mirror of
https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
synced 2025-01-01 12:25:06 +08:00
Add support for --upcast-sampling
with SD XL
This commit is contained in:
parent
a99d5708e6
commit
f0e2098f1a
@ -39,7 +39,10 @@ def apply_model(orig_func, self, x_noisy, t, cond, **kwargs):
|
||||
|
||||
if isinstance(cond, dict):
|
||||
for y in cond.keys():
|
||||
if isinstance(cond[y], list):
|
||||
cond[y] = [x.to(devices.dtype_unet) if isinstance(x, torch.Tensor) else x for x in cond[y]]
|
||||
else:
|
||||
cond[y] = cond[y].to(devices.dtype_unet) if isinstance(cond[y], torch.Tensor) else cond[y]
|
||||
|
||||
with devices.autocast():
|
||||
return orig_func(self, x_noisy.to(devices.dtype_unet), t.to(devices.dtype_unet), cond, **kwargs).float()
|
||||
@ -77,3 +80,6 @@ first_stage_sub = lambda orig_func, self, x, **kwargs: orig_func(self, x.to(devi
|
||||
CondFunc('ldm.models.diffusion.ddpm.LatentDiffusion.decode_first_stage', first_stage_sub, first_stage_cond)
|
||||
CondFunc('ldm.models.diffusion.ddpm.LatentDiffusion.encode_first_stage', first_stage_sub, first_stage_cond)
|
||||
CondFunc('ldm.models.diffusion.ddpm.LatentDiffusion.get_first_stage_encoding', lambda orig_func, *args, **kwargs: orig_func(*args, **kwargs).float(), first_stage_cond)
|
||||
|
||||
CondFunc('sgm.modules.diffusionmodules.wrappers.OpenAIWrapper.forward', apply_model, unet_needs_upcast)
|
||||
CondFunc('sgm.modules.diffusionmodules.openaimodel.timestep_embedding', lambda orig_func, timesteps, *args, **kwargs: orig_func(timesteps, *args, **kwargs).to(torch.float32 if timesteps.dtype == torch.int64 else devices.dtype_unet), unet_needs_upcast)
|
||||
|
@ -326,7 +326,7 @@ def load_model_weights(model, checkpoint_info: CheckpointInfo, state_dict, timer
|
||||
|
||||
timer.record("apply half()")
|
||||
|
||||
devices.dtype_unet = model.model.diffusion_model.dtype
|
||||
devices.dtype_unet = torch.float16 if model.is_sdxl and not shared.cmd_opts.no_half else model.model.diffusion_model.dtype
|
||||
devices.unet_needs_upcast = shared.cmd_opts.upcast_sampling and devices.dtype == torch.float16 and devices.dtype_unet == torch.float16
|
||||
|
||||
model.first_stage_model.to(devices.dtype_vae)
|
||||
|
Loading…
Reference in New Issue
Block a user