optimizer.zero_grad()
- loss.backward()
+ _loss_step += loss.item()
+ scaler.scale(loss).backward()
- if clip_grad:
- clip_grad(embedding.vec, clip_grad_sched.learn_rate)
+ # go back until we reach gradient accumulation steps
+ if (j + 1) % gradient_step != 0:
+ continue
+
+ if clip_grad:
+ clip_grad(embedding.vec, clip_grad_sched.learn_rate)
- optimizer.step()
+ scaler.step(optimizer)
+ scaler.update()
+ embedding.step += 1
+ pbar.update()
+ optimizer.zero_grad(set_to_none=True)
+ loss_step = _loss_step
+ _loss_step = 0
- steps_done = embedding.step + 1
+ steps_done = embedding.step + 1
- epoch_num = embedding.step // len(ds)
- epoch_step = embedding.step % len(ds)
+ epoch_num = embedding.step // steps_per_epoch
+ epoch_step = embedding.step % steps_per_epoch
- pbar.set_description(f"[Epoch {epoch_num}: {epoch_step+1}/{len(ds)}]loss: {losses.mean():.7f}")
+ pbar.set_description(f"[Epoch {epoch_num}: {epoch_step+1}/{steps_per_epoch}]loss: {loss_step:.7f}")
+ if embedding_dir is not None and steps_done % save_embedding_every == 0:
+ # Before saving, change name to match current checkpoint.
+ embedding_name_every = f'{embedding_name}-{steps_done}'
+ last_saved_file = os.path.join(embedding_dir, f'{embedding_name_every}.pt')
+ save_embedding(embedding, optimizer, checkpoint, embedding_name_every, last_saved_file, remove_cached_checksum=True)
+ embedding_yet_to_be_embedded = True
- if embedding_dir is not None and steps_done % save_embedding_every == 0:
- # Before saving, change name to match current checkpoint.
- embedding_name_every = f'{embedding_name}-{steps_done}'
- last_saved_file = os.path.join(embedding_dir, f'{embedding_name_every}.pt')
- save_embedding(embedding, checkpoint, embedding_name_every, last_saved_file, remove_cached_checksum=True)
- embedding_yet_to_be_embedded = True
+ write_loss(log_directory, "textual_inversion_loss.csv", embedding.step, steps_per_epoch, {
+ "loss": f"{loss_step:.7f}",
+ "learn_rate": scheduler.learn_rate
+ })
- write_loss(log_directory, "textual_inversion_loss.csv", embedding.step, len(ds), {
- "loss": f"{losses.mean():.7f}",
- "learn_rate": scheduler.learn_rate
- })
+ if images_dir is not None and steps_done % create_image_every == 0:
+ forced_filename = f'{embedding_name}-{steps_done}'
+ last_saved_image = os.path.join(images_dir, forced_filename)
- if images_dir is not None and steps_done % create_image_every == 0:
- forced_filename = f'{embedding_name}-{steps_done}'
- last_saved_image = os.path.join(images_dir, forced_filename)
+ shared.sd_model.first_stage_model.to(devices.device)
- shared.sd_model.first_stage_model.to(devices.device)
+ p = processing.StableDiffusionProcessingTxt2Img(
+ sd_model=shared.sd_model,
+ do_not_save_grid=True,
+ do_not_save_samples=True,
+ do_not_reload_embeddings=True,
+ )
- p = processing.StableDiffusionProcessingTxt2Img(
- sd_model=shared.sd_model,
- do_not_save_grid=True,
- do_not_save_samples=True,
- do_not_reload_embeddings=True,
- )
+ if preview_from_txt2img:
+ p.prompt = preview_prompt
+ p.negative_prompt = preview_negative_prompt
+ p.steps = preview_steps
+ p.sampler_name = sd_samplers.samplers[preview_sampler_index].name
+ p.cfg_scale = preview_cfg_scale
+ p.seed = preview_seed
+ p.width = preview_width
+ p.height = preview_height
+ else:
+ p.prompt = batch.cond_text[0]
+ p.steps = 20
+ p.width = training_width
+ p.height = training_height
- if preview_from_txt2img:
- p.prompt = preview_prompt
- p.negative_prompt = preview_negative_prompt
- p.steps = preview_steps
- p.sampler_index = preview_sampler_index
- p.cfg_scale = preview_cfg_scale
- p.seed = preview_seed
- p.width = preview_width
- p.height = preview_height
- else:
- p.prompt = entries[0].cond_text
- p.steps = 20
- p.width = training_width
- p.height = training_height
+ preview_text = p.prompt
- preview_text = p.prompt
+ processed = processing.process_images(p)
+ image = processed.images[0] if len(processed.images) > 0 else None
- processed = processing.process_images(p)
- image = processed.images[0]
+ if unload:
+ shared.sd_model.first_stage_model.to(devices.cpu)
- if unload:
- shared.sd_model.first_stage_model.to(devices.cpu)
+ if image is not None:
+ shared.state.current_image = image
+ last_saved_image, last_text_info = images.save_image(image, images_dir, "", p.seed, p.prompt, shared.opts.samples_format, processed.infotexts[0], p=p, forced_filename=forced_filename, save_to_dirs=False)
+ last_saved_image += f", prompt: {preview_text}"
- shared.state.current_image = image
+ if save_image_with_stored_embedding and os.path.exists(last_saved_file) and embedding_yet_to_be_embedded:
- if save_image_with_stored_embedding and os.path.exists(last_saved_file) and embedding_yet_to_be_embedded:
+ last_saved_image_chunks = os.path.join(images_embeds_dir, f'{embedding_name}-{steps_done}.png')
- last_saved_image_chunks = os.path.join(images_embeds_dir, f'{embedding_name}-{steps_done}.png')
+ info = PngImagePlugin.PngInfo()
+ data = torch.load(last_saved_file)
+ info.add_text("sd-ti-embedding", embedding_to_b64(data))
- info = PngImagePlugin.PngInfo()
- data = torch.load(last_saved_file)
- info.add_text("sd-ti-embedding", embedding_to_b64(data))
+ title = "<{}>".format(data.get('name', '???'))
- title = "<{}>".format(data.get('name', '???'))
+ try:
+ vectorSize = list(data['string_to_param'].values())[0].shape[0]
+ except Exception as e:
+ vectorSize = '?'
- try:
- vectorSize = list(data['string_to_param'].values())[0].shape[0]
- except Exception as e:
- vectorSize = '?'
+ checkpoint = sd_models.select_checkpoint()
+ footer_left = checkpoint.model_name
+ footer_mid = '[{}]'.format(checkpoint.hash)
+ footer_right = '{}v {}s'.format(vectorSize, steps_done)
- checkpoint = sd_models.select_checkpoint()
- footer_left = checkpoint.model_name
- footer_mid = '[{}]'.format(checkpoint.hash)
- footer_right = '{}v {}s'.format(vectorSize, steps_done)
+ captioned_image = caption_image_overlay(image, title, footer_left, footer_mid, footer_right)
+ captioned_image = insert_image_data_embed(captioned_image, data)
- captioned_image = caption_image_overlay(image, title, footer_left, footer_mid, footer_right)
- captioned_image = insert_image_data_embed(captioned_image, data)
+ captioned_image.save(last_saved_image_chunks, "PNG", pnginfo=info)
+ embedding_yet_to_be_embedded = False
- captioned_image.save(last_saved_image_chunks, "PNG", pnginfo=info)
- embedding_yet_to_be_embedded = False
+ last_saved_image, last_text_info = images.save_image(image, images_dir, "", p.seed, p.prompt, shared.opts.samples_format, processed.infotexts[0], p=p, forced_filename=forced_filename, save_to_dirs=False)
+ last_saved_image += f", prompt: {preview_text}"
- last_saved_image, last_text_info = images.save_image(image, images_dir, "", p.seed, p.prompt, shared.opts.samples_format, processed.infotexts[0], p=p, forced_filename=forced_filename, save_to_dirs=False)
- last_saved_image += f", prompt: {preview_text}"
+ shared.state.job_no = embedding.step
- shared.state.job_no = embedding.step
-
- shared.state.textinfo = f"""
+ shared.state.textinfo = f"""
-Loss: {losses.mean():.7f}
-Step: {embedding.step}
-Last prompt: {html.escape(entries[0].cond_text)}
+Loss: {loss_step:.7f}
+Step: {steps_done}
+Last prompt: {html.escape(batch.cond_text[0])}
Last saved embedding: {html.escape(last_saved_file)}
Last saved image: {html.escape(last_saved_image)}
"""
-
- filename = os.path.join(shared.cmd_opts.embeddings_dir, f'{embedding_name}.pt')
- save_embedding(embedding, checkpoint, embedding_name, filename, remove_cached_checksum=True)
- shared.sd_model.first_stage_model.to(devices.device)
+ filename = os.path.join(shared.cmd_opts.embeddings_dir, f'{embedding_name}.pt')
+ save_embedding(embedding, optimizer, checkpoint, embedding_name, filename, remove_cached_checksum=True)
+ except Exception:
+ print(traceback.format_exc(), file=sys.stderr)
+ pass
+ finally:
+ pbar.leave = False
+ pbar.close()
+ shared.sd_model.first_stage_model.to(devices.device)
+ shared.parallel_processing_allowed = old_parallel_processing_allowed
return embedding, filename
-def save_embedding(embedding, checkpoint, embedding_name, filename, remove_cached_checksum=True):
+def save_embedding(embedding, optimizer, checkpoint, embedding_name, filename, remove_cached_checksum=True):
old_embedding_name = embedding.name
old_sd_checkpoint = embedding.sd_checkpoint if hasattr(embedding, "sd_checkpoint") else None
old_sd_checkpoint_name = embedding.sd_checkpoint_name if hasattr(embedding, "sd_checkpoint_name") else None
@@ -436,6 +524,7 @@ def save_embedding(embedding, checkpoint, embedding_name, filename, remove_cache
if remove_cached_checksum:
embedding.cached_checksum = None
embedding.name = embedding_name
+ embedding.optimizer_state_dict = optimizer.state_dict()
embedding.save(filename)
except:
embedding.sd_checkpoint = old_sd_checkpoint
diff --git a/modules/textual_inversion/ui.py b/modules/textual_inversion/ui.py
index d679e6f4e..35c4feeff 100644
--- a/modules/textual_inversion/ui.py
+++ b/modules/textual_inversion/ui.py
@@ -18,7 +18,7 @@ def create_embedding(name, initialization_text, nvpt, overwrite_old):
def preprocess(*args):
modules.textual_inversion.preprocess.preprocess(*args)
- return "Preprocessing finished.", ""
+ return f"Preprocessing {'interrupted' if shared.state.interrupted else 'finished'}.", ""
def train_embedding(*args):
diff --git a/modules/txt2img.py b/modules/txt2img.py
index 8e4e86773..e189a8999 100644
--- a/modules/txt2img.py
+++ b/modules/txt2img.py
@@ -1,4 +1,5 @@
import modules.scripts
+from modules import sd_samplers
from modules.processing import StableDiffusionProcessing, Processed, StableDiffusionProcessingTxt2Img, \
StableDiffusionProcessingImg2Img, process_images
from modules.shared import opts, cmd_opts
@@ -7,7 +8,7 @@ import modules.processing as processing
from modules.ui import plaintext_to_html
-def txt2img(prompt: str, negative_prompt: str, prompt_style: str, prompt_style2: str, steps: int, sampler_index: int, restore_faces: bool, tiling: bool, n_iter: int, batch_size: int, cfg_scale: float, seed: int, subseed: int, subseed_strength: float, seed_resize_from_h: int, seed_resize_from_w: int, seed_enable_extras: bool, height: int, width: int, enable_hr: bool, denoising_strength: float, firstphase_width: int, firstphase_height: int, *args):
+def txt2img(prompt: str, negative_prompt: str, prompt_style: str, prompt_style2: str, steps: int, sampler_index: int, restore_faces: bool, tiling: bool, n_iter: int, batch_size: int, cfg_scale: float, seed: int, subseed: int, subseed_strength: float, seed_resize_from_h: int, seed_resize_from_w: int, seed_enable_extras: bool, height: int, width: int, enable_hr: bool, denoising_strength: float, hr_scale: float, hr_upscaler: str, *args):
p = StableDiffusionProcessingTxt2Img(
sd_model=shared.sd_model,
outpath_samples=opts.outdir_samples or opts.outdir_txt2img_samples,
@@ -21,7 +22,7 @@ def txt2img(prompt: str, negative_prompt: str, prompt_style: str, prompt_style2:
seed_resize_from_h=seed_resize_from_h,
seed_resize_from_w=seed_resize_from_w,
seed_enable_extras=seed_enable_extras,
- sampler_index=sampler_index,
+ sampler_name=sd_samplers.samplers[sampler_index].name,
batch_size=batch_size,
n_iter=n_iter,
steps=steps,
@@ -32,8 +33,8 @@ def txt2img(prompt: str, negative_prompt: str, prompt_style: str, prompt_style2:
tiling=tiling,
enable_hr=enable_hr,
denoising_strength=denoising_strength if enable_hr else None,
- firstphase_width=firstphase_width if enable_hr else None,
- firstphase_height=firstphase_height if enable_hr else None,
+ hr_scale=hr_scale,
+ hr_upscaler=hr_upscaler,
)
p.scripts = modules.scripts.scripts_txt2img
@@ -58,4 +59,4 @@ def txt2img(prompt: str, negative_prompt: str, prompt_style: str, prompt_style2:
if opts.do_not_show_images:
processed.images = []
- return processed.images, generation_info_js, plaintext_to_html(processed.info)
+ return processed.images, generation_info_js, plaintext_to_html(processed.info), plaintext_to_html(processed.comments)
diff --git a/modules/ui.py b/modules/ui.py
index 67d787a74..72e7b7d21 100644
--- a/modules/ui.py
+++ b/modules/ui.py
@@ -17,21 +17,18 @@ import gradio.routes
import gradio.utils
import numpy as np
from PIL import Image, PngImagePlugin
+from modules.call_queue import wrap_gradio_gpu_call, wrap_queued_call, wrap_gradio_call
-
-from modules import sd_hijack, sd_models, localization, script_callbacks, ui_extensions
+from modules import sd_hijack, sd_models, localization, script_callbacks, ui_extensions, deepbooru
+from modules.ui_components import FormRow, FormGroup, ToolButton
from modules.paths import script_path
from modules.shared import opts, cmd_opts, restricted_opts
-if cmd_opts.deepdanbooru:
- from modules.deepbooru import get_deepbooru_tags
-
import modules.codeformer_model
import modules.generation_parameters_copypaste as parameters_copypaste
import modules.gfpgan_model
import modules.hypernetworks.ui
-import modules.ldsr_model
import modules.scripts
import modules.shared as shared
import modules.styles
@@ -53,10 +50,14 @@ if not cmd_opts.share and not cmd_opts.listen:
gradio.utils.version_check = lambda: None
gradio.utils.get_local_ip_address = lambda: '127.0.0.1'
-if cmd_opts.ngrok != None:
+if cmd_opts.ngrok is not None:
import modules.ngrok as ngrok
print('ngrok authtoken detected, trying to connect...')
- ngrok.connect(cmd_opts.ngrok, cmd_opts.port if cmd_opts.port != None else 7860, cmd_opts.ngrok_region)
+ ngrok.connect(
+ cmd_opts.ngrok,
+ cmd_opts.port if cmd_opts.port is not None else 7860,
+ cmd_opts.ngrok_region
+ )
def gr_show(visible=True):
@@ -69,20 +70,23 @@ sample_img2img = sample_img2img if os.path.exists(sample_img2img) else None
css_hide_progressbar = """
.wrap .m-12 svg { display:none!important; }
.wrap .m-12::before { content:"Loading..." }
+.wrap .z-20 svg { display:none!important; }
+.wrap .z-20::before { content:"Loading..." }
.progress-bar { display:none!important; }
.meta-text { display:none!important; }
+.meta-text-center { display:none!important; }
"""
# Using constants for these since the variation selector isn't visible.
# Important that they exactly match script.js for tooltip to work.
random_symbol = '\U0001f3b2\ufe0f' # 🎲️
reuse_symbol = '\u267b\ufe0f' # ♻️
-art_symbol = '\U0001f3a8' # 🎨
paste_symbol = '\u2199\ufe0f' # ↙
folder_symbol = '\U0001f4c2' # 📂
refresh_symbol = '\U0001f504' # 🔄
save_style_symbol = '\U0001f4be' # 💾
apply_style_symbol = '\U0001f4cb' # 📋
+clear_prompt_symbol = '\U0001F5D1' # 🗑️
def plaintext_to_html(text):
@@ -142,7 +146,7 @@ def save_files(js_data, images, do_make_zip, index):
filenames.append(os.path.basename(txt_fullfn))
fullfns.append(txt_fullfn)
- writer.writerow([data["prompt"], data["seed"], data["width"], data["height"], data["sampler"], data["cfg_scale"], data["steps"], filenames[0], data["negative_prompt"]])
+ writer.writerow([data["prompt"], data["seed"], data["width"], data["height"], data["sampler_name"], data["cfg_scale"], data["steps"], filenames[0], data["negative_prompt"]])
# Make Zip
if do_make_zip:
@@ -155,96 +159,17 @@ def save_files(js_data, images, do_make_zip, index):
zip_file.writestr(filenames[i], f.read())
fullfns.insert(0, zip_filepath)
- return gr.File.update(value=fullfns, visible=True), '', '', plaintext_to_html(f"Saved: {filenames[0]}")
-
-def save_pil_to_file(pil_image, dir=None):
- use_metadata = False
- metadata = PngImagePlugin.PngInfo()
- for key, value in pil_image.info.items():
- if isinstance(key, str) and isinstance(value, str):
- metadata.add_text(key, value)
- use_metadata = True
-
- file_obj = tempfile.NamedTemporaryFile(delete=False, suffix=".png", dir=dir)
- pil_image.save(file_obj, pnginfo=(metadata if use_metadata else None))
- return file_obj
+ return gr.File.update(value=fullfns, visible=True), plaintext_to_html(f"Saved: {filenames[0]}")
-# override save to file function so that it also writes PNG info
-gr.processing_utils.save_pil_to_file = save_pil_to_file
-
-
-def wrap_gradio_call(func, extra_outputs=None, add_stats=False):
- def f(*args, extra_outputs_array=extra_outputs, **kwargs):
- run_memmon = opts.memmon_poll_rate > 0 and not shared.mem_mon.disabled and add_stats
- if run_memmon:
- shared.mem_mon.monitor()
- t = time.perf_counter()
-
- try:
- res = list(func(*args, **kwargs))
- except Exception as e:
- # When printing out our debug argument list, do not print out more than a MB of text
- max_debug_str_len = 131072 # (1024*1024)/8
-
- print("Error completing request", file=sys.stderr)
- argStr = f"Arguments: {str(args)} {str(kwargs)}"
- print(argStr[:max_debug_str_len], file=sys.stderr)
- if len(argStr) > max_debug_str_len:
- print(f"(Argument list truncated at {max_debug_str_len}/{len(argStr)} characters)", file=sys.stderr)
-
- print(traceback.format_exc(), file=sys.stderr)
-
- shared.state.job = ""
- shared.state.job_count = 0
-
- if extra_outputs_array is None:
- extra_outputs_array = [None, '']
-
- res = extra_outputs_array + [f"{plaintext_to_html(type(e).__name__+': '+str(e))}
"]
-
- shared.state.skipped = False
- shared.state.interrupted = False
- shared.state.job_count = 0
-
- if not add_stats:
- return tuple(res)
-
- elapsed = time.perf_counter() - t
- elapsed_m = int(elapsed // 60)
- elapsed_s = elapsed % 60
- elapsed_text = f"{elapsed_s:.2f}s"
- if elapsed_m > 0:
- elapsed_text = f"{elapsed_m}m "+elapsed_text
-
- if run_memmon:
- mem_stats = {k: -(v//-(1024*1024)) for k, v in shared.mem_mon.stop().items()}
- active_peak = mem_stats['active_peak']
- reserved_peak = mem_stats['reserved_peak']
- sys_peak = mem_stats['system_peak']
- sys_total = mem_stats['total']
- sys_pct = round(sys_peak/max(sys_total, 1) * 100, 2)
-
- vram_html = f"Torch active/reserved: {active_peak}/{reserved_peak} MiB, Sys VRAM: {sys_peak}/{sys_total} MiB ({sys_pct}%)
"
- else:
- vram_html = ''
-
- # last item is always HTML
- res[-1] += f""
-
- return tuple(res)
-
- return f
-
-
-def calc_time_left(progress, threshold, label, force_display):
+def calc_time_left(progress, threshold, label, force_display, show_eta):
if progress == 0:
return ""
else:
time_since_start = time.time() - shared.state.time_start
eta = (time_since_start/progress)
eta_relative = eta-time_since_start
- if (eta_relative > threshold and progress > 0.02) or force_display:
+ if (eta_relative > threshold and show_eta) or force_display:
if eta_relative > 3600:
return label + time.strftime('%H:%M:%S', time.gmtime(eta_relative))
elif eta_relative > 60:
@@ -266,7 +191,10 @@ def check_progress_call(id_part):
if shared.state.sampling_steps > 0:
progress += 1 / shared.state.job_count * shared.state.sampling_step / shared.state.sampling_steps
- time_left = calc_time_left( progress, 1, " ETA: ", shared.state.time_left_force_display )
+ # Show progress percentage and time left at the same moment, and base it also on steps done
+ show_eta = progress >= 0.01 or shared.state.sampling_step >= 10
+
+ time_left = calc_time_left(progress, 1, " ETA: ", shared.state.time_left_force_display, show_eta)
if time_left != "":
shared.state.time_left_force_display = True
@@ -274,7 +202,7 @@ def check_progress_call(id_part):
progressbar = ""
if opts.show_progressbar:
- progressbar = f"""{" " * 2 + str(int(progress*100))+"%" + time_left if progress > 0.01 else ""}
"""
+ progressbar = f"""{" " * 2 + str(int(progress*100))+"%" + time_left if show_eta else ""}
"""
image = gr_show(False)
preview_visibility = gr_show(False)
@@ -307,13 +235,6 @@ def check_progress_call_initial(id_part):
return check_progress_call(id_part)
-def roll_artist(prompt):
- allowed_cats = set([x for x in shared.artist_db.categories() if len(opts.random_artist_categories)==0 or x in opts.random_artist_categories])
- artist = random.choice([x for x in shared.artist_db.artists if x.category in allowed_cats])
-
- return prompt + ", " + artist.name if prompt != '' else artist.name
-
-
def visit(x, func, path=""):
if hasattr(x, 'children'):
for c in x.children:
@@ -343,45 +264,41 @@ def apply_styles(prompt, prompt_neg, style1_name, style2_name):
def interrogate(image):
- prompt = shared.interrogator.interrogate(image)
+ prompt = shared.interrogator.interrogate(image.convert("RGB"))
return gr_show(True) if prompt is None else prompt
def interrogate_deepbooru(image):
- prompt = get_deepbooru_tags(image)
+ prompt = deepbooru.model.tag(image)
return gr_show(True) if prompt is None else prompt
-def create_seed_inputs():
- with gr.Row():
- with gr.Box():
- with gr.Row(elem_id='seed_row'):
- seed = (gr.Textbox if cmd_opts.use_textbox_seed else gr.Number)(label='Seed', value=-1)
- seed.style(container=False)
- random_seed = gr.Button(random_symbol, elem_id='random_seed')
- reuse_seed = gr.Button(reuse_symbol, elem_id='reuse_seed')
+def create_seed_inputs(target_interface):
+ with FormRow(elem_id=target_interface + '_seed_row'):
+ seed = (gr.Textbox if cmd_opts.use_textbox_seed else gr.Number)(label='Seed', value=-1, elem_id=target_interface + '_seed')
+ seed.style(container=False)
+ random_seed = gr.Button(random_symbol, elem_id=target_interface + '_random_seed')
+ reuse_seed = gr.Button(reuse_symbol, elem_id=target_interface + '_reuse_seed')
- with gr.Box(elem_id='subseed_show_box'):
- seed_checkbox = gr.Checkbox(label='Extra', elem_id='subseed_show', value=False)
+ with gr.Group(elem_id=target_interface + '_subseed_show_box'):
+ seed_checkbox = gr.Checkbox(label='Extra', elem_id=target_interface + '_subseed_show', value=False)
# Components to show/hide based on the 'Extra' checkbox
seed_extras = []
- with gr.Row(visible=False) as seed_extra_row_1:
+ with FormRow(visible=False, elem_id=target_interface + '_subseed_row') as seed_extra_row_1:
seed_extras.append(seed_extra_row_1)
- with gr.Box():
- with gr.Row(elem_id='subseed_row'):
- subseed = gr.Number(label='Variation seed', value=-1)
- subseed.style(container=False)
- random_subseed = gr.Button(random_symbol, elem_id='random_subseed')
- reuse_subseed = gr.Button(reuse_symbol, elem_id='reuse_subseed')
- subseed_strength = gr.Slider(label='Variation strength', value=0.0, minimum=0, maximum=1, step=0.01)
+ subseed = gr.Number(label='Variation seed', value=-1, elem_id=target_interface + '_subseed')
+ subseed.style(container=False)
+ random_subseed = gr.Button(random_symbol, elem_id=target_interface + '_random_subseed')
+ reuse_subseed = gr.Button(reuse_symbol, elem_id=target_interface + '_reuse_subseed')
+ subseed_strength = gr.Slider(label='Variation strength', value=0.0, minimum=0, maximum=1, step=0.01, elem_id=target_interface + '_subseed_strength')
- with gr.Row(visible=False) as seed_extra_row_2:
+ with FormRow(visible=False) as seed_extra_row_2:
seed_extras.append(seed_extra_row_2)
- seed_resize_from_w = gr.Slider(minimum=0, maximum=2048, step=64, label="Resize seed from width", value=0)
- seed_resize_from_h = gr.Slider(minimum=0, maximum=2048, step=64, label="Resize seed from height", value=0)
+ seed_resize_from_w = gr.Slider(minimum=0, maximum=2048, step=8, label="Resize seed from width", value=0, elem_id=target_interface + '_seed_resize_from_w')
+ seed_resize_from_h = gr.Slider(minimum=0, maximum=2048, step=8, label="Resize seed from height", value=0, elem_id=target_interface + '_seed_resize_from_h')
random_seed.click(fn=lambda: -1, show_progress=False, inputs=[], outputs=[seed])
random_subseed.click(fn=lambda: -1, show_progress=False, inputs=[], outputs=[subseed])
@@ -394,6 +311,17 @@ def create_seed_inputs():
return seed, reuse_seed, subseed, reuse_subseed, subseed_strength, seed_resize_from_h, seed_resize_from_w, seed_checkbox
+
+def connect_clear_prompt(button):
+ """Given clear button, prompt, and token_counter objects, setup clear prompt button click event"""
+ button.click(
+ _js="clear_prompt",
+ fn=None,
+ inputs=[],
+ outputs=[],
+ )
+
+
def connect_reuse_seed(seed: gr.Number, reuse_seed: gr.Button, generation_info: gr.Textbox, dummy_component, is_subseed):
""" Connects a 'reuse (sub)seed' button's click event so that it copies last used
(sub)seed value from generation info the to the seed field. If copying subseed and subseed strength
@@ -465,22 +393,26 @@ def create_toprow(is_img2img):
)
with gr.Column(scale=1, elem_id="roll_col"):
- roll = gr.Button(value=art_symbol, elem_id="roll", visible=len(shared.artist_db.artists) > 0)
paste = gr.Button(value=paste_symbol, elem_id="paste")
save_style = gr.Button(value=save_style_symbol, elem_id="style_create")
prompt_style_apply = gr.Button(value=apply_style_symbol, elem_id="style_apply")
-
+ clear_prompt_button = gr.Button(value=clear_prompt_symbol, elem_id=f"{id_part}_clear_prompt")
token_counter = gr.HTML(value=" ", elem_id=f"{id_part}_token_counter")
token_button = gr.Button(visible=False, elem_id=f"{id_part}_token_button")
+ clear_prompt_button.click(
+ fn=lambda *x: x,
+ _js="confirm_clear_prompt",
+ inputs=[prompt, negative_prompt],
+ outputs=[prompt, negative_prompt],
+ )
+
button_interrogate = None
button_deepbooru = None
if is_img2img:
with gr.Column(scale=1, elem_id="interrogate_col"):
button_interrogate = gr.Button('Interrogate\nCLIP', elem_id="interrogate")
-
- if cmd_opts.deepdanbooru:
- button_deepbooru = gr.Button('Interrogate\nDeepBooru', elem_id="deepbooru")
+ button_deepbooru = gr.Button('Interrogate\nDeepBooru', elem_id="deepbooru")
with gr.Column(scale=1):
with gr.Row():
@@ -509,7 +441,7 @@ def create_toprow(is_img2img):
prompt_style2 = gr.Dropdown(label="Style 2", elem_id=f"{id_part}_style2_index", choices=[k for k, v in shared.prompt_styles.styles.items()], value=next(iter(shared.prompt_styles.styles.keys())))
prompt_style2.save_to_config = True
- return prompt, roll, prompt_style, negative_prompt, prompt_style2, submit, button_interrogate, button_deepbooru, prompt_style_apply, save_style, paste, token_counter, token_button
+ return prompt, prompt_style, negative_prompt, prompt_style2, submit, button_interrogate, button_deepbooru, prompt_style_apply, save_style, paste, token_counter, token_button
def setup_progressbar(progressbar, preview, id_part, textinfo=None):
@@ -557,7 +489,7 @@ def apply_setting(key, value):
return
valtype = type(opts.data_labels[key].default)
- oldval = opts.data[key]
+ oldval = opts.data.get(key, None)
opts.data[key] = valtype(value) if valtype != type(None) else value
if oldval != value and opts.data_labels[key].onchange is not None:
opts.data_labels[key].onchange()
@@ -566,6 +498,19 @@ def apply_setting(key, value):
return value
+def update_generation_info(args):
+ generation_info, html_info, img_index = args
+ try:
+ generation_info = json.loads(generation_info)
+ if img_index < 0 or img_index >= len(generation_info["infotexts"]):
+ return html_info
+ return plaintext_to_html(generation_info["infotexts"][img_index])
+ except Exception:
+ pass
+ # if the json parse or anything else fails, just return the old html_info
+ return html_info
+
+
def create_refresh_button(refresh_component, refresh_method, refreshed_args, elem_id):
def refresh():
refresh_method()
@@ -576,7 +521,7 @@ def create_refresh_button(refresh_component, refresh_method, refreshed_args, ele
return gr.update(**(args or {}))
- refresh_button = gr.Button(value=refresh_symbol, elem_id=elem_id)
+ refresh_button = ToolButton(value=refresh_symbol, elem_id=elem_id)
refresh_button.click(
fn=refresh,
inputs=[],
@@ -614,13 +559,14 @@ Requested path was: {f}
generation_info = None
with gr.Column():
- with gr.Row():
+ with gr.Row(elem_id=f"image_buttons_{tabname}"):
+ open_folder_button = gr.Button(folder_symbol, elem_id="hidden_element" if shared.cmd_opts.hide_ui_dir_config else 'open_folder')
+
if tabname != "extras":
save = gr.Button('Save', elem_id=f'save_{tabname}')
+ save_zip = gr.Button('Zip', elem_id=f'save_zip_{tabname}')
buttons = parameters_copypaste.create_buttons(["img2img", "inpaint", "extras"])
- button_id = "hidden_element" if shared.cmd_opts.hide_ui_dir_config else 'open_folder'
- open_folder_button = gr.Button(folder_symbol, elem_id=button_id)
open_folder_button.click(
fn=lambda: open_folder(opts.outdir_samples or outdir),
@@ -629,40 +575,85 @@ Requested path was: {f}
)
if tabname != "extras":
- with gr.Row():
- do_make_zip = gr.Checkbox(label="Make Zip when Save?", value=False)
-
with gr.Row():
download_files = gr.File(None, file_count="multiple", interactive=False, show_label=False, visible=False)
with gr.Group():
html_info = gr.HTML()
+ html_log = gr.HTML()
+
generation_info = gr.Textbox(visible=False)
+ if tabname == 'txt2img' or tabname == 'img2img':
+ generation_info_button = gr.Button(visible=False, elem_id=f"{tabname}_generation_info_button")
+ generation_info_button.click(
+ fn=update_generation_info,
+ _js="(x, y) => [x, y, selected_gallery_index()]",
+ inputs=[generation_info, html_info],
+ outputs=[html_info],
+ preprocess=False
+ )
save.click(
fn=wrap_gradio_call(save_files),
- _js="(x, y, z, w) => [x, y, z, selected_gallery_index()]",
+ _js="(x, y, z, w) => [x, y, false, selected_gallery_index()]",
inputs=[
generation_info,
result_gallery,
- do_make_zip,
+ html_info,
html_info,
],
outputs=[
download_files,
- html_info,
- html_info,
- html_info,
+ html_log,
]
)
+
+ save_zip.click(
+ fn=wrap_gradio_call(save_files),
+ _js="(x, y, z, w) => [x, y, true, selected_gallery_index()]",
+ inputs=[
+ generation_info,
+ result_gallery,
+ html_info,
+ html_info,
+ ],
+ outputs=[
+ download_files,
+ html_log,
+ ]
+ )
+
else:
html_info_x = gr.HTML()
html_info = gr.HTML()
+ html_log = gr.HTML()
+
parameters_copypaste.bind_buttons(buttons, result_gallery, "txt2img" if tabname == "txt2img" else None)
- return result_gallery, generation_info if tabname != "extras" else html_info_x, html_info
+ return result_gallery, generation_info if tabname != "extras" else html_info_x, html_info, html_log
-def create_ui(wrap_gradio_gpu_call):
+def create_sampler_and_steps_selection(choices, tabname):
+ if opts.samplers_in_dropdown:
+ with FormRow(elem_id=f"sampler_selection_{tabname}"):
+ sampler_index = gr.Dropdown(label='Sampling method', elem_id=f"{tabname}_sampling", choices=[x.name for x in choices], value=choices[0].name, type="index")
+ sampler_index.save_to_config = True
+ steps = gr.Slider(minimum=1, maximum=150, step=1, elem_id=f"{tabname}_steps", label="Sampling Steps", value=20)
+ else:
+ with FormGroup(elem_id=f"sampler_selection_{tabname}"):
+ steps = gr.Slider(minimum=1, maximum=150, step=1, elem_id=f"{tabname}_steps", label="Sampling Steps", value=20)
+ sampler_index = gr.Radio(label='Sampling method', elem_id=f"{tabname}_sampling", choices=[x.name for x in choices], value=choices[0].name, type="index")
+
+ return steps, sampler_index
+
+
+def ordered_ui_categories():
+ user_order = {x.strip(): i for i, x in enumerate(shared.opts.ui_reorder.split(","))}
+
+ for i, category in sorted(enumerate(shared.ui_reorder_categories), key=lambda x: user_order.get(x[1], x[0] + 1000)):
+ yield category
+
+
+def create_ui():
import modules.img2img
import modules.txt2img
@@ -670,8 +661,12 @@ def create_ui(wrap_gradio_gpu_call):
parameters_copypaste.reset()
+ modules.scripts.scripts_current = modules.scripts.scripts_txt2img
+ modules.scripts.scripts_txt2img.initialize_scripts(is_img2img=False)
+
with gr.Blocks(analytics_enabled=False) as txt2img_interface:
- txt2img_prompt, roll, txt2img_prompt_style, txt2img_negative_prompt, txt2img_prompt_style2, submit, _, _, txt2img_prompt_style_apply, txt2img_save_style, txt2img_paste, token_counter, token_button = create_toprow(is_img2img=False)
+ txt2img_prompt, txt2img_prompt_style, txt2img_negative_prompt, txt2img_prompt_style2, submit, _, _,txt2img_prompt_style_apply, txt2img_save_style, txt2img_paste, token_counter, token_button = create_toprow(is_img2img=False)
+
dummy_component = gr.Label(visible=False)
txt_prompt_img = gr.File(label="", elem_id="txt2img_prompt_image", file_count="single", type="bytes", visible=False)
@@ -685,43 +680,58 @@ def create_ui(wrap_gradio_gpu_call):
setup_progressbar(progressbar, txt2img_preview, 'txt2img')
with gr.Row().style(equal_height=False):
- with gr.Column(variant='panel'):
- steps = gr.Slider(minimum=1, maximum=150, step=1, label="Sampling Steps", value=20)
- sampler_index = gr.Radio(label='Sampling method', elem_id="txt2img_sampling", choices=[x.name for x in samplers], value=samplers[0].name, type="index")
+ with gr.Column(variant='panel', elem_id="txt2img_settings"):
+ for category in ordered_ui_categories():
+ if category == "sampler":
+ steps, sampler_index = create_sampler_and_steps_selection(samplers, "txt2img")
- with gr.Group():
- width = gr.Slider(minimum=64, maximum=2048, step=64, label="Width", value=512)
- height = gr.Slider(minimum=64, maximum=2048, step=64, label="Height", value=512)
+ elif category == "dimensions":
+ with FormRow():
+ with gr.Column(elem_id="txt2img_column_size", scale=4):
+ width = gr.Slider(minimum=64, maximum=2048, step=8, label="Width", value=512, elem_id="txt2img_width")
+ height = gr.Slider(minimum=64, maximum=2048, step=8, label="Height", value=512, elem_id="txt2img_height")
- with gr.Row():
- restore_faces = gr.Checkbox(label='Restore faces', value=False, visible=len(shared.face_restorers) > 1)
- tiling = gr.Checkbox(label='Tiling', value=False)
- enable_hr = gr.Checkbox(label='Highres. fix', value=False)
+ if opts.dimensions_and_batch_together:
+ with gr.Column(elem_id="txt2img_column_batch"):
+ batch_count = gr.Slider(minimum=1, step=1, label='Batch count', value=1, elem_id="txt2img_batch_count")
+ batch_size = gr.Slider(minimum=1, maximum=8, step=1, label='Batch size', value=1, elem_id="txt2img_batch_size")
- with gr.Row(visible=False) as hr_options:
- firstphase_width = gr.Slider(minimum=0, maximum=1024, step=64, label="Firstpass width", value=0)
- firstphase_height = gr.Slider(minimum=0, maximum=1024, step=64, label="Firstpass height", value=0)
- denoising_strength = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label='Denoising strength', value=0.7)
+ elif category == "cfg":
+ cfg_scale = gr.Slider(minimum=1.0, maximum=30.0, step=0.5, label='CFG Scale', value=7.0, elem_id="txt2img_cfg_scale")
- with gr.Row(equal_height=True):
- batch_count = gr.Slider(minimum=1, step=1, label='Batch count', value=1)
- batch_size = gr.Slider(minimum=1, maximum=8, step=1, label='Batch size', value=1)
+ elif category == "seed":
+ seed, reuse_seed, subseed, reuse_subseed, subseed_strength, seed_resize_from_h, seed_resize_from_w, seed_checkbox = create_seed_inputs('txt2img')
- cfg_scale = gr.Slider(minimum=1.0, maximum=30.0, step=0.5, label='CFG Scale', value=7.0)
+ elif category == "checkboxes":
+ with FormRow(elem_id="txt2img_checkboxes"):
+ restore_faces = gr.Checkbox(label='Restore faces', value=False, visible=len(shared.face_restorers) > 1, elem_id="txt2img_restore_faces")
+ tiling = gr.Checkbox(label='Tiling', value=False, elem_id="txt2img_tiling")
+ enable_hr = gr.Checkbox(label='Hires. fix', value=False, elem_id="txt2img_enable_hr")
- seed, reuse_seed, subseed, reuse_subseed, subseed_strength, seed_resize_from_h, seed_resize_from_w, seed_checkbox = create_seed_inputs()
+ elif category == "hires_fix":
+ with FormRow(visible=False, elem_id="txt2img_hires_fix") as hr_options:
+ hr_upscaler = gr.Dropdown(label="Upscaler", elem_id="txt2img_hr_upscaler", choices=[*shared.latent_upscale_modes, *[x.name for x in shared.sd_upscalers]], value=shared.latent_upscale_default_mode)
+ hr_scale = gr.Slider(minimum=1.0, maximum=4.0, step=0.05, label="Upscale by", value=2.0, elem_id="txt2img_hr_scale")
+ denoising_strength = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label='Denoising strength', value=0.7, elem_id="txt2img_denoising_strength")
- with gr.Group():
- custom_inputs = modules.scripts.scripts_txt2img.setup_ui(is_img2img=False)
+ elif category == "batch":
+ if not opts.dimensions_and_batch_together:
+ with FormRow(elem_id="txt2img_column_batch"):
+ batch_count = gr.Slider(minimum=1, step=1, label='Batch count', value=1, elem_id="txt2img_batch_count")
+ batch_size = gr.Slider(minimum=1, maximum=8, step=1, label='Batch size', value=1, elem_id="txt2img_batch_size")
- txt2img_gallery, generation_info, html_info = create_output_panel("txt2img", opts.outdir_txt2img_samples)
+ elif category == "scripts":
+ with FormGroup(elem_id="txt2img_script_container"):
+ custom_inputs = modules.scripts.scripts_txt2img.setup_ui()
+
+ txt2img_gallery, generation_info, html_info, html_log = create_output_panel("txt2img", opts.outdir_txt2img_samples)
parameters_copypaste.bind_buttons({"txt2img": txt2img_paste}, None, txt2img_prompt)
connect_reuse_seed(seed, reuse_seed, generation_info, dummy_component, is_subseed=False)
connect_reuse_seed(subseed, reuse_subseed, generation_info, dummy_component, is_subseed=True)
txt2img_args = dict(
- fn=wrap_gradio_gpu_call(modules.txt2img.txt2img),
+ fn=wrap_gradio_gpu_call(modules.txt2img.txt2img, extra_outputs=[None, '', '']),
_js="submit",
inputs=[
txt2img_prompt,
@@ -741,14 +751,15 @@ def create_ui(wrap_gradio_gpu_call):
width,
enable_hr,
denoising_strength,
- firstphase_width,
- firstphase_height,
+ hr_scale,
+ hr_upscaler,
] + custom_inputs,
outputs=[
txt2img_gallery,
generation_info,
- html_info
+ html_info,
+ html_log,
],
show_progress=False,
)
@@ -773,17 +784,6 @@ def create_ui(wrap_gradio_gpu_call):
outputs=[hr_options],
)
- roll.click(
- fn=roll_artist,
- _js="update_txt2img_tokens",
- inputs=[
- txt2img_prompt,
- ],
- outputs=[
- txt2img_prompt,
- ]
- )
-
txt2img_paste_fields = [
(txt2img_prompt, "Prompt"),
(txt2img_negative_prompt, "Negative prompt"),
@@ -802,8 +802,8 @@ def create_ui(wrap_gradio_gpu_call):
(denoising_strength, "Denoising strength"),
(enable_hr, lambda d: "Denoising strength" in d),
(hr_options, lambda d: gr.Row.update(visible="Denoising strength" in d)),
- (firstphase_width, "First pass size-1"),
- (firstphase_height, "First pass size-2"),
+ (hr_scale, "Hires upscale"),
+ (hr_upscaler, "Hires upscaler"),
*modules.scripts.scripts_txt2img.infotext_fields
]
parameters_copypaste.add_paste_fields("txt2img", None, txt2img_paste_fields)
@@ -819,10 +819,13 @@ def create_ui(wrap_gradio_gpu_call):
height,
]
- token_button.click(fn=update_token_counter, inputs=[txt2img_prompt, steps], outputs=[token_counter])
+ token_button.click(fn=wrap_queued_call(update_token_counter), inputs=[txt2img_prompt, steps], outputs=[token_counter])
+
+ modules.scripts.scripts_current = modules.scripts.scripts_img2img
+ modules.scripts.scripts_img2img.initialize_scripts(is_img2img=True)
with gr.Blocks(analytics_enabled=False) as img2img_interface:
- img2img_prompt, roll, img2img_prompt_style, img2img_negative_prompt, img2img_prompt_style2, submit, img2img_interrogate, img2img_deepbooru, img2img_prompt_style_apply, img2img_save_style, img2img_paste, token_counter, token_button = create_toprow(is_img2img=True)
+ img2img_prompt, img2img_prompt_style, img2img_negative_prompt, img2img_prompt_style2, submit, img2img_interrogate, img2img_deepbooru, img2img_prompt_style_apply, img2img_save_style, img2img_paste,token_counter, token_button = create_toprow(is_img2img=True)
with gr.Row(elem_id='img2img_progress_row'):
img2img_prompt_img = gr.File(label="", elem_id="img2img_prompt_image", file_count="single", type="bytes", visible=False)
@@ -835,65 +838,97 @@ def create_ui(wrap_gradio_gpu_call):
img2img_preview = gr.Image(elem_id='img2img_preview', visible=False)
setup_progressbar(progressbar, img2img_preview, 'img2img')
- with gr.Row().style(equal_height=False):
- with gr.Column(variant='panel'):
+ with FormRow().style(equal_height=False):
+ with gr.Column(variant='panel', elem_id="img2img_settings"):
with gr.Tabs(elem_id="mode_img2img") as tabs_img2img_mode:
- with gr.TabItem('img2img', id='img2img'):
- init_img = gr.Image(label="Image for img2img", elem_id="img2img_image", show_label=False, source="upload", interactive=True, type="pil", tool=cmd_opts.gradio_img2img_tool).style(height=480)
+ with gr.TabItem('img2img', id='img2img', elem_id="img2img_img2img_tab"):
+ init_img = gr.Image(label="Image for img2img", elem_id="img2img_image", show_label=False, source="upload", interactive=True, type="pil", tool=cmd_opts.gradio_img2img_tool, image_mode="RGBA").style(height=480)
- with gr.TabItem('Inpaint', id='inpaint'):
- init_img_with_mask = gr.Image(label="Image for inpainting with mask", show_label=False, elem_id="img2maskimg", source="upload", interactive=True, type="pil", tool="sketch", image_mode="RGBA").style(height=480)
+ with gr.TabItem('Inpaint', id='inpaint', elem_id="img2img_inpaint_tab"):
+ init_img_with_mask = gr.Image(label="Image for inpainting with mask", show_label=False, elem_id="img2maskimg", source="upload", interactive=True, type="pil", tool=cmd_opts.gradio_inpaint_tool, image_mode="RGBA").style(height=480)
+ init_img_with_mask_orig = gr.State(None)
+
+ use_color_sketch = cmd_opts.gradio_inpaint_tool == "color-sketch"
+ if use_color_sketch:
+ def update_orig(image, state):
+ if image is not None:
+ same_size = state is not None and state.size == image.size
+ has_exact_match = np.any(np.all(np.array(image) == np.array(state), axis=-1))
+ edited = same_size and has_exact_match
+ return image if not edited or state is None else state
+
+ init_img_with_mask.change(update_orig, [init_img_with_mask, init_img_with_mask_orig], init_img_with_mask_orig)
init_img_inpaint = gr.Image(label="Image for img2img", show_label=False, source="upload", interactive=True, type="pil", visible=False, elem_id="img_inpaint_base")
init_mask_inpaint = gr.Image(label="Mask", source="upload", interactive=True, type="pil", visible=False, elem_id="img_inpaint_mask")
- mask_blur = gr.Slider(label='Mask blur', minimum=0, maximum=64, step=1, value=4)
+ with FormRow():
+ mask_blur = gr.Slider(label='Mask blur', minimum=0, maximum=64, step=1, value=4, elem_id="img2img_mask_blur")
+ mask_alpha = gr.Slider(label="Mask transparency", interactive=use_color_sketch, visible=use_color_sketch, elem_id="img2img_mask_alpha")
- with gr.Row():
- mask_mode = gr.Radio(label="Mask mode", show_label=False, choices=["Draw mask", "Upload mask"], type="index", value="Draw mask", elem_id="mask_mode")
- inpainting_mask_invert = gr.Radio(label='Masking mode', show_label=False, choices=['Inpaint masked', 'Inpaint not masked'], value='Inpaint masked', type="index")
+ with FormRow():
+ mask_mode = gr.Radio(label="Mask source", choices=["Draw mask", "Upload mask"], type="index", value="Draw mask", elem_id="mask_mode")
+ inpainting_mask_invert = gr.Radio(label='Mask mode', choices=['Inpaint masked', 'Inpaint not masked'], value='Inpaint masked', type="index", elem_id="img2img_mask_mode")
- inpainting_fill = gr.Radio(label='Masked content', choices=['fill', 'original', 'latent noise', 'latent nothing'], value='original', type="index")
+ with FormRow():
+ inpainting_fill = gr.Radio(label='Masked content', choices=['fill', 'original', 'latent noise', 'latent nothing'], value='original', type="index", elem_id="img2img_inpainting_fill")
- with gr.Row():
- inpaint_full_res = gr.Checkbox(label='Inpaint at full resolution', value=False)
- inpaint_full_res_padding = gr.Slider(label='Inpaint at full resolution padding, pixels', minimum=0, maximum=256, step=4, value=32)
+ with FormRow():
+ with gr.Column():
+ inpaint_full_res = gr.Radio(label="Inpaint area", choices=["Whole picture", "Only masked"], type="index", value="Whole picture", elem_id="img2img_inpaint_full_res")
- with gr.TabItem('Batch img2img', id='batch'):
+ with gr.Column(scale=4):
+ inpaint_full_res_padding = gr.Slider(label='Only masked padding, pixels', minimum=0, maximum=256, step=4, value=32, elem_id="img2img_inpaint_full_res_padding")
+
+ with gr.TabItem('Batch img2img', id='batch', elem_id="img2img_batch_tab"):
hidden = ' Disabled when launched with --hide-ui-dir-config.' if shared.cmd_opts.hide_ui_dir_config else ''
gr.HTML(f"Process images in a directory on the same machine where the server is running. Use an empty output directory to save pictures normally instead of writing to the output directory.{hidden}
")
- img2img_batch_input_dir = gr.Textbox(label="Input directory", **shared.hide_dirs)
- img2img_batch_output_dir = gr.Textbox(label="Output directory", **shared.hide_dirs)
+ img2img_batch_input_dir = gr.Textbox(label="Input directory", **shared.hide_dirs, elem_id="img2img_batch_input_dir")
+ img2img_batch_output_dir = gr.Textbox(label="Output directory", **shared.hide_dirs, elem_id="img2img_batch_output_dir")
- with gr.Row():
- resize_mode = gr.Radio(label="Resize mode", elem_id="resize_mode", show_label=False, choices=["Just resize", "Crop and resize", "Resize and fill"], type="index", value="Just resize")
+ with FormRow():
+ resize_mode = gr.Radio(label="Resize mode", elem_id="resize_mode", choices=["Just resize", "Crop and resize", "Resize and fill", "Just resize (latent upscale)"], type="index", value="Just resize")
- steps = gr.Slider(minimum=1, maximum=150, step=1, label="Sampling Steps", value=20)
- sampler_index = gr.Radio(label='Sampling method', choices=[x.name for x in samplers_for_img2img], value=samplers_for_img2img[0].name, type="index")
+ for category in ordered_ui_categories():
+ if category == "sampler":
+ steps, sampler_index = create_sampler_and_steps_selection(samplers_for_img2img, "img2img")
- with gr.Group():
- width = gr.Slider(minimum=64, maximum=2048, step=64, label="Width", value=512, elem_id="img2img_width")
- height = gr.Slider(minimum=64, maximum=2048, step=64, label="Height", value=512, elem_id="img2img_height")
+ elif category == "dimensions":
+ with FormRow():
+ with gr.Column(elem_id="img2img_column_size", scale=4):
+ width = gr.Slider(minimum=64, maximum=2048, step=8, label="Width", value=512, elem_id="img2img_width")
+ height = gr.Slider(minimum=64, maximum=2048, step=8, label="Height", value=512, elem_id="img2img_height")
- with gr.Row():
- restore_faces = gr.Checkbox(label='Restore faces', value=False, visible=len(shared.face_restorers) > 1)
- tiling = gr.Checkbox(label='Tiling', value=False)
+ if opts.dimensions_and_batch_together:
+ with gr.Column(elem_id="img2img_column_batch"):
+ batch_count = gr.Slider(minimum=1, step=1, label='Batch count', value=1, elem_id="img2img_batch_count")
+ batch_size = gr.Slider(minimum=1, maximum=8, step=1, label='Batch size', value=1, elem_id="img2img_batch_size")
- with gr.Row():
- batch_count = gr.Slider(minimum=1, step=1, label='Batch count', value=1)
- batch_size = gr.Slider(minimum=1, maximum=8, step=1, label='Batch size', value=1)
+ elif category == "cfg":
+ with FormGroup():
+ cfg_scale = gr.Slider(minimum=1.0, maximum=30.0, step=0.5, label='CFG Scale', value=7.0, elem_id="img2img_cfg_scale")
+ denoising_strength = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label='Denoising strength', value=0.75, elem_id="img2img_denoising_strength")
- with gr.Group():
- cfg_scale = gr.Slider(minimum=1.0, maximum=30.0, step=0.5, label='CFG Scale', value=7.0)
- denoising_strength = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label='Denoising strength', value=0.75)
+ elif category == "seed":
+ seed, reuse_seed, subseed, reuse_subseed, subseed_strength, seed_resize_from_h, seed_resize_from_w, seed_checkbox = create_seed_inputs('img2img')
- seed, reuse_seed, subseed, reuse_subseed, subseed_strength, seed_resize_from_h, seed_resize_from_w, seed_checkbox = create_seed_inputs()
+ elif category == "checkboxes":
+ with FormRow(elem_id="img2img_checkboxes"):
+ restore_faces = gr.Checkbox(label='Restore faces', value=False, visible=len(shared.face_restorers) > 1, elem_id="img2img_restore_faces")
+ tiling = gr.Checkbox(label='Tiling', value=False, elem_id="img2img_tiling")
- with gr.Group():
- custom_inputs = modules.scripts.scripts_img2img.setup_ui(is_img2img=True)
+ elif category == "batch":
+ if not opts.dimensions_and_batch_together:
+ with FormRow(elem_id="img2img_column_batch"):
+ batch_count = gr.Slider(minimum=1, step=1, label='Batch count', value=1, elem_id="img2img_batch_count")
+ batch_size = gr.Slider(minimum=1, maximum=8, step=1, label='Batch size', value=1, elem_id="img2img_batch_size")
- img2img_gallery, generation_info, html_info = create_output_panel("img2img", opts.outdir_img2img_samples)
+ elif category == "scripts":
+ with FormGroup(elem_id="img2img_script_container"):
+ custom_inputs = modules.scripts.scripts_img2img.setup_ui()
+
+ img2img_gallery, generation_info, html_info, html_log = create_output_panel("img2img", opts.outdir_img2img_samples)
parameters_copypaste.bind_buttons({"img2img": img2img_paste}, None, img2img_prompt)
connect_reuse_seed(seed, reuse_seed, generation_info, dummy_component, is_subseed=False)
@@ -925,7 +960,7 @@ def create_ui(wrap_gradio_gpu_call):
)
img2img_args = dict(
- fn=wrap_gradio_gpu_call(modules.img2img.img2img),
+ fn=wrap_gradio_gpu_call(modules.img2img.img2img, extra_outputs=[None, '', '']),
_js="submit_img2img",
inputs=[
dummy_component,
@@ -935,12 +970,14 @@ def create_ui(wrap_gradio_gpu_call):
img2img_prompt_style2,
init_img,
init_img_with_mask,
+ init_img_with_mask_orig,
init_img_inpaint,
init_mask_inpaint,
mask_mode,
steps,
sampler_index,
mask_blur,
+ mask_alpha,
inpainting_fill,
restore_faces,
tiling,
@@ -962,7 +999,8 @@ def create_ui(wrap_gradio_gpu_call):
outputs=[
img2img_gallery,
generation_info,
- html_info
+ html_info,
+ html_log,
],
show_progress=False,
)
@@ -976,23 +1014,10 @@ def create_ui(wrap_gradio_gpu_call):
outputs=[img2img_prompt],
)
- if cmd_opts.deepdanbooru:
- img2img_deepbooru.click(
- fn=interrogate_deepbooru,
- inputs=[init_img],
- outputs=[img2img_prompt],
- )
-
-
- roll.click(
- fn=roll_artist,
- _js="update_img2img_tokens",
- inputs=[
- img2img_prompt,
- ],
- outputs=[
- img2img_prompt,
- ]
+ img2img_deepbooru.click(
+ fn=interrogate_deepbooru,
+ inputs=[init_img],
+ outputs=[img2img_prompt],
)
prompts = [(txt2img_prompt, txt2img_negative_prompt), (img2img_prompt, img2img_negative_prompt)]
@@ -1035,59 +1060,62 @@ def create_ui(wrap_gradio_gpu_call):
(seed_resize_from_w, "Seed resize from-1"),
(seed_resize_from_h, "Seed resize from-2"),
(denoising_strength, "Denoising strength"),
+ (mask_blur, "Mask blur"),
*modules.scripts.scripts_img2img.infotext_fields
]
parameters_copypaste.add_paste_fields("img2img", init_img, img2img_paste_fields)
parameters_copypaste.add_paste_fields("inpaint", init_img_with_mask, img2img_paste_fields)
+ modules.scripts.scripts_current = None
+
with gr.Blocks(analytics_enabled=False) as extras_interface:
with gr.Row().style(equal_height=False):
with gr.Column(variant='panel'):
with gr.Tabs(elem_id="mode_extras"):
- with gr.TabItem('Single Image'):
- extras_image = gr.Image(label="Source", source="upload", interactive=True, type="pil")
+ with gr.TabItem('Single Image', elem_id="extras_single_tab"):
+ extras_image = gr.Image(label="Source", source="upload", interactive=True, type="pil", elem_id="extras_image")
- with gr.TabItem('Batch Process'):
- image_batch = gr.File(label="Batch Process", file_count="multiple", interactive=True, type="file")
+ with gr.TabItem('Batch Process', elem_id="extras_batch_process_tab"):
+ image_batch = gr.File(label="Batch Process", file_count="multiple", interactive=True, type="file", elem_id="extras_image_batch")
- with gr.TabItem('Batch from Directory'):
- extras_batch_input_dir = gr.Textbox(label="Input directory", **shared.hide_dirs, placeholder="A directory on the same machine where the server is running.")
- extras_batch_output_dir = gr.Textbox(label="Output directory", **shared.hide_dirs, placeholder="Leave blank to save images to the default path.")
- show_extras_results = gr.Checkbox(label='Show result images', value=True)
+ with gr.TabItem('Batch from Directory', elem_id="extras_batch_directory_tab"):
+ extras_batch_input_dir = gr.Textbox(label="Input directory", **shared.hide_dirs, placeholder="A directory on the same machine where the server is running.", elem_id="extras_batch_input_dir")
+ extras_batch_output_dir = gr.Textbox(label="Output directory", **shared.hide_dirs, placeholder="Leave blank to save images to the default path.", elem_id="extras_batch_output_dir")
+ show_extras_results = gr.Checkbox(label='Show result images', value=True, elem_id="extras_show_extras_results")
submit = gr.Button('Generate', elem_id="extras_generate", variant='primary')
with gr.Tabs(elem_id="extras_resize_mode"):
- with gr.TabItem('Scale by'):
- upscaling_resize = gr.Slider(minimum=1.0, maximum=8.0, step=0.05, label="Resize", value=4)
- with gr.TabItem('Scale to'):
+ with gr.TabItem('Scale by', elem_id="extras_scale_by_tab"):
+ upscaling_resize = gr.Slider(minimum=1.0, maximum=8.0, step=0.05, label="Resize", value=4, elem_id="extras_upscaling_resize")
+ with gr.TabItem('Scale to', elem_id="extras_scale_to_tab"):
with gr.Group():
with gr.Row():
- upscaling_resize_w = gr.Number(label="Width", value=512, precision=0)
- upscaling_resize_h = gr.Number(label="Height", value=512, precision=0)
- upscaling_crop = gr.Checkbox(label='Crop to fit', value=True)
+ upscaling_resize_w = gr.Number(label="Width", value=512, precision=0, elem_id="extras_upscaling_resize_w")
+ upscaling_resize_h = gr.Number(label="Height", value=512, precision=0, elem_id="extras_upscaling_resize_h")
+ upscaling_crop = gr.Checkbox(label='Crop to fit', value=True, elem_id="extras_upscaling_crop")
with gr.Group():
extras_upscaler_1 = gr.Radio(label='Upscaler 1', elem_id="extras_upscaler_1", choices=[x.name for x in shared.sd_upscalers], value=shared.sd_upscalers[0].name, type="index")
with gr.Group():
extras_upscaler_2 = gr.Radio(label='Upscaler 2', elem_id="extras_upscaler_2", choices=[x.name for x in shared.sd_upscalers], value=shared.sd_upscalers[0].name, type="index")
- extras_upscaler_2_visibility = gr.Slider(minimum=0.0, maximum=1.0, step=0.001, label="Upscaler 2 visibility", value=1)
+ extras_upscaler_2_visibility = gr.Slider(minimum=0.0, maximum=1.0, step=0.001, label="Upscaler 2 visibility", value=1, elem_id="extras_upscaler_2_visibility")
with gr.Group():
- gfpgan_visibility = gr.Slider(minimum=0.0, maximum=1.0, step=0.001, label="GFPGAN visibility", value=0, interactive=modules.gfpgan_model.have_gfpgan)
+ gfpgan_visibility = gr.Slider(minimum=0.0, maximum=1.0, step=0.001, label="GFPGAN visibility", value=0, interactive=modules.gfpgan_model.have_gfpgan, elem_id="extras_gfpgan_visibility")
with gr.Group():
- codeformer_visibility = gr.Slider(minimum=0.0, maximum=1.0, step=0.001, label="CodeFormer visibility", value=0, interactive=modules.codeformer_model.have_codeformer)
- codeformer_weight = gr.Slider(minimum=0.0, maximum=1.0, step=0.001, label="CodeFormer weight (0 = maximum effect, 1 = minimum effect)", value=0, interactive=modules.codeformer_model.have_codeformer)
+ codeformer_visibility = gr.Slider(minimum=0.0, maximum=1.0, step=0.001, label="CodeFormer visibility", value=0, interactive=modules.codeformer_model.have_codeformer, elem_id="extras_codeformer_visibility")
+ codeformer_weight = gr.Slider(minimum=0.0, maximum=1.0, step=0.001, label="CodeFormer weight (0 = maximum effect, 1 = minimum effect)", value=0, interactive=modules.codeformer_model.have_codeformer, elem_id="extras_codeformer_weight")
with gr.Group():
- upscale_before_face_fix = gr.Checkbox(label='Upscale Before Restoring Faces', value=False)
+ upscale_before_face_fix = gr.Checkbox(label='Upscale Before Restoring Faces', value=False, elem_id="extras_upscale_before_face_fix")
- result_images, html_info_x, html_info = create_output_panel("extras", opts.outdir_extras_samples)
+ result_images, html_info_x, html_info, html_log = create_output_panel("extras", opts.outdir_extras_samples)
submit.click(
- fn=wrap_gradio_gpu_call(modules.extras.run_extras),
+ fn=wrap_gradio_gpu_call(modules.extras.run_extras, extra_outputs=[None, '']),
_js="get_extras_tab_index",
inputs=[
dummy_component,
@@ -1129,7 +1157,7 @@ def create_ui(wrap_gradio_gpu_call):
with gr.Column(variant='panel'):
html = gr.HTML()
- generation_info = gr.Textbox(visible=False)
+ generation_info = gr.Textbox(visible=False, elem_id="pnginfo_generation_info")
html2 = gr.HTML()
with gr.Row():
buttons = parameters_copypaste.create_buttons(["txt2img", "img2img", "inpaint", "extras"])
@@ -1148,19 +1176,27 @@ def create_ui(wrap_gradio_gpu_call):
with gr.Row():
primary_model_name = gr.Dropdown(modules.sd_models.checkpoint_tiles(), elem_id="modelmerger_primary_model_name", label="Primary model (A)")
+ create_refresh_button(primary_model_name, modules.sd_models.list_models, lambda: {"choices": modules.sd_models.checkpoint_tiles()}, "refresh_checkpoint_A")
+
secondary_model_name = gr.Dropdown(modules.sd_models.checkpoint_tiles(), elem_id="modelmerger_secondary_model_name", label="Secondary model (B)")
+ create_refresh_button(secondary_model_name, modules.sd_models.list_models, lambda: {"choices": modules.sd_models.checkpoint_tiles()}, "refresh_checkpoint_B")
+
tertiary_model_name = gr.Dropdown(modules.sd_models.checkpoint_tiles(), elem_id="modelmerger_tertiary_model_name", label="Tertiary model (C)")
- custom_name = gr.Textbox(label="Custom Name (Optional)")
- interp_amount = gr.Slider(minimum=0.0, maximum=1.0, step=0.05, label='Multiplier (M) - set to 0 to get model A', value=0.3)
- interp_method = gr.Radio(choices=["Weighted sum", "Add difference"], value="Weighted sum", label="Interpolation Method")
- save_as_half = gr.Checkbox(value=False, label="Save as float16")
+ create_refresh_button(tertiary_model_name, modules.sd_models.list_models, lambda: {"choices": modules.sd_models.checkpoint_tiles()}, "refresh_checkpoint_C")
+
+ custom_name = gr.Textbox(label="Custom Name (Optional)", elem_id="modelmerger_custom_name")
+ interp_amount = gr.Slider(minimum=0.0, maximum=1.0, step=0.05, label='Multiplier (M) - set to 0 to get model A', value=0.3, elem_id="modelmerger_interp_amount")
+ interp_method = gr.Radio(choices=["Weighted sum", "Add difference"], value="Weighted sum", label="Interpolation Method", elem_id="modelmerger_interp_method")
+
+ with gr.Row():
+ checkpoint_format = gr.Radio(choices=["ckpt", "safetensors"], value="ckpt", label="Checkpoint format", elem_id="modelmerger_checkpoint_format")
+ save_as_half = gr.Checkbox(value=False, label="Save as float16", elem_id="modelmerger_save_as_half")
+
modelmerger_merge = gr.Button(elem_id="modelmerger_merge", label="Merge", variant='primary')
with gr.Column(variant='panel'):
submit_result = gr.Textbox(elem_id="modelmerger_result", show_label=False)
- sd_hijack.model_hijack.embedding_db.load_textual_inversion_embeddings()
-
with gr.Blocks(analytics_enabled=False) as train_interface:
with gr.Row().style(equal_height=False):
gr.HTML(value="See wiki for detailed explanation.
")
@@ -1169,65 +1205,67 @@ def create_ui(wrap_gradio_gpu_call):
with gr.Tabs(elem_id="train_tabs"):
with gr.Tab(label="Create embedding"):
- new_embedding_name = gr.Textbox(label="Name")
- initialization_text = gr.Textbox(label="Initialization text", value="*")
- nvpt = gr.Slider(label="Number of vectors per token", minimum=1, maximum=75, step=1, value=1)
- overwrite_old_embedding = gr.Checkbox(value=False, label="Overwrite Old Embedding")
+ new_embedding_name = gr.Textbox(label="Name", elem_id="train_new_embedding_name")
+ initialization_text = gr.Textbox(label="Initialization text", value="*", elem_id="train_initialization_text")
+ nvpt = gr.Slider(label="Number of vectors per token", minimum=1, maximum=75, step=1, value=1, elem_id="train_nvpt")
+ overwrite_old_embedding = gr.Checkbox(value=False, label="Overwrite Old Embedding", elem_id="train_overwrite_old_embedding")
with gr.Row():
with gr.Column(scale=3):
gr.HTML(value="")
with gr.Column():
- create_embedding = gr.Button(value="Create embedding", variant='primary')
+ create_embedding = gr.Button(value="Create embedding", variant='primary', elem_id="train_create_embedding")
with gr.Tab(label="Create hypernetwork"):
- new_hypernetwork_name = gr.Textbox(label="Name")
- new_hypernetwork_sizes = gr.CheckboxGroup(label="Modules", value=["768", "320", "640", "1280"], choices=["768", "320", "640", "1280"])
- new_hypernetwork_layer_structure = gr.Textbox("1, 2, 1", label="Enter hypernetwork layer structure", placeholder="1st and last digit must be 1. ex:'1, 2, 1'")
- new_hypernetwork_activation_func = gr.Dropdown(value="linear", label="Select activation function of hypernetwork. Recommended : Swish / Linear(none)", choices=modules.hypernetworks.ui.keys)
- new_hypernetwork_initialization_option = gr.Dropdown(value = "Normal", label="Select Layer weights initialization. Recommended: Kaiming for relu-like, Xavier for sigmoid-like, Normal otherwise", choices=["Normal", "KaimingUniform", "KaimingNormal", "XavierUniform", "XavierNormal"])
- new_hypernetwork_add_layer_norm = gr.Checkbox(label="Add layer normalization")
- new_hypernetwork_use_dropout = gr.Checkbox(label="Use dropout")
- overwrite_old_hypernetwork = gr.Checkbox(value=False, label="Overwrite Old Hypernetwork")
+ new_hypernetwork_name = gr.Textbox(label="Name", elem_id="train_new_hypernetwork_name")
+ new_hypernetwork_sizes = gr.CheckboxGroup(label="Modules", value=["768", "320", "640", "1280"], choices=["768", "1024", "320", "640", "1280"], elem_id="train_new_hypernetwork_sizes")
+ new_hypernetwork_layer_structure = gr.Textbox("1, 2, 1", label="Enter hypernetwork layer structure", placeholder="1st and last digit must be 1. ex:'1, 2, 1'", elem_id="train_new_hypernetwork_layer_structure")
+ new_hypernetwork_activation_func = gr.Dropdown(value="linear", label="Select activation function of hypernetwork. Recommended : Swish / Linear(none)", choices=modules.hypernetworks.ui.keys, elem_id="train_new_hypernetwork_activation_func")
+ new_hypernetwork_initialization_option = gr.Dropdown(value = "Normal", label="Select Layer weights initialization. Recommended: Kaiming for relu-like, Xavier for sigmoid-like, Normal otherwise", choices=["Normal", "KaimingUniform", "KaimingNormal", "XavierUniform", "XavierNormal"], elem_id="train_new_hypernetwork_initialization_option")
+ new_hypernetwork_add_layer_norm = gr.Checkbox(label="Add layer normalization", elem_id="train_new_hypernetwork_add_layer_norm")
+ new_hypernetwork_use_dropout = gr.Checkbox(label="Use dropout", elem_id="train_new_hypernetwork_use_dropout")
+ overwrite_old_hypernetwork = gr.Checkbox(value=False, label="Overwrite Old Hypernetwork", elem_id="train_overwrite_old_hypernetwork")
with gr.Row():
with gr.Column(scale=3):
gr.HTML(value="")
with gr.Column():
- create_hypernetwork = gr.Button(value="Create hypernetwork", variant='primary')
+ create_hypernetwork = gr.Button(value="Create hypernetwork", variant='primary', elem_id="train_create_hypernetwork")
with gr.Tab(label="Preprocess images"):
- process_src = gr.Textbox(label='Source directory')
- process_dst = gr.Textbox(label='Destination directory')
- process_width = gr.Slider(minimum=64, maximum=2048, step=64, label="Width", value=512)
- process_height = gr.Slider(minimum=64, maximum=2048, step=64, label="Height", value=512)
- preprocess_txt_action = gr.Dropdown(label='Existing Caption txt Action', value="ignore", choices=["ignore", "copy", "prepend", "append"])
+ process_src = gr.Textbox(label='Source directory', elem_id="train_process_src")
+ process_dst = gr.Textbox(label='Destination directory', elem_id="train_process_dst")
+ process_width = gr.Slider(minimum=64, maximum=2048, step=8, label="Width", value=512, elem_id="train_process_width")
+ process_height = gr.Slider(minimum=64, maximum=2048, step=8, label="Height", value=512, elem_id="train_process_height")
+ preprocess_txt_action = gr.Dropdown(label='Existing Caption txt Action', value="ignore", choices=["ignore", "copy", "prepend", "append"], elem_id="train_preprocess_txt_action")
with gr.Row():
- process_flip = gr.Checkbox(label='Create flipped copies')
- process_split = gr.Checkbox(label='Split oversized images')
- process_focal_crop = gr.Checkbox(label='Auto focal point crop')
- process_caption = gr.Checkbox(label='Use BLIP for caption')
- process_caption_deepbooru = gr.Checkbox(label='Use deepbooru for caption', visible=True if cmd_opts.deepdanbooru else False)
+ process_flip = gr.Checkbox(label='Create flipped copies', elem_id="train_process_flip")
+ process_split = gr.Checkbox(label='Split oversized images', elem_id="train_process_split")
+ process_focal_crop = gr.Checkbox(label='Auto focal point crop', elem_id="train_process_focal_crop")
+ process_caption = gr.Checkbox(label='Use BLIP for caption', elem_id="train_process_caption")
+ process_caption_deepbooru = gr.Checkbox(label='Use deepbooru for caption', visible=True, elem_id="train_process_caption_deepbooru")
with gr.Row(visible=False) as process_split_extra_row:
- process_split_threshold = gr.Slider(label='Split image threshold', value=0.5, minimum=0.0, maximum=1.0, step=0.05)
- process_overlap_ratio = gr.Slider(label='Split image overlap ratio', value=0.2, minimum=0.0, maximum=0.9, step=0.05)
+ process_split_threshold = gr.Slider(label='Split image threshold', value=0.5, minimum=0.0, maximum=1.0, step=0.05, elem_id="train_process_split_threshold")
+ process_overlap_ratio = gr.Slider(label='Split image overlap ratio', value=0.2, minimum=0.0, maximum=0.9, step=0.05, elem_id="train_process_overlap_ratio")
with gr.Row(visible=False) as process_focal_crop_row:
- process_focal_crop_face_weight = gr.Slider(label='Focal point face weight', value=0.9, minimum=0.0, maximum=1.0, step=0.05)
- process_focal_crop_entropy_weight = gr.Slider(label='Focal point entropy weight', value=0.15, minimum=0.0, maximum=1.0, step=0.05)
- process_focal_crop_edges_weight = gr.Slider(label='Focal point edges weight', value=0.5, minimum=0.0, maximum=1.0, step=0.05)
- process_focal_crop_debug = gr.Checkbox(label='Create debug image')
+ process_focal_crop_face_weight = gr.Slider(label='Focal point face weight', value=0.9, minimum=0.0, maximum=1.0, step=0.05, elem_id="train_process_focal_crop_face_weight")
+ process_focal_crop_entropy_weight = gr.Slider(label='Focal point entropy weight', value=0.15, minimum=0.0, maximum=1.0, step=0.05, elem_id="train_process_focal_crop_entropy_weight")
+ process_focal_crop_edges_weight = gr.Slider(label='Focal point edges weight', value=0.5, minimum=0.0, maximum=1.0, step=0.05, elem_id="train_process_focal_crop_edges_weight")
+ process_focal_crop_debug = gr.Checkbox(label='Create debug image', elem_id="train_process_focal_crop_debug")
with gr.Row():
with gr.Column(scale=3):
gr.HTML(value="")
with gr.Column():
- run_preprocess = gr.Button(value="Preprocess", variant='primary')
+ with gr.Row():
+ interrupt_preprocessing = gr.Button("Interrupt", elem_id="train_interrupt_preprocessing")
+ run_preprocess = gr.Button(value="Preprocess", variant='primary', elem_id="train_run_preprocess")
process_split.change(
fn=lambda show: gr_show(show),
@@ -1250,27 +1288,35 @@ def create_ui(wrap_gradio_gpu_call):
train_hypernetwork_name = gr.Dropdown(label='Hypernetwork', elem_id="train_hypernetwork", choices=[x for x in shared.hypernetworks.keys()])
create_refresh_button(train_hypernetwork_name, shared.reload_hypernetworks, lambda: {"choices": sorted([x for x in shared.hypernetworks.keys()])}, "refresh_train_hypernetwork_name")
with gr.Row():
- embedding_learn_rate = gr.Textbox(label='Embedding Learning rate', placeholder="Embedding Learning rate", value="0.005")
- hypernetwork_learn_rate = gr.Textbox(label='Hypernetwork Learning rate', placeholder="Hypernetwork Learning rate", value="0.00001")
+ embedding_learn_rate = gr.Textbox(label='Embedding Learning rate', placeholder="Embedding Learning rate", value="0.005", elem_id="train_embedding_learn_rate")
+ hypernetwork_learn_rate = gr.Textbox(label='Hypernetwork Learning rate', placeholder="Hypernetwork Learning rate", value="0.00001", elem_id="train_hypernetwork_learn_rate")
+
with gr.Row():
clip_grad_mode = gr.Dropdown(value="disabled", label="Gradient Clipping", choices=["disabled", "value", "norm"])
clip_grad_value = gr.Textbox(placeholder="Gradient clip value", value="0.1", show_label=False)
- batch_size = gr.Number(label='Batch size', value=1, precision=0)
- dataset_directory = gr.Textbox(label='Dataset directory', placeholder="Path to directory with input images")
- log_directory = gr.Textbox(label='Log directory', placeholder="Path to directory where to write outputs", value="textual_inversion")
- template_file = gr.Textbox(label='Prompt template file', value=os.path.join(script_path, "textual_inversion_templates", "style_filewords.txt"))
- training_width = gr.Slider(minimum=64, maximum=2048, step=64, label="Width", value=512)
- training_height = gr.Slider(minimum=64, maximum=2048, step=64, label="Height", value=512)
- steps = gr.Number(label='Max steps', value=100000, precision=0)
- create_image_every = gr.Number(label='Save an image to log directory every N steps, 0 to disable', value=500, precision=0)
- save_embedding_every = gr.Number(label='Save a copy of embedding to log directory every N steps, 0 to disable', value=500, precision=0)
- save_image_with_stored_embedding = gr.Checkbox(label='Save images with embedding in PNG chunks', value=True)
- preview_from_txt2img = gr.Checkbox(label='Read parameters (prompt, etc...) from txt2img tab when making previews', value=False)
+
+ batch_size = gr.Number(label='Batch size', value=1, precision=0, elem_id="train_batch_size")
+ gradient_step = gr.Number(label='Gradient accumulation steps', value=1, precision=0, elem_id="train_gradient_step")
+ dataset_directory = gr.Textbox(label='Dataset directory', placeholder="Path to directory with input images", elem_id="train_dataset_directory")
+ log_directory = gr.Textbox(label='Log directory', placeholder="Path to directory where to write outputs", value="textual_inversion", elem_id="train_log_directory")
+ template_file = gr.Textbox(label='Prompt template file', value=os.path.join(script_path, "textual_inversion_templates", "style_filewords.txt"), elem_id="train_template_file")
+ training_width = gr.Slider(minimum=64, maximum=2048, step=8, label="Width", value=512, elem_id="train_training_width")
+ training_height = gr.Slider(minimum=64, maximum=2048, step=8, label="Height", value=512, elem_id="train_training_height")
+ steps = gr.Number(label='Max steps', value=100000, precision=0, elem_id="train_steps")
+ create_image_every = gr.Number(label='Save an image to log directory every N steps, 0 to disable', value=500, precision=0, elem_id="train_create_image_every")
+ save_embedding_every = gr.Number(label='Save a copy of embedding to log directory every N steps, 0 to disable', value=500, precision=0, elem_id="train_save_embedding_every")
+ save_image_with_stored_embedding = gr.Checkbox(label='Save images with embedding in PNG chunks', value=True, elem_id="train_save_image_with_stored_embedding")
+ preview_from_txt2img = gr.Checkbox(label='Read parameters (prompt, etc...) from txt2img tab when making previews', value=False, elem_id="train_preview_from_txt2img")
+ with gr.Row():
+ shuffle_tags = gr.Checkbox(label="Shuffle tags by ',' when creating prompts.", value=False, elem_id="train_shuffle_tags")
+ tag_drop_out = gr.Slider(minimum=0, maximum=1, step=0.1, label="Drop out tags when creating prompts.", value=0, elem_id="train_tag_drop_out")
+ with gr.Row():
+ latent_sampling_method = gr.Radio(label='Choose latent sampling method', value="once", choices=['once', 'deterministic', 'random'], elem_id="train_latent_sampling_method")
with gr.Row():
- interrupt_training = gr.Button(value="Interrupt")
- train_hypernetwork = gr.Button(value="Train Hypernetwork", variant='primary')
- train_embedding = gr.Button(value="Train Embedding", variant='primary')
+ interrupt_training = gr.Button(value="Interrupt", elem_id="train_interrupt_training")
+ train_hypernetwork = gr.Button(value="Train Hypernetwork", variant='primary', elem_id="train_train_hypernetwork")
+ train_embedding = gr.Button(value="Train Embedding", variant='primary', elem_id="train_train_embedding")
params = script_callbacks.UiTrainTabParams(txt2img_preview_params)
@@ -1354,6 +1400,7 @@ def create_ui(wrap_gradio_gpu_call):
train_embedding_name,
embedding_learn_rate,
batch_size,
+ gradient_step,
dataset_directory,
log_directory,
training_width,
@@ -1361,6 +1408,9 @@ def create_ui(wrap_gradio_gpu_call):
steps,
clip_grad_mode,
clip_grad_value,
+ shuffle_tags,
+ tag_drop_out,
+ latent_sampling_method,
create_image_every,
save_embedding_every,
template_file,
@@ -1381,6 +1431,7 @@ def create_ui(wrap_gradio_gpu_call):
train_hypernetwork_name,
hypernetwork_learn_rate,
batch_size,
+ gradient_step,
dataset_directory,
log_directory,
training_width,
@@ -1388,6 +1439,9 @@ def create_ui(wrap_gradio_gpu_call):
steps,
clip_grad_mode,
clip_grad_value,
+ shuffle_tags,
+ tag_drop_out,
+ latent_sampling_method,
create_image_every,
save_embedding_every,
template_file,
@@ -1406,6 +1460,12 @@ def create_ui(wrap_gradio_gpu_call):
outputs=[],
)
+ interrupt_preprocessing.click(
+ fn=lambda: shared.state.interrupt(),
+ inputs=[],
+ outputs=[],
+ )
+
def create_setting_component(key, is_quicksettings=False):
def fun():
return opts.data[key] if key in opts.data else opts.data_labels[key].default
@@ -1433,7 +1493,7 @@ def create_ui(wrap_gradio_gpu_call):
res = comp(label=info.label, value=fun(), elem_id=elem_id, **(args or {}))
create_refresh_button(res, info.refresh, info.component_args, "refresh_" + key)
else:
- with gr.Row(variant="compact"):
+ with FormRow():
res = comp(label=info.label, value=fun(), elem_id=elem_id, **(args or {}))
create_refresh_button(res, info.refresh, info.component_args, "refresh_" + key)
else:
@@ -1457,76 +1517,57 @@ def create_ui(wrap_gradio_gpu_call):
if comp == dummy_component:
continue
- oldval = opts.data.get(key, None)
- try:
- setattr(opts, key, value)
- except RuntimeError:
- continue
- if oldval != value:
- if opts.data_labels[key].onchange is not None:
- opts.data_labels[key].onchange()
-
+ if opts.set(key, value):
changed.append(key)
+
try:
opts.save(shared.config_filename)
except RuntimeError:
return opts.dumpjson(), f'{len(changed)} settings changed without save: {", ".join(changed)}.'
- return opts.dumpjson(), f'{len(changed)} settings changed: {", ".join(changed)}.'
+ return opts.dumpjson(), f'{len(changed)} settings changed{": " if len(changed) > 0 else ""}{", ".join(changed)}.'
def run_settings_single(value, key):
if not opts.same_type(value, opts.data_labels[key].default):
return gr.update(visible=True), opts.dumpjson()
- oldval = opts.data.get(key, None)
- try:
- setattr(opts, key, value)
- except Exception:
- return gr.update(value=oldval), opts.dumpjson()
-
- if oldval != value:
- if opts.data_labels[key].onchange is not None:
- opts.data_labels[key].onchange()
+ if not opts.set(key, value):
+ return gr.update(value=getattr(opts, key)), opts.dumpjson()
opts.save(shared.config_filename)
return gr.update(value=value), opts.dumpjson()
with gr.Blocks(analytics_enabled=False) as settings_interface:
- settings_submit = gr.Button(value="Apply settings", variant='primary')
- result = gr.HTML()
+ with gr.Row():
+ with gr.Column(scale=6):
+ settings_submit = gr.Button(value="Apply settings", variant='primary', elem_id="settings_submit")
+ with gr.Column():
+ restart_gradio = gr.Button(value='Reload UI', variant='primary', elem_id="settings_restart_gradio")
- settings_cols = 3
- items_per_col = int(len(opts.data_labels) * 0.9 / settings_cols)
+ result = gr.HTML(elem_id="settings_result")
quicksettings_names = [x.strip() for x in opts.quicksettings.split(",")]
- quicksettings_names = set(x for x in quicksettings_names if x != 'quicksettings')
+ quicksettings_names = {x: i for i, x in enumerate(quicksettings_names) if x != 'quicksettings'}
quicksettings_list = []
- cols_displayed = 0
- items_displayed = 0
previous_section = None
- column = None
- with gr.Row(elem_id="settings").style(equal_height=False):
+ current_tab = None
+ with gr.Tabs(elem_id="settings"):
for i, (k, item) in enumerate(opts.data_labels.items()):
section_must_be_skipped = item.section[0] is None
if previous_section != item.section and not section_must_be_skipped:
- if cols_displayed < settings_cols and (items_displayed >= items_per_col or previous_section is None):
- if column is not None:
- column.__exit__()
+ elem_id, text = item.section
- column = gr.Column(variant='panel')
- column.__enter__()
+ if current_tab is not None:
+ current_tab.__exit__()
- items_displayed = 0
- cols_displayed += 1
+ current_tab = gr.TabItem(elem_id="settings_{}".format(elem_id), label=text)
+ current_tab.__enter__()
previous_section = item.section
- elem_id, text = item.section
- gr.HTML(elem_id="settings_header_text_{}".format(elem_id), value=''.format(text))
-
if k in quicksettings_names and not shared.cmd_opts.freeze_settings:
quicksettings_list.append((i, k, item))
components.append(dummy_component)
@@ -1536,15 +1577,21 @@ def create_ui(wrap_gradio_gpu_call):
component = create_setting_component(k)
component_dict[k] = component
components.append(component)
- items_displayed += 1
- with gr.Row():
- request_notifications = gr.Button(value='Request browser notifications', elem_id="request_notifications")
- download_localization = gr.Button(value='Download localization template', elem_id="download_localization")
+ if current_tab is not None:
+ current_tab.__exit__()
- with gr.Row():
- reload_script_bodies = gr.Button(value='Reload custom script bodies (No ui updates, No restart)', variant='secondary')
- restart_gradio = gr.Button(value='Restart Gradio and Refresh components (Custom Scripts, ui.py, js and css only)', variant='primary')
+ with gr.TabItem("Actions"):
+ request_notifications = gr.Button(value='Request browser notifications', elem_id="request_notifications")
+ download_localization = gr.Button(value='Download localization template', elem_id="download_localization")
+ reload_script_bodies = gr.Button(value='Reload custom script bodies (No ui updates, No restart)', variant='secondary', elem_id="settings_reload_script_bodies")
+
+ if os.path.exists("html/licenses.html"):
+ with open("html/licenses.html", encoding="utf8") as file:
+ with gr.TabItem("Licenses"):
+ gr.HTML(file.read(), elem_id="licenses")
+
+ gr.Button(value="Show all pages", elem_id="settings_show_all_pages")
request_notifications.click(
fn=lambda: None,
@@ -1581,9 +1628,6 @@ def create_ui(wrap_gradio_gpu_call):
outputs=[],
)
- if column is not None:
- column.__exit__()
-
interfaces = [
(txt2img_interface, "txt2img", "txt2img"),
(img2img_interface, "img2img", "img2img"),
@@ -1617,7 +1661,7 @@ def create_ui(wrap_gradio_gpu_call):
with gr.Blocks(css=css, analytics_enabled=False, title="Stable Diffusion") as demo:
with gr.Row(elem_id="quicksettings"):
- for i, k, item in quicksettings_list:
+ for i, k, item in sorted(quicksettings_list, key=lambda x: quicksettings_names.get(x[1], x[0])):
component = create_setting_component(k, is_quicksettings=True)
component_dict[k] = component
@@ -1632,6 +1676,10 @@ def create_ui(wrap_gradio_gpu_call):
if os.path.exists(os.path.join(script_path, "notification.mp3")):
audio_notification = gr.Audio(interactive=False, value=os.path.join(script_path, "notification.mp3"), elem_id="audio_notification", visible=False)
+ if os.path.exists("html/footer.html"):
+ with open("html/footer.html", encoding="utf8") as file:
+ gr.HTML(file.read(), elem_id="footer")
+
text_settings = gr.Textbox(elem_id="settings_json", value=lambda: opts.dumpjson(), visible=False)
settings_submit.click(
fn=wrap_gradio_call(run_settings, extra_outputs=[gr.update()]),
@@ -1666,7 +1714,7 @@ def create_ui(wrap_gradio_gpu_call):
print("Error loading/saving model file:", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
modules.sd_models.list_models() # to remove the potentially missing models from the list
- return ["Error loading/saving model file. It doesn't exist or the name contains illegal characters"] + [gr.Dropdown.update(choices=modules.sd_models.checkpoint_tiles()) for _ in range(3)]
+ return [f"Error merging checkpoints: {e}"] + [gr.Dropdown.update(choices=modules.sd_models.checkpoint_tiles()) for _ in range(4)]
return results
modelmerger_merge.click(
@@ -1679,6 +1727,7 @@ def create_ui(wrap_gradio_gpu_call):
interp_amount,
save_as_half,
custom_name,
+ checkpoint_format,
],
outputs=[
submit_result,
diff --git a/modules/ui_components.py b/modules/ui_components.py
new file mode 100644
index 000000000..91eb0e3da
--- /dev/null
+++ b/modules/ui_components.py
@@ -0,0 +1,25 @@
+import gradio as gr
+
+
+class ToolButton(gr.Button, gr.components.FormComponent):
+ """Small button with single emoji as text, fits inside gradio forms"""
+
+ def __init__(self, **kwargs):
+ super().__init__(variant="tool", **kwargs)
+
+ def get_block_name(self):
+ return "button"
+
+
+class FormRow(gr.Row, gr.components.FormComponent):
+ """Same as gr.Row but fits inside gradio forms"""
+
+ def get_block_name(self):
+ return "row"
+
+
+class FormGroup(gr.Group, gr.components.FormComponent):
+ """Same as gr.Row but fits inside gradio forms"""
+
+ def get_block_name(self):
+ return "group"
diff --git a/modules/ui_extensions.py b/modules/ui_extensions.py
index 02ab9643d..eec9586fc 100644
--- a/modules/ui_extensions.py
+++ b/modules/ui_extensions.py
@@ -9,6 +9,8 @@ import git
import gradio as gr
import html
+import shutil
+import errno
from modules import extensions, shared, paths
@@ -17,7 +19,7 @@ available_extensions = {"extensions": []}
def check_access():
- assert not shared.cmd_opts.disable_extension_access, "extension access disabed because of commandline flags"
+ assert not shared.cmd_opts.disable_extension_access, "extension access disabled because of command line flags"
def apply_and_restart(disable_list, update_list):
@@ -36,9 +38,9 @@ def apply_and_restart(disable_list, update_list):
continue
try:
- ext.pull()
+ ext.fetch_and_reset_hard()
except Exception:
- print(f"Error pulling updates for {ext.name}:", file=sys.stderr)
+ print(f"Error getting updates for {ext.name}:", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
shared.opts.disabled_extensions = disabled
@@ -78,6 +80,12 @@ def extension_table():
"""
for ext in extensions.extensions:
+ remote = ""
+ if ext.is_builtin:
+ remote = "built-in"
+ elif ext.remote:
+ remote = f"""{html.escape("built-in" if ext.is_builtin else ext.remote or '')} """
+
if ext.can_update:
ext_status = f""" {html.escape(ext.status)} """
else:
@@ -86,7 +94,7 @@ def extension_table():
code += f"""
{html.escape(ext.name)}
- {html.escape(ext.remote or '')}
+ {remote}
{ext_status}
"""
@@ -132,7 +140,21 @@ def install_extension_from_url(dirname, url):
repo = git.Repo.clone_from(url, tmpdir)
repo.remote().fetch()
- os.rename(tmpdir, target_dir)
+ try:
+ os.rename(tmpdir, target_dir)
+ except OSError as err:
+ # TODO what does this do on windows? I think it'll be a different error code but I don't have a system to check it
+ # Shouldn't cause any new issues at least but we probably want to handle it there too.
+ if err.errno == errno.EXDEV:
+ # Cross device link, typical in docker or when tmp/ and extensions/ are on different file systems
+ # Since we can't use a rename, do the slower but more versitile shutil.move()
+ shutil.move(tmpdir, target_dir)
+ else:
+ # Something else, not enough free space, permissions, etc. rethrow it so that it gets handled.
+ raise(err)
+
+ import launch
+ launch.run_extension_installer(target_dir)
extensions.list_extensions()
return [extension_table(), html.escape(f"Installed into {target_dir}. Use Installed tab to restart.")]
@@ -197,12 +219,13 @@ def refresh_available_extensions_from_data(hide_tags):
if url is None:
continue
+ existing = installed_extension_urls.get(normalize_git_url(url), None)
+ extension_tags = extension_tags + ["installed"] if existing else extension_tags
+
if len([x for x in extension_tags if x in tags_to_hide]) > 0:
hidden += 1
continue
- existing = installed_extension_urls.get(normalize_git_url(url), None)
-
install_code = f""" """
tags_text = ", ".join([f"{x} " for x in extension_tags])
@@ -213,7 +236,11 @@ def refresh_available_extensions_from_data(hide_tags):
{html.escape(description)}
{install_code}
- """
+
+ """
+
+ for tag in [x for x in extension_tags if x not in tags]:
+ tags[tag] = tag
code += """
@@ -263,7 +290,7 @@ def create_ui():
install_extension_button = gr.Button(elem_id="install_extension_button", visible=False)
with gr.Row():
- hide_tags = gr.CheckboxGroup(value=["ads", "localization"], label="Hide extensions with tags", choices=["script", "ads", "localization"])
+ hide_tags = gr.CheckboxGroup(value=["ads", "localization", "installed"], label="Hide extensions with tags", choices=["script", "ads", "localization", "installed"])
install_result = gr.HTML()
available_extensions_table = gr.HTML()
diff --git a/modules/ui_tempdir.py b/modules/ui_tempdir.py
new file mode 100644
index 000000000..21945235e
--- /dev/null
+++ b/modules/ui_tempdir.py
@@ -0,0 +1,82 @@
+import os
+import tempfile
+from collections import namedtuple
+from pathlib import Path
+
+import gradio as gr
+
+from PIL import PngImagePlugin
+
+from modules import shared
+
+
+Savedfile = namedtuple("Savedfile", ["name"])
+
+
+def register_tmp_file(gradio, filename):
+ if hasattr(gradio, 'temp_file_sets'): # gradio 3.15
+ gradio.temp_file_sets[0] = gradio.temp_file_sets[0] | {os.path.abspath(filename)}
+
+ if hasattr(gradio, 'temp_dirs'): # gradio 3.9
+ gradio.temp_dirs = gradio.temp_dirs | {os.path.abspath(os.path.dirname(filename))}
+
+
+def check_tmp_file(gradio, filename):
+ if hasattr(gradio, 'temp_file_sets'):
+ return any([filename in fileset for fileset in gradio.temp_file_sets])
+
+ if hasattr(gradio, 'temp_dirs'):
+ return any(Path(temp_dir).resolve() in Path(filename).resolve().parents for temp_dir in gradio.temp_dirs)
+
+ return False
+
+
+def save_pil_to_file(pil_image, dir=None):
+ already_saved_as = getattr(pil_image, 'already_saved_as', None)
+ if already_saved_as and os.path.isfile(already_saved_as):
+ register_tmp_file(shared.demo, already_saved_as)
+
+ file_obj = Savedfile(already_saved_as)
+ return file_obj
+
+ if shared.opts.temp_dir != "":
+ dir = shared.opts.temp_dir
+
+ use_metadata = False
+ metadata = PngImagePlugin.PngInfo()
+ for key, value in pil_image.info.items():
+ if isinstance(key, str) and isinstance(value, str):
+ metadata.add_text(key, value)
+ use_metadata = True
+
+ file_obj = tempfile.NamedTemporaryFile(delete=False, suffix=".png", dir=dir)
+ pil_image.save(file_obj, pnginfo=(metadata if use_metadata else None))
+ return file_obj
+
+
+# override save to file function so that it also writes PNG info
+gr.processing_utils.save_pil_to_file = save_pil_to_file
+
+
+def on_tmpdir_changed():
+ if shared.opts.temp_dir == "" or shared.demo is None:
+ return
+
+ os.makedirs(shared.opts.temp_dir, exist_ok=True)
+
+ register_tmp_file(shared.demo, os.path.join(shared.opts.temp_dir, "x"))
+
+
+def cleanup_tmpdr():
+ temp_dir = shared.opts.temp_dir
+ if temp_dir == "" or not os.path.isdir(temp_dir):
+ return
+
+ for root, dirs, files in os.walk(temp_dir, topdown=False):
+ for name in files:
+ _, extension = os.path.splitext(name)
+ if extension != ".png":
+ continue
+
+ filename = os.path.join(root, name)
+ os.remove(filename)
diff --git a/modules/upscaler.py b/modules/upscaler.py
index c4e6e6bd6..231680cb0 100644
--- a/modules/upscaler.py
+++ b/modules/upscaler.py
@@ -53,10 +53,10 @@ class Upscaler:
def do_upscale(self, img: PIL.Image, selected_model: str):
return img
- def upscale(self, img: PIL.Image, scale: int, selected_model: str = None):
+ def upscale(self, img: PIL.Image, scale, selected_model: str = None):
self.scale = scale
- dest_w = img.width * scale
- dest_h = img.height * scale
+ dest_w = int(img.width * scale)
+ dest_h = int(img.height * scale)
for i in range(3):
shape = (img.width, img.height)
diff --git a/modules/xlmr.py b/modules/xlmr.py
new file mode 100644
index 000000000..beab3fdf5
--- /dev/null
+++ b/modules/xlmr.py
@@ -0,0 +1,137 @@
+from transformers import BertPreTrainedModel,BertModel,BertConfig
+import torch.nn as nn
+import torch
+from transformers.models.xlm_roberta.configuration_xlm_roberta import XLMRobertaConfig
+from transformers import XLMRobertaModel,XLMRobertaTokenizer
+from typing import Optional
+
+class BertSeriesConfig(BertConfig):
+ def __init__(self, vocab_size=30522, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=2, initializer_range=0.02, layer_norm_eps=1e-12, pad_token_id=0, position_embedding_type="absolute", use_cache=True, classifier_dropout=None,project_dim=512, pooler_fn="average",learn_encoder=False,model_type='bert',**kwargs):
+
+ super().__init__(vocab_size, hidden_size, num_hidden_layers, num_attention_heads, intermediate_size, hidden_act, hidden_dropout_prob, attention_probs_dropout_prob, max_position_embeddings, type_vocab_size, initializer_range, layer_norm_eps, pad_token_id, position_embedding_type, use_cache, classifier_dropout, **kwargs)
+ self.project_dim = project_dim
+ self.pooler_fn = pooler_fn
+ self.learn_encoder = learn_encoder
+
+class RobertaSeriesConfig(XLMRobertaConfig):
+ def __init__(self, pad_token_id=1, bos_token_id=0, eos_token_id=2,project_dim=512,pooler_fn='cls',learn_encoder=False, **kwargs):
+ super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
+ self.project_dim = project_dim
+ self.pooler_fn = pooler_fn
+ self.learn_encoder = learn_encoder
+
+
+class BertSeriesModelWithTransformation(BertPreTrainedModel):
+
+ _keys_to_ignore_on_load_unexpected = [r"pooler"]
+ _keys_to_ignore_on_load_missing = [r"position_ids", r"predictions.decoder.bias"]
+ config_class = BertSeriesConfig
+
+ def __init__(self, config=None, **kargs):
+ # modify initialization for autoloading
+ if config is None:
+ config = XLMRobertaConfig()
+ config.attention_probs_dropout_prob= 0.1
+ config.bos_token_id=0
+ config.eos_token_id=2
+ config.hidden_act='gelu'
+ config.hidden_dropout_prob=0.1
+ config.hidden_size=1024
+ config.initializer_range=0.02
+ config.intermediate_size=4096
+ config.layer_norm_eps=1e-05
+ config.max_position_embeddings=514
+
+ config.num_attention_heads=16
+ config.num_hidden_layers=24
+ config.output_past=True
+ config.pad_token_id=1
+ config.position_embedding_type= "absolute"
+
+ config.type_vocab_size= 1
+ config.use_cache=True
+ config.vocab_size= 250002
+ config.project_dim = 768
+ config.learn_encoder = False
+ super().__init__(config)
+ self.roberta = XLMRobertaModel(config)
+ self.transformation = nn.Linear(config.hidden_size,config.project_dim)
+ self.pre_LN=nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
+ self.tokenizer = XLMRobertaTokenizer.from_pretrained('xlm-roberta-large')
+ self.pooler = lambda x: x[:,0]
+ self.post_init()
+
+ def encode(self,c):
+ device = next(self.parameters()).device
+ text = self.tokenizer(c,
+ truncation=True,
+ max_length=77,
+ return_length=False,
+ return_overflowing_tokens=False,
+ padding="max_length",
+ return_tensors="pt")
+ text["input_ids"] = torch.tensor(text["input_ids"]).to(device)
+ text["attention_mask"] = torch.tensor(
+ text['attention_mask']).to(device)
+ features = self(**text)
+ return features['projection_state']
+
+ def forward(
+ self,
+ input_ids: Optional[torch.Tensor] = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ token_type_ids: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.Tensor] = None,
+ head_mask: Optional[torch.Tensor] = None,
+ inputs_embeds: Optional[torch.Tensor] = None,
+ encoder_hidden_states: Optional[torch.Tensor] = None,
+ encoder_attention_mask: Optional[torch.Tensor] = None,
+ output_attentions: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ ) :
+ r"""
+ """
+
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+
+ outputs = self.roberta(
+ input_ids=input_ids,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ position_ids=position_ids,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ encoder_hidden_states=encoder_hidden_states,
+ encoder_attention_mask=encoder_attention_mask,
+ output_attentions=output_attentions,
+ output_hidden_states=True,
+ return_dict=return_dict,
+ )
+
+ # last module outputs
+ sequence_output = outputs[0]
+
+
+ # project every module
+ sequence_output_ln = self.pre_LN(sequence_output)
+
+ # pooler
+ pooler_output = self.pooler(sequence_output_ln)
+ pooler_output = self.transformation(pooler_output)
+ projection_state = self.transformation(outputs.last_hidden_state)
+
+ return {
+ 'pooler_output':pooler_output,
+ 'last_hidden_state':outputs.last_hidden_state,
+ 'hidden_states':outputs.hidden_states,
+ 'attentions':outputs.attentions,
+ 'projection_state':projection_state,
+ 'sequence_out': sequence_output
+ }
+
+
+class RobertaSeriesModelWithTransformation(BertSeriesModelWithTransformation):
+ base_model_prefix = 'roberta'
+ config_class= RobertaSeriesConfig
\ No newline at end of file
diff --git a/requirements.txt b/requirements.txt
index 0fba0b233..4f09385f4 100644
--- a/requirements.txt
+++ b/requirements.txt
@@ -1,14 +1,15 @@
+blendmodes
+accelerate
basicsr
-diffusers
fairscale==0.4.4
fonts
font-roboto
gfpgan
-gradio==3.9
+gradio==3.15.0
invisible-watermark
numpy
omegaconf
-opencv-python
+opencv-contrib-python
requests
piexif
Pillow
@@ -27,3 +28,6 @@ kornia
lark
inflection
GitPython
+torchsde
+safetensors
+psutil; sys_platform == 'darwin'
diff --git a/requirements_versions.txt b/requirements_versions.txt
index f7059f205..d28992927 100644
--- a/requirements_versions.txt
+++ b/requirements_versions.txt
@@ -1,10 +1,11 @@
+blendmodes==2022
transformers==4.19.2
-diffusers==0.3.0
+accelerate==0.12.0
basicsr==1.4.2
gfpgan==1.3.8
-gradio==3.9
+gradio==3.15.0
numpy==1.23.3
-Pillow==9.2.0
+Pillow==9.4.0
realesrgan==0.3.0
torch
omegaconf==2.2.3
@@ -24,3 +25,6 @@ kornia==0.6.7
lark==1.1.2
inflection==0.5.1
GitPython==3.1.27
+torchsde==0.2.5
+safetensors==0.2.7
+httpcore<=0.15
diff --git a/script.js b/script.js
index 8b3b67e3e..0e117d067 100644
--- a/script.js
+++ b/script.js
@@ -1,9 +1,10 @@
-function gradioApp(){
- return document.getElementsByTagName('gradio-app')[0].shadowRoot;
+function gradioApp() {
+ const gradioShadowRoot = document.getElementsByTagName('gradio-app')[0].shadowRoot
+ return !!gradioShadowRoot ? gradioShadowRoot : document;
}
function get_uiCurrentTab() {
- return gradioApp().querySelector('.tabs button:not(.border-transparent)')
+ return gradioApp().querySelector('#tabs button:not(.border-transparent)')
}
function get_uiCurrentTabContent() {
@@ -82,4 +83,4 @@ function uiElementIsVisible(el) {
}
}
return isVisible;
-}
\ No newline at end of file
+}
diff --git a/scripts/img2imgalt.py b/scripts/img2imgalt.py
index 964b75c7f..1229f61b5 100644
--- a/scripts/img2imgalt.py
+++ b/scripts/img2imgalt.py
@@ -157,7 +157,7 @@ class Script(scripts.Script):
def run(self, p, _, override_sampler, override_prompt, original_prompt, original_negative_prompt, override_steps, st, override_strength, cfg, randomness, sigma_adjustment):
# Override
if override_sampler:
- p.sampler_index = [sampler.name for sampler in sd_samplers.samplers].index("Euler")
+ p.sampler_name = "Euler"
if override_prompt:
p.prompt = original_prompt
p.negative_prompt = original_negative_prompt
@@ -191,7 +191,7 @@ class Script(scripts.Script):
combined_noise = ((1 - randomness) * rec_noise + randomness * rand_noise) / ((randomness**2 + (1-randomness)**2) ** 0.5)
- sampler = sd_samplers.create_sampler_with_index(sd_samplers.samplers, p.sampler_index, p.sd_model)
+ sampler = sd_samplers.create_sampler(p.sampler_name, p.sd_model)
sigmas = sampler.model_wrap.get_sigmas(p.steps)
diff --git a/scripts/prompt_matrix.py b/scripts/prompt_matrix.py
index e49c9b205..4c79eaefc 100644
--- a/scripts/prompt_matrix.py
+++ b/scripts/prompt_matrix.py
@@ -18,7 +18,7 @@ def draw_xy_grid(xs, ys, x_label, y_label, cell):
ver_texts = [[images.GridAnnotation(y_label(y))] for y in ys]
hor_texts = [[images.GridAnnotation(x_label(x))] for x in xs]
- first_pocessed = None
+ first_processed = None
state.job_count = len(xs) * len(ys)
@@ -27,17 +27,17 @@ def draw_xy_grid(xs, ys, x_label, y_label, cell):
state.job = f"{ix + iy * len(xs) + 1} out of {len(xs) * len(ys)}"
processed = cell(x, y)
- if first_pocessed is None:
- first_pocessed = processed
+ if first_processed is None:
+ first_processed = processed
res.append(processed.images[0])
grid = images.image_grid(res, rows=len(ys))
grid = images.draw_grid_annotations(grid, res[0].width, res[0].height, hor_texts, ver_texts)
- first_pocessed.images = [grid]
+ first_processed.images = [grid]
- return first_pocessed
+ return first_processed
class Script(scripts.Script):
@@ -46,10 +46,11 @@ class Script(scripts.Script):
def ui(self, is_img2img):
put_at_start = gr.Checkbox(label='Put variable parts at start of prompt', value=False)
+ different_seeds = gr.Checkbox(label='Use different seed for each picture', value=False)
- return [put_at_start]
+ return [put_at_start, different_seeds]
- def run(self, p, put_at_start):
+ def run(self, p, put_at_start, different_seeds):
modules.processing.fix_seed(p)
original_prompt = p.prompt[0] if type(p.prompt) == list else p.prompt
@@ -73,15 +74,17 @@ class Script(scripts.Script):
print(f"Prompt matrix will create {len(all_prompts)} images using a total of {p.n_iter} batches.")
p.prompt = all_prompts
- p.seed = [p.seed for _ in all_prompts]
+ p.seed = [p.seed + (i if different_seeds else 0) for i in range(len(all_prompts))]
p.prompt_for_display = original_prompt
processed = process_images(p)
grid = images.image_grid(processed.images, p.batch_size, rows=1 << ((len(prompt_matrix_parts) - 1) // 2))
grid = images.draw_prompt_matrix(grid, p.width, p.height, prompt_matrix_parts)
processed.images.insert(0, grid)
+ processed.index_of_first_image = 1
+ processed.infotexts.insert(0, processed.infotexts[0])
if opts.grid_save:
- images.save_image(processed.images[0], p.outpath_grids, "prompt_matrix", prompt=original_prompt, seed=processed.seed, grid=True, p=p)
+ images.save_image(processed.images[0], p.outpath_grids, "prompt_matrix", extension=opts.grid_format, prompt=original_prompt, seed=processed.seed, grid=True, p=p)
return processed
diff --git a/scripts/prompts_from_file.py b/scripts/prompts_from_file.py
index 3388bc77a..e8386ed2d 100644
--- a/scripts/prompts_from_file.py
+++ b/scripts/prompts_from_file.py
@@ -9,6 +9,7 @@ import shlex
import modules.scripts as scripts
import gradio as gr
+from modules import sd_samplers
from modules.processing import Processed, process_images
from PIL import Image
from modules.shared import opts, cmd_opts, state
@@ -44,6 +45,7 @@ prompt_tags = {
"seed_resize_from_h": process_int_tag,
"seed_resize_from_w": process_int_tag,
"sampler_index": process_int_tag,
+ "sampler_name": process_string_tag,
"batch_size": process_int_tag,
"n_iter": process_int_tag,
"steps": process_int_tag,
@@ -66,14 +68,28 @@ def cmdargs(line):
arg = args[pos]
assert arg.startswith("--"), f'must start with "--": {arg}'
+ assert pos+1 < len(args), f'missing argument for command line option {arg}'
+
tag = arg[2:]
+ if tag == "prompt" or tag == "negative_prompt":
+ pos += 1
+ prompt = args[pos]
+ pos += 1
+ while pos < len(args) and not args[pos].startswith("--"):
+ prompt += " "
+ prompt += args[pos]
+ pos += 1
+ res[tag] = prompt
+ continue
+
+
func = prompt_tags.get(tag, None)
assert func, f'unknown commandline option: {arg}'
- assert pos+1 < len(args), f'missing argument for command line option {arg}'
-
val = args[pos+1]
+ if tag == "sampler_name":
+ val = sd_samplers.samplers_map.get(val.lower(), None)
res[tag] = func(val)
@@ -124,7 +140,7 @@ class Script(scripts.Script):
try:
args = cmdargs(line)
except Exception:
- print(f"Error parsing line [line] as commandline:", file=sys.stderr)
+ print(f"Error parsing line {line} as commandline:", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
args = {"prompt": line}
else:
@@ -145,6 +161,8 @@ class Script(scripts.Script):
state.job_count = job_count
images = []
+ all_prompts = []
+ infotexts = []
for n, args in enumerate(jobs):
state.job = f"{state.job_no + 1} out of {state.job_count}"
@@ -157,5 +175,7 @@ class Script(scripts.Script):
if checkbox_iterate:
p.seed = p.seed + (p.batch_size * p.n_iter)
+ all_prompts += proc.all_prompts
+ infotexts += proc.infotexts
- return Processed(p, images, p.seed, "")
+ return Processed(p, images, p.seed, "", all_prompts=all_prompts, infotexts=infotexts)
diff --git a/scripts/sd_upscale.py b/scripts/sd_upscale.py
index 010742910..9739545cc 100644
--- a/scripts/sd_upscale.py
+++ b/scripts/sd_upscale.py
@@ -17,13 +17,14 @@ class Script(scripts.Script):
return is_img2img
def ui(self, is_img2img):
- info = gr.HTML("Will upscale the image to twice the dimensions; use width and height sliders to set tile size
")
+ info = gr.HTML("Will upscale the image by the selected scale factor; use width and height sliders to set tile size
")
overlap = gr.Slider(minimum=0, maximum=256, step=16, label='Tile overlap', value=64)
+ scale_factor = gr.Slider(minimum=1.0, maximum=4.0, step=0.05, label='Scale Factor', value=2.0)
upscaler_index = gr.Radio(label='Upscaler', choices=[x.name for x in shared.sd_upscalers], value=shared.sd_upscalers[0].name, type="index")
- return [info, overlap, upscaler_index]
+ return [info, overlap, upscaler_index, scale_factor]
- def run(self, p, _, overlap, upscaler_index):
+ def run(self, p, _, overlap, upscaler_index, scale_factor):
processing.fix_seed(p)
upscaler = shared.sd_upscalers[upscaler_index]
@@ -34,9 +35,10 @@ class Script(scripts.Script):
seed = p.seed
init_img = p.init_images[0]
-
- if(upscaler.name != "None"):
- img = upscaler.scaler.upscale(init_img, 2, upscaler.data_path)
+ init_img = images.flatten(init_img, opts.img2img_background_color)
+
+ if upscaler.name != "None":
+ img = upscaler.scaler.upscale(init_img, scale_factor, upscaler.data_path)
else:
img = init_img
@@ -69,7 +71,7 @@ class Script(scripts.Script):
work_results = []
for i in range(batch_count):
p.batch_size = batch_size
- p.init_images = work[i*batch_size:(i+1)*batch_size]
+ p.init_images = work[i * batch_size:(i + 1) * batch_size]
state.job = f"Batch {i + 1 + n * batch_count} out of {state.job_count}"
processed = processing.process_images(p)
diff --git a/scripts/xy_grid.py b/scripts/xy_grid.py
index 417ed0d43..78ff12c57 100644
--- a/scripts/xy_grid.py
+++ b/scripts/xy_grid.py
@@ -10,13 +10,16 @@ import numpy as np
import modules.scripts as scripts
import gradio as gr
-from modules import images
+from modules import images, paths, sd_samplers, processing
from modules.hypernetworks import hypernetwork
-from modules.processing import process_images, Processed, get_correct_sampler, StableDiffusionProcessingTxt2Img
+from modules.processing import process_images, Processed, StableDiffusionProcessingTxt2Img
from modules.shared import opts, cmd_opts, state
import modules.shared as shared
import modules.sd_samplers
import modules.sd_models
+import modules.sd_vae
+import glob
+import os
import re
@@ -58,29 +61,19 @@ def apply_order(p, x, xs):
prompt_tmp += part
prompt_tmp += x[idx]
p.prompt = prompt_tmp + p.prompt
-
-
-def build_samplers_dict(p):
- samplers_dict = {}
- for i, sampler in enumerate(get_correct_sampler(p)):
- samplers_dict[sampler.name.lower()] = i
- for alias in sampler.aliases:
- samplers_dict[alias.lower()] = i
- return samplers_dict
def apply_sampler(p, x, xs):
- sampler_index = build_samplers_dict(p).get(x.lower(), None)
- if sampler_index is None:
+ sampler_name = sd_samplers.samplers_map.get(x.lower(), None)
+ if sampler_name is None:
raise RuntimeError(f"Unknown sampler: {x}")
- p.sampler_index = sampler_index
+ p.sampler_name = sampler_name
def confirm_samplers(p, xs):
- samplers_dict = build_samplers_dict(p)
for x in xs:
- if x.lower() not in samplers_dict.keys():
+ if x.lower() not in sd_samplers.samplers_map:
raise RuntimeError(f"Unknown sampler: {x}")
@@ -124,6 +117,38 @@ def apply_clip_skip(p, x, xs):
opts.data["CLIP_stop_at_last_layers"] = x
+def apply_upscale_latent_space(p, x, xs):
+ if x.lower().strip() != '0':
+ opts.data["use_scale_latent_for_hires_fix"] = True
+ else:
+ opts.data["use_scale_latent_for_hires_fix"] = False
+
+
+def find_vae(name: str):
+ if name.lower() in ['auto', 'none']:
+ return name
+ else:
+ vae_path = os.path.abspath(os.path.join(paths.models_path, 'VAE'))
+ found = glob.glob(os.path.join(vae_path, f'**/{name}.*pt'), recursive=True)
+ if found:
+ return found[0]
+ else:
+ return 'auto'
+
+
+def apply_vae(p, x, xs):
+ if x.lower().strip() == 'none':
+ modules.sd_vae.reload_vae_weights(shared.sd_model, vae_file='None')
+ else:
+ found = find_vae(x)
+ if found:
+ v = modules.sd_vae.reload_vae_weights(shared.sd_model, vae_file=found)
+
+
+def apply_styles(p: StableDiffusionProcessingTxt2Img, x: str, _):
+ p.styles = x.split(',')
+
+
def format_value_add_label(p, opt, x):
if type(x) == float:
x = round(x, 8)
@@ -177,7 +202,10 @@ axis_options = [
AxisOption("Eta", float, apply_field("eta"), format_value_add_label, None),
AxisOption("Clip skip", int, apply_clip_skip, format_value_add_label, None),
AxisOption("Denoising", float, apply_field("denoising_strength"), format_value_add_label, None),
+ AxisOption("Hires upscaler", str, apply_field("hr_upscaler"), format_value_add_label, None),
AxisOption("Cond. Image Mask Weight", float, apply_field("inpainting_mask_weight"), format_value_add_label, None),
+ AxisOption("VAE", str, apply_vae, format_value_add_label, None),
+ AxisOption("Styles", str, apply_styles, format_value_add_label, None),
]
@@ -239,9 +267,11 @@ class SharedSettingsStackHelper(object):
self.CLIP_stop_at_last_layers = opts.CLIP_stop_at_last_layers
self.hypernetwork = opts.sd_hypernetwork
self.model = shared.sd_model
+ self.vae = opts.sd_vae
def __exit__(self, exc_type, exc_value, tb):
modules.sd_models.reload_model_weights(self.model)
+ modules.sd_vae.reload_vae_weights(self.model, vae_file=find_vae(self.vae))
hypernetwork.load_hypernetwork(self.hypernetwork)
hypernetwork.apply_strength()
@@ -255,6 +285,7 @@ re_range_float = re.compile(r"\s*([+-]?\s*\d+(?:.\d*)?)\s*-\s*([+-]?\s*\d+(?:.\d
re_range_count = re.compile(r"\s*([+-]?\s*\d+)\s*-\s*([+-]?\s*\d+)(?:\s*\[(\d+)\s*\])?\s*")
re_range_count_float = re.compile(r"\s*([+-]?\s*\d+(?:.\d*)?)\s*-\s*([+-]?\s*\d+(?:.\d*)?)(?:\s*\[(\d+(?:.\d*)?)\s*\])?\s*")
+
class Script(scripts.Script):
def title(self):
return "X/Y plot"
@@ -351,7 +382,7 @@ class Script(scripts.Script):
ys = process_axis(y_opt, y_values)
def fix_axis_seeds(axis_opt, axis_list):
- if axis_opt.label in ['Seed','Var. seed']:
+ if axis_opt.label in ['Seed', 'Var. seed']:
return [int(random.randrange(4294967294)) if val is None or val == '' or val == -1 else val for val in axis_list]
else:
return axis_list
@@ -373,12 +404,33 @@ class Script(scripts.Script):
print(f"X/Y plot will create {len(xs) * len(ys) * p.n_iter} images on a {len(xs)}x{len(ys)} grid. (Total steps to process: {total_steps * p.n_iter})")
shared.total_tqdm.updateTotal(total_steps * p.n_iter)
+ grid_infotext = [None]
+
def cell(x, y):
pc = copy(p)
x_opt.apply(pc, x, xs)
y_opt.apply(pc, y, ys)
- return process_images(pc)
+ res = process_images(pc)
+
+ if grid_infotext[0] is None:
+ pc.extra_generation_params = copy(pc.extra_generation_params)
+
+ if x_opt.label != 'Nothing':
+ pc.extra_generation_params["X Type"] = x_opt.label
+ pc.extra_generation_params["X Values"] = x_values
+ if x_opt.label in ["Seed", "Var. seed"] and not no_fixed_seeds:
+ pc.extra_generation_params["Fixed X Values"] = ", ".join([str(x) for x in xs])
+
+ if y_opt.label != 'Nothing':
+ pc.extra_generation_params["Y Type"] = y_opt.label
+ pc.extra_generation_params["Y Values"] = y_values
+ if y_opt.label in ["Seed", "Var. seed"] and not no_fixed_seeds:
+ pc.extra_generation_params["Fixed Y Values"] = ", ".join([str(y) for y in ys])
+
+ grid_infotext[0] = processing.create_infotext(pc, pc.all_prompts, pc.all_seeds, pc.all_subseeds)
+
+ return res
with SharedSettingsStackHelper():
processed = draw_xy_grid(
@@ -393,6 +445,6 @@ class Script(scripts.Script):
)
if opts.grid_save:
- images.save_image(processed.images[0], p.outpath_grids, "xy_grid", prompt=p.prompt, seed=processed.seed, grid=True, p=p)
+ images.save_image(processed.images[0], p.outpath_grids, "xy_grid", info=grid_infotext[0], extension=opts.grid_format, prompt=p.prompt, seed=processed.seed, grid=True, p=p)
return processed
diff --git a/style.css b/style.css
index e2b71f253..2116ec3c8 100644
--- a/style.css
+++ b/style.css
@@ -73,8 +73,9 @@
margin-right: auto;
}
-#random_seed, #random_subseed, #reuse_seed, #reuse_subseed, #open_folder{
- min-width: auto;
+[id$=_random_seed], [id$=_random_subseed], [id$=_reuse_seed], [id$=_reuse_subseed], #open_folder{
+ min-width: 2.3em;
+ height: 2.5em;
flex-grow: 0;
padding-left: 0.25em;
padding-right: 0.25em;
@@ -84,27 +85,28 @@
display: none;
}
-#seed_row, #subseed_row{
+[id$=_seed_row], [id$=_subseed_row]{
gap: 0.5rem;
+ padding: 0.6em;
}
-#subseed_show_box{
+[id$=_subseed_show_box]{
min-width: auto;
flex-grow: 0;
}
-#subseed_show_box > div{
+[id$=_subseed_show_box] > div{
border: 0;
height: 100%;
}
-#subseed_show{
+[id$=_subseed_show]{
min-width: auto;
flex-grow: 0;
padding: 0;
}
-#subseed_show label{
+[id$=_subseed_show] label{
height: 100%;
}
@@ -114,7 +116,7 @@
padding: 0.4em 0;
}
-#roll, #paste, #style_create, #style_apply{
+#roll_col > button {
min-width: 2em;
min-height: 2em;
max-width: 2em;
@@ -206,24 +208,24 @@ button{
fieldset span.text-gray-500, .gr-block.gr-box span.text-gray-500, label.block span{
position: absolute;
- top: -0.6em;
+ top: -0.7em;
line-height: 1.2em;
- padding: 0 0.5em;
- margin: 0;
+ padding: 0;
+ margin: 0 0.5em;
background-color: white;
- border-top: 1px solid #eee;
- border-left: 1px solid #eee;
- border-right: 1px solid #eee;
+ box-shadow: 6px 0 6px 0px white, -6px 0 6px 0px white;
z-index: 300;
}
.dark fieldset span.text-gray-500, .dark .gr-block.gr-box span.text-gray-500, .dark label.block span{
background-color: rgb(31, 41, 55);
- border-top: 1px solid rgb(55 65 81);
- border-left: 1px solid rgb(55 65 81);
- border-right: 1px solid rgb(55 65 81);
+ box-shadow: 6px 0 6px 0px rgb(31, 41, 55), -6px 0 6px 0px rgb(31, 41, 55);
+}
+
+#txt2img_column_batch, #img2img_column_batch{
+ min-width: min(13.5em, 100%) !important;
}
#settings fieldset span.text-gray-500, #settings .gr-block.gr-box span.text-gray-500, #settings label.block span{
@@ -232,22 +234,40 @@ fieldset span.text-gray-500, .gr-block.gr-box span.text-gray-500, label.block s
margin-right: 8em;
}
-.gr-panel div.flex-col div.justify-between label span{
- margin: 0;
-}
-
#settings .gr-panel div.flex-col div.justify-between div{
position: relative;
z-index: 200;
}
-input[type="range"]{
- margin: 0.5em 0 -0.3em 0;
+#settings{
+ display: block;
}
-#txt2img_sampling label{
- padding-left: 0.6em;
- padding-right: 0.6em;
+#settings > div{
+ border: none;
+ margin-left: 10em;
+}
+
+#settings > div.flex-wrap{
+ float: left;
+ display: block;
+ margin-left: 0;
+ width: 10em;
+}
+
+#settings > div.flex-wrap button{
+ display: block;
+ border: none;
+ text-align: left;
+}
+
+#settings_result{
+ height: 1.4em;
+ margin: 0 1.2em;
+}
+
+input[type="range"]{
+ margin: 0.5em 0 -0.3em 0;
}
#mask_bug_info {
@@ -501,13 +521,6 @@ input[type="range"]{
padding: 0;
}
-#refresh_sd_model_checkpoint, #refresh_sd_vae, #refresh_sd_hypernetwork, #refresh_train_hypernetwork_name, #refresh_train_embedding_name, #refresh_localization{
- max-width: 2.5em;
- min-width: 2.5em;
- height: 2.4em;
-}
-
-
canvas[key="mask"] {
z-index: 12 !important;
filter: invert();
@@ -521,7 +534,7 @@ canvas[key="mask"] {
position: absolute;
right: 0.5em;
top: -0.6em;
- z-index: 200;
+ z-index: 400;
width: 8em;
}
#quicksettings .gr-box > div > div > input.gr-text-input {
@@ -568,6 +581,53 @@ img2maskimg, #img2maskimg > .h-60, #img2maskimg > .h-60 > div, #img2maskimg > .h
font-size: 95%;
}
+#image_buttons_txt2img button, #image_buttons_img2img button, #image_buttons_extras button{
+ min-width: auto;
+ padding-left: 0.5em;
+ padding-right: 0.5em;
+}
+
+.gr-form{
+ background-color: white;
+}
+
+.dark .gr-form{
+ background-color: rgb(31 41 55 / var(--tw-bg-opacity));
+}
+
+.gr-button-tool{
+ max-width: 2.5em;
+ min-width: 2.5em !important;
+ height: 2.4em;
+ margin: 0.55em 0;
+}
+
+#quicksettings .gr-button-tool{
+ margin: 0;
+}
+
+
+#img2img_settings > div.gr-form, #txt2img_settings > div.gr-form {
+ padding-top: 0.9em;
+}
+
+#img2img_settings div.gr-form .gr-form, #txt2img_settings div.gr-form .gr-form{
+ border: none;
+ padding-bottom: 0.5em;
+}
+
+footer {
+ display: none !important;
+}
+
+#footer{
+ text-align: center;
+}
+
+#footer div{
+ display: inline-block;
+}
+
/* The following handles localization for right-to-left (RTL) languages like Arabic.
The rtl media type will only be activated by the logic in javascript/localization.js.
If you change anything above, you need to make sure it is RTL compliant by just running
diff --git a/test/advanced_features/__init__.py b/test/advanced_features/__init__.py
new file mode 100644
index 000000000..e69de29bb
diff --git a/test/extras_test.py b/test/advanced_features/extras_test.py
similarity index 90%
rename from test/extras_test.py
rename to test/advanced_features/extras_test.py
index 9b8ce0f03..8763f8ed1 100644
--- a/test/extras_test.py
+++ b/test/advanced_features/extras_test.py
@@ -11,8 +11,8 @@ class TestExtrasWorking(unittest.TestCase):
"codeformer_visibility": 0,
"codeformer_weight": 0,
"upscaling_resize": 2,
- "upscaling_resize_w": 512,
- "upscaling_resize_h": 512,
+ "upscaling_resize_w": 128,
+ "upscaling_resize_h": 128,
"upscaling_crop": True,
"upscaler_1": "None",
"upscaler_2": "None",
diff --git a/test/advanced_features/txt2img_test.py b/test/advanced_features/txt2img_test.py
new file mode 100644
index 000000000..36ed7b9a9
--- /dev/null
+++ b/test/advanced_features/txt2img_test.py
@@ -0,0 +1,47 @@
+import unittest
+import requests
+
+
+class TestTxt2ImgWorking(unittest.TestCase):
+ def setUp(self):
+ self.url_txt2img = "http://localhost:7860/sdapi/v1/txt2img"
+ self.simple_txt2img = {
+ "enable_hr": False,
+ "denoising_strength": 0,
+ "firstphase_width": 0,
+ "firstphase_height": 0,
+ "prompt": "example prompt",
+ "styles": [],
+ "seed": -1,
+ "subseed": -1,
+ "subseed_strength": 0,
+ "seed_resize_from_h": -1,
+ "seed_resize_from_w": -1,
+ "batch_size": 1,
+ "n_iter": 1,
+ "steps": 3,
+ "cfg_scale": 7,
+ "width": 64,
+ "height": 64,
+ "restore_faces": False,
+ "tiling": False,
+ "negative_prompt": "",
+ "eta": 0,
+ "s_churn": 0,
+ "s_tmax": 0,
+ "s_tmin": 0,
+ "s_noise": 1,
+ "sampler_index": "Euler a"
+ }
+
+ def test_txt2img_with_restore_faces_performed(self):
+ self.simple_txt2img["restore_faces"] = True
+ self.assertEqual(requests.post(self.url_txt2img, json=self.simple_txt2img).status_code, 200)
+
+
+class TestTxt2ImgCorrectness(unittest.TestCase):
+ pass
+
+
+if __name__ == "__main__":
+ unittest.main()
diff --git a/test/basic_features/__init__.py b/test/basic_features/__init__.py
new file mode 100644
index 000000000..e69de29bb
diff --git a/test/img2img_test.py b/test/basic_features/img2img_test.py
similarity index 96%
rename from test/img2img_test.py
rename to test/basic_features/img2img_test.py
index 012a95809..0a9c1e8ad 100644
--- a/test/img2img_test.py
+++ b/test/basic_features/img2img_test.py
@@ -51,9 +51,5 @@ class TestImg2ImgWorking(unittest.TestCase):
self.assertEqual(requests.post(self.url_img2img, json=self.simple_img2img).status_code, 200)
-class TestImg2ImgCorrectness(unittest.TestCase):
- pass
-
-
if __name__ == "__main__":
unittest.main()
diff --git a/test/txt2img_test.py b/test/basic_features/txt2img_test.py
similarity index 91%
rename from test/txt2img_test.py
rename to test/basic_features/txt2img_test.py
index 1936e07e2..1c2674b2a 100644
--- a/test/txt2img_test.py
+++ b/test/basic_features/txt2img_test.py
@@ -49,26 +49,20 @@ class TestTxt2ImgWorking(unittest.TestCase):
self.simple_txt2img["enable_hr"] = True
self.assertEqual(requests.post(self.url_txt2img, json=self.simple_txt2img).status_code, 200)
- def test_txt2img_with_restore_faces_performed(self):
- self.simple_txt2img["restore_faces"] = True
- self.assertEqual(requests.post(self.url_txt2img, json=self.simple_txt2img).status_code, 200)
-
- def test_txt2img_with_tiling_faces_performed(self):
+ def test_txt2img_with_tiling_performed(self):
self.simple_txt2img["tiling"] = True
self.assertEqual(requests.post(self.url_txt2img, json=self.simple_txt2img).status_code, 200)
def test_txt2img_with_vanilla_sampler_performed(self):
self.simple_txt2img["sampler_index"] = "PLMS"
self.assertEqual(requests.post(self.url_txt2img, json=self.simple_txt2img).status_code, 200)
+ self.simple_txt2img["sampler_index"] = "DDIM"
+ self.assertEqual(requests.post(self.url_txt2img, json=self.simple_txt2img).status_code, 200)
def test_txt2img_multiple_batches_performed(self):
self.simple_txt2img["n_iter"] = 2
self.assertEqual(requests.post(self.url_txt2img, json=self.simple_txt2img).status_code, 200)
-class TestTxt2ImgCorrectness(unittest.TestCase):
- pass
-
-
if __name__ == "__main__":
unittest.main()
diff --git a/test/utils_test.py b/test/basic_features/utils_test.py
similarity index 79%
rename from test/utils_test.py
rename to test/basic_features/utils_test.py
index 65d3d177d..765470c90 100644
--- a/test/utils_test.py
+++ b/test/basic_features/utils_test.py
@@ -18,20 +18,6 @@ class UtilsTests(unittest.TestCase):
def test_options_get(self):
self.assertEqual(requests.get(self.url_options).status_code, 200)
- def test_options_write(self):
- response = requests.get(self.url_options)
- self.assertEqual(response.status_code, 200)
-
- pre_value = response.json()["send_seed"]
-
- self.assertEqual(requests.post(self.url_options, json={"send_seed":not pre_value}).status_code, 200)
-
- response = requests.get(self.url_options)
- self.assertEqual(response.status_code, 200)
- self.assertEqual(response.json()["send_seed"], not pre_value)
-
- requests.post(self.url_options, json={"send_seed": pre_value})
-
def test_cmd_flags(self):
self.assertEqual(requests.get(self.url_cmd_flags).status_code, 200)
@@ -60,4 +46,8 @@ class UtilsTests(unittest.TestCase):
self.assertEqual(requests.get(self.url_artist_categories).status_code, 200)
def test_artists(self):
- self.assertEqual(requests.get(self.url_artists).status_code, 200)
\ No newline at end of file
+ self.assertEqual(requests.get(self.url_artists).status_code, 200)
+
+
+if __name__ == "__main__":
+ unittest.main()
diff --git a/test/server_poll.py b/test/server_poll.py
index eeefb7ebc..d4df697b2 100644
--- a/test/server_poll.py
+++ b/test/server_poll.py
@@ -3,7 +3,7 @@ import requests
import time
-def run_tests():
+def run_tests(proc, test_dir):
timeout_threshold = 240
start_time = time.time()
while time.time()-start_time < timeout_threshold:
@@ -11,9 +11,14 @@ def run_tests():
requests.head("http://localhost:7860/")
break
except requests.exceptions.ConnectionError:
- pass
- if time.time()-start_time < timeout_threshold:
- suite = unittest.TestLoader().discover('', pattern='*_test.py')
+ if proc.poll() is not None:
+ break
+ if proc.poll() is None:
+ if test_dir is None:
+ test_dir = ""
+ suite = unittest.TestLoader().discover(test_dir, pattern="*_test.py", top_level_dir="test")
result = unittest.TextTestRunner(verbosity=2).run(suite)
+ return len(result.failures) + len(result.errors)
else:
print("Launch unsuccessful")
+ return 1
diff --git a/test/test_files/empty.pt b/test/test_files/empty.pt
new file mode 100644
index 000000000..c6ac59eb0
Binary files /dev/null and b/test/test_files/empty.pt differ
diff --git a/v2-inference-v.yaml b/v2-inference-v.yaml
new file mode 100644
index 000000000..513cd635c
--- /dev/null
+++ b/v2-inference-v.yaml
@@ -0,0 +1,68 @@
+model:
+ base_learning_rate: 1.0e-4
+ target: ldm.models.diffusion.ddpm.LatentDiffusion
+ params:
+ parameterization: "v"
+ linear_start: 0.00085
+ linear_end: 0.0120
+ num_timesteps_cond: 1
+ log_every_t: 200
+ timesteps: 1000
+ first_stage_key: "jpg"
+ cond_stage_key: "txt"
+ image_size: 64
+ channels: 4
+ cond_stage_trainable: false
+ conditioning_key: crossattn
+ monitor: val/loss_simple_ema
+ scale_factor: 0.18215
+ use_ema: False # we set this to false because this is an inference only config
+
+ unet_config:
+ target: ldm.modules.diffusionmodules.openaimodel.UNetModel
+ params:
+ use_checkpoint: True
+ use_fp16: True
+ image_size: 32 # unused
+ in_channels: 4
+ out_channels: 4
+ model_channels: 320
+ attention_resolutions: [ 4, 2, 1 ]
+ num_res_blocks: 2
+ channel_mult: [ 1, 2, 4, 4 ]
+ num_head_channels: 64 # need to fix for flash-attn
+ use_spatial_transformer: True
+ use_linear_in_transformer: True
+ transformer_depth: 1
+ context_dim: 1024
+ legacy: False
+
+ first_stage_config:
+ target: ldm.models.autoencoder.AutoencoderKL
+ params:
+ embed_dim: 4
+ monitor: val/rec_loss
+ ddconfig:
+ #attn_type: "vanilla-xformers"
+ double_z: true
+ z_channels: 4
+ resolution: 256
+ in_channels: 3
+ out_ch: 3
+ ch: 128
+ ch_mult:
+ - 1
+ - 2
+ - 4
+ - 4
+ num_res_blocks: 2
+ attn_resolutions: []
+ dropout: 0.0
+ lossconfig:
+ target: torch.nn.Identity
+
+ cond_stage_config:
+ target: ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder
+ params:
+ freeze: True
+ layer: "penultimate"
\ No newline at end of file
diff --git a/webui-macos-env.sh b/webui-macos-env.sh
new file mode 100644
index 000000000..95ca9c552
--- /dev/null
+++ b/webui-macos-env.sh
@@ -0,0 +1,19 @@
+#!/bin/bash
+####################################################################
+# macOS defaults #
+# Please modify webui-user.sh to change these instead of this file #
+####################################################################
+
+if [[ -x "$(command -v python3.10)" ]]
+then
+ python_cmd="python3.10"
+fi
+
+export install_dir="$HOME"
+export COMMANDLINE_ARGS="--skip-torch-cuda-test --no-half --use-cpu interrogate"
+export TORCH_COMMAND="pip install torch==1.12.1 torchvision==0.13.1"
+export K_DIFFUSION_REPO="https://github.com/brkirch/k-diffusion.git"
+export K_DIFFUSION_COMMIT_HASH="51c9778f269cedb55a4d88c79c0246d35bdadb71"
+export PYTORCH_ENABLE_MPS_FALLBACK=1
+
+####################################################################
diff --git a/webui-user.sh b/webui-user.sh
index 30646f5c3..bfa53cb7c 100644
--- a/webui-user.sh
+++ b/webui-user.sh
@@ -10,7 +10,7 @@
#clone_dir="stable-diffusion-webui"
# Commandline arguments for webui.py, for example: export COMMANDLINE_ARGS="--medvram --opt-split-attention"
-export COMMANDLINE_ARGS=""
+#export COMMANDLINE_ARGS=""
# python3 executable
#python_cmd="python3"
@@ -40,4 +40,7 @@ export COMMANDLINE_ARGS=""
#export CODEFORMER_COMMIT_HASH=""
#export BLIP_COMMIT_HASH=""
+# Uncomment to enable accelerated launch
+#export ACCELERATE="True"
+
###########################################
diff --git a/webui.bat b/webui.bat
index a38a28bbd..d4d626e23 100644
--- a/webui.bat
+++ b/webui.bat
@@ -28,15 +28,27 @@ goto :show_stdout_stderr
:activate_venv
set PYTHON="%~dp0%VENV_DIR%\Scripts\Python.exe"
echo venv %PYTHON%
+if [%ACCELERATE%] == ["True"] goto :accelerate
goto :launch
:skip_venv
+:accelerate
+echo "Checking for accelerate"
+set ACCELERATE="%~dp0%VENV_DIR%\Scripts\accelerate.exe"
+if EXIST %ACCELERATE% goto :accelerate_launch
+
:launch
%PYTHON% launch.py %*
pause
exit /b
+:accelerate_launch
+echo "Accelerating"
+%ACCELERATE% launch --num_cpu_threads_per_process=6 launch.py
+pause
+exit /b
+
:show_stdout_stderr
echo.
diff --git a/webui.py b/webui.py
index f4f1d74d1..d89e0fb5d 100644
--- a/webui.py
+++ b/webui.py
@@ -1,4 +1,5 @@
import os
+import sys
import threading
import time
import importlib
@@ -8,9 +9,11 @@ from fastapi import FastAPI
from fastapi.middleware.cors import CORSMiddleware
from fastapi.middleware.gzip import GZipMiddleware
+from modules import import_hook, errors
+from modules.call_queue import wrap_queued_call, queue_lock, wrap_gradio_gpu_call
from modules.paths import script_path
-from modules import devices, sd_samplers, upscaler, extensions, localization
+from modules import shared, devices, sd_samplers, upscaler, extensions, localization, ui_tempdir
import modules.codeformer_model as codeformer
import modules.extras
import modules.face_restoration
@@ -23,7 +26,6 @@ import modules.scripts
import modules.sd_hijack
import modules.sd_models
import modules.sd_vae
-import modules.shared as shared
import modules.txt2img
import modules.script_callbacks
@@ -32,32 +34,11 @@ from modules import modelloader
from modules.shared import cmd_opts
import modules.hypernetworks.hypernetwork
-queue_lock = threading.Lock()
-server_name = "0.0.0.0" if cmd_opts.listen else cmd_opts.server_name
-def wrap_queued_call(func):
- def f(*args, **kwargs):
- with queue_lock:
- res = func(*args, **kwargs)
-
- return res
-
- return f
-
-
-def wrap_gradio_gpu_call(func, extra_outputs=None):
- def f(*args, **kwargs):
-
- shared.state.begin()
-
- with queue_lock:
- res = func(*args, **kwargs)
-
- shared.state.end()
-
- return res
-
- return modules.ui.wrap_gradio_call(f, extra_outputs=extra_outputs, add_stats=True)
+if cmd_opts.server_name:
+ server_name = cmd_opts.server_name
+else:
+ server_name = "0.0.0.0" if cmd_opts.listen else None
def initialize():
@@ -74,16 +55,27 @@ def initialize():
codeformer.setup_model(cmd_opts.codeformer_models_path)
gfpgan.setup_model(cmd_opts.gfpgan_models_path)
shared.face_restorers.append(modules.face_restoration.FaceRestoration())
+
+ modelloader.list_builtin_upscalers()
+ modules.scripts.load_scripts()
modelloader.load_upscalers()
- modules.scripts.load_scripts()
-
modules.sd_vae.refresh_vae_list()
- modules.sd_models.load_model()
+
+ try:
+ modules.sd_models.load_model()
+ except Exception as e:
+ errors.display(e, "loading stable diffusion model")
+ print("", file=sys.stderr)
+ print("Stable diffusion model failed to load, exiting", file=sys.stderr)
+ exit(1)
+
shared.opts.onchange("sd_model_checkpoint", wrap_queued_call(lambda: modules.sd_models.reload_model_weights()))
shared.opts.onchange("sd_vae", wrap_queued_call(lambda: modules.sd_vae.reload_vae_weights()), call=False)
- shared.opts.onchange("sd_hypernetwork", wrap_queued_call(lambda: modules.hypernetworks.hypernetwork.load_hypernetwork(shared.opts.sd_hypernetwork)))
+ shared.opts.onchange("sd_vae_as_default", wrap_queued_call(lambda: modules.sd_vae.reload_vae_weights()), call=False)
+ shared.opts.onchange("sd_hypernetwork", wrap_queued_call(lambda: shared.reload_hypernetworks()))
shared.opts.onchange("sd_hypernetwork_strength", modules.hypernetworks.hypernetwork.apply_strength)
+ shared.opts.onchange("temp_dir", ui_tempdir.on_tmpdir_changed)
if cmd_opts.tls_keyfile is not None and cmd_opts.tls_keyfile is not None:
@@ -107,8 +99,12 @@ def initialize():
def setup_cors(app):
- if cmd_opts.cors_allow_origins:
- app.add_middleware(CORSMiddleware, allow_origins=cmd_opts.cors_allow_origins.split(','), allow_methods=['*'])
+ if cmd_opts.cors_allow_origins and cmd_opts.cors_allow_origins_regex:
+ app.add_middleware(CORSMiddleware, allow_origins=cmd_opts.cors_allow_origins.split(','), allow_origin_regex=cmd_opts.cors_allow_origins_regex, allow_methods=['*'], allow_credentials=True, allow_headers=['*'])
+ elif cmd_opts.cors_allow_origins:
+ app.add_middleware(CORSMiddleware, allow_origins=cmd_opts.cors_allow_origins.split(','), allow_methods=['*'], allow_credentials=True, allow_headers=['*'])
+ elif cmd_opts.cors_allow_origins_regex:
+ app.add_middleware(CORSMiddleware, allow_origin_regex=cmd_opts.cors_allow_origins_regex, allow_methods=['*'], allow_credentials=True, allow_headers=['*'])
def create_api(app):
@@ -146,9 +142,12 @@ def webui():
initialize()
while 1:
- demo = modules.ui.create_ui(wrap_gradio_gpu_call=wrap_gradio_gpu_call)
+ if shared.opts.clean_temp_dir_at_start:
+ ui_tempdir.cleanup_tmpdr()
- app, local_url, share_url = demo.launch(
+ shared.demo = modules.ui.create_ui()
+
+ app, local_url, share_url = shared.demo.queue(default_enabled=False).launch(
share=cmd_opts.share,
server_name=server_name,
server_port=cmd_opts.port,
@@ -164,8 +163,8 @@ def webui():
# gradio uses a very open CORS policy via app.user_middleware, which makes it possible for
# an attacker to trick the user into opening a malicious HTML page, which makes a request to the
- # running web ui and do whatever the attcker wants, including installing an extension and
- # runnnig its code. We disable this here. Suggested by RyotaK.
+ # running web ui and do whatever the attacker wants, including installing an extension and
+ # running its code. We disable this here. Suggested by RyotaK.
app.user_middleware = [x for x in app.user_middleware if x.cls.__name__ != 'CORSMiddleware']
setup_cors(app)
@@ -175,24 +174,26 @@ def webui():
if launch_api:
create_api(app)
- modules.script_callbacks.app_started_callback(demo, app)
+ modules.script_callbacks.app_started_callback(shared.demo, app)
+ modules.script_callbacks.app_started_callback(shared.demo, app)
- wait_on_server(demo)
+ wait_on_server(shared.demo)
+ print('Restarting UI...')
sd_samplers.set_samplers()
- print('Reloading extensions')
extensions.list_extensions()
localization.list_localizations(cmd_opts.localizations_dir)
- print('Reloading custom scripts')
+ modelloader.forbid_loaded_nonbuiltin_upscalers()
modules.scripts.reload_scripts()
- print('Reloading modules: modules.ui')
- importlib.reload(modules.ui)
- print('Refreshing Model List')
+ modelloader.load_upscalers()
+
+ for module in [module for name, module in sys.modules.items() if name.startswith("modules.ui")]:
+ importlib.reload(module)
+
modules.sd_models.list_models()
- print('Restarting Gradio')
if __name__ == "__main__":
diff --git a/webui.sh b/webui.sh
index cc06f3444..04ecbf763 100755
--- a/webui.sh
+++ b/webui.sh
@@ -1,8 +1,17 @@
-#!/bin/bash
+#!/usr/bin/env bash
#################################################
# Please do not make any changes to this file, #
# change the variables in webui-user.sh instead #
#################################################
+
+# If run from macOS, load defaults from webui-macos-env.sh
+if [[ "$OSTYPE" == "darwin"* ]]; then
+ if [[ -f webui-macos-env.sh ]]
+ then
+ source ./webui-macos-env.sh
+ fi
+fi
+
# Read variables from webui-user.sh
# shellcheck source=/dev/null
if [[ -f webui-user.sh ]]
@@ -46,6 +55,18 @@ then
LAUNCH_SCRIPT="launch.py"
fi
+# this script cannot be run as root by default
+can_run_as_root=0
+
+# read any command line flags to the webui.sh script
+while getopts "f" flag > /dev/null 2>&1
+do
+ case ${flag} in
+ f) can_run_as_root=1;;
+ *) break;;
+ esac
+done
+
# Disable sentry logging
export ERROR_REPORTING=FALSE
@@ -61,7 +82,7 @@ printf "\e[1m\e[34mTested on Debian 11 (Bullseye)\e[0m"
printf "\n%s\n" "${delimiter}"
# Do not run as root
-if [[ $(id -u) -eq 0 ]]
+if [[ $(id -u) -eq 0 && can_run_as_root -eq 0 ]]
then
printf "\n%s\n" "${delimiter}"
printf "\e[1m\e[31mERROR: This script must not be launched as root, aborting...\e[0m"
@@ -134,7 +155,15 @@ else
exit 1
fi
-printf "\n%s\n" "${delimiter}"
-printf "Launching launch.py..."
-printf "\n%s\n" "${delimiter}"
-"${python_cmd}" "${LAUNCH_SCRIPT}" "$@"
+if [[ ! -z "${ACCELERATE}" ]] && [ ${ACCELERATE}="True" ] && [ -x "$(command -v accelerate)" ]
+then
+ printf "\n%s\n" "${delimiter}"
+ printf "Accelerating launch.py..."
+ printf "\n%s\n" "${delimiter}"
+ accelerate launch --num_cpu_threads_per_process=6 "${LAUNCH_SCRIPT}" "$@"
+else
+ printf "\n%s\n" "${delimiter}"
+ printf "Launching launch.py..."
+ printf "\n%s\n" "${delimiter}"
+ "${python_cmd}" "${LAUNCH_SCRIPT}" "$@"
+fi