diff --git a/modules/generation_parameters_copypaste.py b/modules/generation_parameters_copypaste.py index 8e7f0df0a..d6fa822bd 100644 --- a/modules/generation_parameters_copypaste.py +++ b/modules/generation_parameters_copypaste.py @@ -1,5 +1,6 @@ import base64 import io +import math import os import re from pathlib import Path @@ -164,6 +165,35 @@ def find_hypernetwork_key(hypernet_name, hypernet_hash=None): return None +def restore_old_hires_fix_params(res): + """for infotexts that specify old First pass size parameter, convert it into + width, height, and hr scale""" + + firstpass_width = res.get('First pass size-1', None) + firstpass_height = res.get('First pass size-2', None) + + if firstpass_width is None or firstpass_height is None: + return + + firstpass_width, firstpass_height = int(firstpass_width), int(firstpass_height) + width = int(res.get("Size-1", 512)) + height = int(res.get("Size-2", 512)) + + if firstpass_width == 0 or firstpass_height == 0: + # old algorithm for auto-calculating first pass size + desired_pixel_count = 512 * 512 + actual_pixel_count = width * height + scale = math.sqrt(desired_pixel_count / actual_pixel_count) + firstpass_width = math.ceil(scale * width / 64) * 64 + firstpass_height = math.ceil(scale * height / 64) * 64 + + hr_scale = width / firstpass_width if firstpass_width > 0 else height / firstpass_height + + res['Size-1'] = firstpass_width + res['Size-2'] = firstpass_height + res['Hires upscale'] = hr_scale + + def parse_generation_parameters(x: str): """parses generation parameters string, the one you see in text field under the picture in UI: ``` @@ -221,6 +251,8 @@ Steps: 20, Sampler: Euler a, CFG scale: 7, Seed: 965400086, Size: 512x512, Model hypernet_hash = res.get("Hypernet hash", None) res["Hypernet"] = find_hypernetwork_key(hypernet_name, hypernet_hash) + restore_old_hires_fix_params(res) + return res diff --git a/modules/images.py b/modules/images.py index f84fd4858..c3a5fc8bc 100644 --- a/modules/images.py +++ b/modules/images.py @@ -230,16 +230,32 @@ def draw_prompt_matrix(im, width, height, all_prompts): return draw_grid_annotations(im, width, height, hor_texts, ver_texts) -def resize_image(resize_mode, im, width, height): +def resize_image(resize_mode, im, width, height, upscaler_name=None): + """ + Resizes an image with the specified resize_mode, width, and height. + + Args: + resize_mode: The mode to use when resizing the image. + 0: Resize the image to the specified width and height. + 1: Resize the image to fill the specified width and height, maintaining the aspect ratio, and then center the image within the dimensions, cropping the excess. + 2: Resize the image to fit within the specified width and height, maintaining the aspect ratio, and then center the image within the dimensions, filling empty with data from image. + im: The image to resize. + width: The width to resize the image to. + height: The height to resize the image to. + upscaler_name: The name of the upscaler to use. If not provided, defaults to opts.upscaler_for_img2img. + """ + + upscaler_name = upscaler_name or opts.upscaler_for_img2img + def resize(im, w, h): - if opts.upscaler_for_img2img is None or opts.upscaler_for_img2img == "None" or im.mode == 'L': + if upscaler_name is None or upscaler_name == "None" or im.mode == 'L': return im.resize((w, h), resample=LANCZOS) scale = max(w / im.width, h / im.height) if scale > 1.0: - upscalers = [x for x in shared.sd_upscalers if x.name == opts.upscaler_for_img2img] - assert len(upscalers) > 0, f"could not find upscaler named {opts.upscaler_for_img2img}" + upscalers = [x for x in shared.sd_upscalers if x.name == upscaler_name] + assert len(upscalers) > 0, f"could not find upscaler named {upscaler_name}" upscaler = upscalers[0] im = upscaler.scaler.upscale(im, scale, upscaler.data_path) diff --git a/modules/processing.py b/modules/processing.py index 42dc19ea6..4654570c0 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -658,14 +658,18 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed: class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing): sampler = None - def __init__(self, enable_hr: bool=False, denoising_strength: float=0.75, firstphase_width: int=0, firstphase_height: int=0, **kwargs): + def __init__(self, enable_hr: bool = False, denoising_strength: float = 0.75, firstphase_width: int = 0, firstphase_height: int = 0, hr_scale: float = 2.0, hr_upscaler: str = None, **kwargs): super().__init__(**kwargs) self.enable_hr = enable_hr self.denoising_strength = denoising_strength - self.firstphase_width = firstphase_width - self.firstphase_height = firstphase_height - self.truncate_x = 0 - self.truncate_y = 0 + self.hr_scale = hr_scale + self.hr_upscaler = hr_upscaler + + if firstphase_width != 0 or firstphase_height != 0: + print("firstphase_width/firstphase_height no longer supported; use hr_scale", file=sys.stderr) + self.hr_scale = self.width / firstphase_width + self.width = firstphase_width + self.height = firstphase_height def init(self, all_prompts, all_seeds, all_subseeds): if self.enable_hr: @@ -674,47 +678,29 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing): else: state.job_count = state.job_count * 2 - self.extra_generation_params["First pass size"] = f"{self.firstphase_width}x{self.firstphase_height}" - - if self.firstphase_width == 0 or self.firstphase_height == 0: - desired_pixel_count = 512 * 512 - actual_pixel_count = self.width * self.height - scale = math.sqrt(desired_pixel_count / actual_pixel_count) - self.firstphase_width = math.ceil(scale * self.width / 64) * 64 - self.firstphase_height = math.ceil(scale * self.height / 64) * 64 - firstphase_width_truncated = int(scale * self.width) - firstphase_height_truncated = int(scale * self.height) - - else: - - width_ratio = self.width / self.firstphase_width - height_ratio = self.height / self.firstphase_height - - if width_ratio > height_ratio: - firstphase_width_truncated = self.firstphase_width - firstphase_height_truncated = self.firstphase_width * self.height / self.width - else: - firstphase_width_truncated = self.firstphase_height * self.width / self.height - firstphase_height_truncated = self.firstphase_height - - self.truncate_x = int(self.firstphase_width - firstphase_width_truncated) // opt_f - self.truncate_y = int(self.firstphase_height - firstphase_height_truncated) // opt_f + self.extra_generation_params["Hires upscale"] = self.hr_scale + if self.hr_upscaler is not None: + self.extra_generation_params["Hires upscaler"] = self.hr_upscaler def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength, prompts): self.sampler = sd_samplers.create_sampler(self.sampler_name, self.sd_model) + latent_scale_mode = shared.latent_upscale_modes.get(self.hr_upscaler, None) if self.hr_upscaler is not None else shared.latent_upscale_default_mode + if self.enable_hr and latent_scale_mode is None: + assert len([x for x in shared.sd_upscalers if x.name == self.hr_upscaler]) > 0, f"could not find upscaler named {self.hr_upscaler}" + + x = create_random_tensors([opt_C, self.height // opt_f, self.width // opt_f], seeds=seeds, subseeds=subseeds, subseed_strength=self.subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self) + samples = self.sampler.sample(self, x, conditioning, unconditional_conditioning, image_conditioning=self.txt2img_image_conditioning(x)) + if not self.enable_hr: - x = create_random_tensors([opt_C, self.height // opt_f, self.width // opt_f], seeds=seeds, subseeds=subseeds, subseed_strength=self.subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self) - samples = self.sampler.sample(self, x, conditioning, unconditional_conditioning, image_conditioning=self.txt2img_image_conditioning(x)) return samples - x = create_random_tensors([opt_C, self.firstphase_height // opt_f, self.firstphase_width // opt_f], seeds=seeds, subseeds=subseeds, subseed_strength=self.subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self) - samples = self.sampler.sample(self, x, conditioning, unconditional_conditioning, image_conditioning=self.txt2img_image_conditioning(x, self.firstphase_width, self.firstphase_height)) + target_width = int(self.width * self.hr_scale) + target_height = int(self.height * self.hr_scale) - samples = samples[:, :, self.truncate_y//2:samples.shape[2]-self.truncate_y//2, self.truncate_x//2:samples.shape[3]-self.truncate_x//2] - - """saves image before applying hires fix, if enabled in options; takes as an argument either an image or batch with latent space images""" def save_intermediate(image, index): + """saves image before applying hires fix, if enabled in options; takes as an argument either an image or batch with latent space images""" + if not opts.save or self.do_not_save_samples or not opts.save_images_before_highres_fix: return @@ -723,11 +709,11 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing): images.save_image(image, self.outpath_samples, "", seeds[index], prompts[index], opts.samples_format, suffix="-before-highres-fix") - if opts.use_scale_latent_for_hires_fix: + if latent_scale_mode is not None: for i in range(samples.shape[0]): save_intermediate(samples, i) - samples = torch.nn.functional.interpolate(samples, size=(self.height // opt_f, self.width // opt_f), mode="bilinear") + samples = torch.nn.functional.interpolate(samples, size=(target_height // opt_f, target_width // opt_f), mode=latent_scale_mode) # Avoid making the inpainting conditioning unless necessary as # this does need some extra compute to decode / encode the image again. @@ -747,7 +733,7 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing): save_intermediate(image, i) - image = images.resize_image(0, image, self.width, self.height) + image = images.resize_image(0, image, target_width, target_height, upscaler_name=self.hr_upscaler) image = np.array(image).astype(np.float32) / 255.0 image = np.moveaxis(image, 2, 0) batch_images.append(image) @@ -764,7 +750,7 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing): self.sampler = sd_samplers.create_sampler(self.sampler_name, self.sd_model) - noise = create_random_tensors(samples.shape[1:], seeds=seeds, subseeds=subseeds, subseed_strength=subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self) + noise = create_random_tensors(samples.shape[1:], seeds=seeds, subseeds=subseeds, subseed_strength=subseed_strength, p=self) # GC now before running the next img2img to prevent running out of memory x = None diff --git a/modules/shared.py b/modules/shared.py index 7f430b938..b65559eeb 100644 --- a/modules/shared.py +++ b/modules/shared.py @@ -327,7 +327,6 @@ options_templates.update(options_section(('upscaling', "Upscaling"), { "ESRGAN_tile_overlap": OptionInfo(8, "Tile overlap, in pixels for ESRGAN upscalers. Low values = visible seam.", gr.Slider, {"minimum": 0, "maximum": 48, "step": 1}), "realesrgan_enabled_models": OptionInfo(["R-ESRGAN 4x+", "R-ESRGAN 4x+ Anime6B"], "Select which Real-ESRGAN models to show in the web UI. (Requires restart)", gr.CheckboxGroup, lambda: {"choices": realesrgan_models_names()}), "upscaler_for_img2img": OptionInfo(None, "Upscaler for img2img", gr.Dropdown, lambda: {"choices": [x.name for x in sd_upscalers]}), - "use_scale_latent_for_hires_fix": OptionInfo(False, "Upscale latent space image when doing hires. fix"), })) options_templates.update(options_section(('face-restoration', "Face restoration"), { @@ -545,6 +544,12 @@ opts = Options() if os.path.exists(config_filename): opts.load(config_filename) +latent_upscale_default_mode = "Latent" +latent_upscale_modes = { + "Latent": "bilinear", + "Latent (nearest)": "nearest", +} + sd_upscalers = [] sd_model = None diff --git a/modules/txt2img.py b/modules/txt2img.py index 7f61e19a8..e189a8999 100644 --- a/modules/txt2img.py +++ b/modules/txt2img.py @@ -8,7 +8,7 @@ import modules.processing as processing from modules.ui import plaintext_to_html -def txt2img(prompt: str, negative_prompt: str, prompt_style: str, prompt_style2: str, steps: int, sampler_index: int, restore_faces: bool, tiling: bool, n_iter: int, batch_size: int, cfg_scale: float, seed: int, subseed: int, subseed_strength: float, seed_resize_from_h: int, seed_resize_from_w: int, seed_enable_extras: bool, height: int, width: int, enable_hr: bool, denoising_strength: float, firstphase_width: int, firstphase_height: int, *args): +def txt2img(prompt: str, negative_prompt: str, prompt_style: str, prompt_style2: str, steps: int, sampler_index: int, restore_faces: bool, tiling: bool, n_iter: int, batch_size: int, cfg_scale: float, seed: int, subseed: int, subseed_strength: float, seed_resize_from_h: int, seed_resize_from_w: int, seed_enable_extras: bool, height: int, width: int, enable_hr: bool, denoising_strength: float, hr_scale: float, hr_upscaler: str, *args): p = StableDiffusionProcessingTxt2Img( sd_model=shared.sd_model, outpath_samples=opts.outdir_samples or opts.outdir_txt2img_samples, @@ -33,8 +33,8 @@ def txt2img(prompt: str, negative_prompt: str, prompt_style: str, prompt_style2: tiling=tiling, enable_hr=enable_hr, denoising_strength=denoising_strength if enable_hr else None, - firstphase_width=firstphase_width if enable_hr else None, - firstphase_height=firstphase_height if enable_hr else None, + hr_scale=hr_scale, + hr_upscaler=hr_upscaler, ) p.scripts = modules.scripts.scripts_txt2img diff --git a/modules/ui.py b/modules/ui.py index 7070ea155..27cd9ddd3 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -684,11 +684,11 @@ def create_ui(): with gr.Row(): restore_faces = gr.Checkbox(label='Restore faces', value=False, visible=len(shared.face_restorers) > 1, elem_id="txt2img_restore_faces") tiling = gr.Checkbox(label='Tiling', value=False, elem_id="txt2img_tiling") - enable_hr = gr.Checkbox(label='Highres. fix', value=False, elem_id="txt2img_enable_hr") + enable_hr = gr.Checkbox(label='Hires. fix', value=False, elem_id="txt2img_enable_hr") with gr.Row(visible=False) as hr_options: - firstphase_width = gr.Slider(minimum=0, maximum=1024, step=8, label="Firstpass width", value=0, elem_id="txt2img_firstphase_width") - firstphase_height = gr.Slider(minimum=0, maximum=1024, step=8, label="Firstpass height", value=0, elem_id="txt2img_firstphase_height") + hr_upscaler = gr.Dropdown(label="Upscaler", elem_id="txt2img_hr_upscaler", choices=[*shared.latent_upscale_modes, *[x.name for x in shared.sd_upscalers]], value=shared.latent_upscale_default_mode) + hr_scale = gr.Slider(minimum=1.0, maximum=4.0, step=0.05, label="Upscale by", value=2.0, elem_id="txt2img_hr_scale") denoising_strength = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label='Denoising strength', value=0.7, elem_id="txt2img_denoising_strength") with gr.Row(equal_height=True): @@ -729,8 +729,8 @@ def create_ui(): width, enable_hr, denoising_strength, - firstphase_width, - firstphase_height, + hr_scale, + hr_upscaler, ] + custom_inputs, outputs=[ @@ -762,7 +762,6 @@ def create_ui(): outputs=[hr_options], ) - txt2img_paste_fields = [ (txt2img_prompt, "Prompt"), (txt2img_negative_prompt, "Negative prompt"), @@ -781,8 +780,8 @@ def create_ui(): (denoising_strength, "Denoising strength"), (enable_hr, lambda d: "Denoising strength" in d), (hr_options, lambda d: gr.Row.update(visible="Denoising strength" in d)), - (firstphase_width, "First pass size-1"), - (firstphase_height, "First pass size-2"), + (hr_scale, "Hires upscale"), + (hr_upscaler, "Hires upscaler"), *modules.scripts.scripts_txt2img.infotext_fields ] parameters_copypaste.add_paste_fields("txt2img", None, txt2img_paste_fields) diff --git a/scripts/xy_grid.py b/scripts/xy_grid.py index 3e0b28055..f92f9776f 100644 --- a/scripts/xy_grid.py +++ b/scripts/xy_grid.py @@ -202,7 +202,7 @@ axis_options = [ AxisOption("Eta", float, apply_field("eta"), format_value_add_label, None), AxisOption("Clip skip", int, apply_clip_skip, format_value_add_label, None), AxisOption("Denoising", float, apply_field("denoising_strength"), format_value_add_label, None), - AxisOption("Upscale latent space for hires.", str, apply_upscale_latent_space, format_value_add_label, None), + AxisOption("Hires upscaler", str, apply_field("hr_upscaler"), format_value_add_label, None), AxisOption("Cond. Image Mask Weight", float, apply_field("inpainting_mask_weight"), format_value_add_label, None), AxisOption("VAE", str, apply_vae, format_value_add_label, None), AxisOption("Styles", str, apply_styles, format_value_add_label, None), @@ -267,7 +267,6 @@ class SharedSettingsStackHelper(object): self.CLIP_stop_at_last_layers = opts.CLIP_stop_at_last_layers self.hypernetwork = opts.sd_hypernetwork self.model = shared.sd_model - self.use_scale_latent_for_hires_fix = opts.use_scale_latent_for_hires_fix self.vae = opts.sd_vae def __exit__(self, exc_type, exc_value, tb): @@ -278,7 +277,6 @@ class SharedSettingsStackHelper(object): hypernetwork.apply_strength() opts.data["CLIP_stop_at_last_layers"] = self.CLIP_stop_at_last_layers - opts.data["use_scale_latent_for_hires_fix"] = self.use_scale_latent_for_hires_fix re_range = re.compile(r"\s*([+-]?\s*\d+)\s*-\s*([+-]?\s*\d+)(?:\s*\(([+-]\d+)\s*\))?\s*")