From f194457229e4537912467bc60ac3a873f473a63c Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Sun, 11 Sep 2022 18:48:36 +0300 Subject: [PATCH] CLIP interrogator --- .gitignore | 1 + README.md | 2 + modules/devices.py | 16 +++-- modules/interrogate.py | 142 ++++++++++++++++++++++++++++++++++++++ modules/paths.py | 1 + modules/shared.py | 8 +++ modules/ui.py | 18 ++++- requirements.txt | 2 + requirements_versions.txt | 2 + script.js | 2 + style.css | 6 +- webui.bat | 13 +++- webui.py | 4 +- 13 files changed, 204 insertions(+), 13 deletions(-) create mode 100644 modules/interrogate.py diff --git a/.gitignore b/.gitignore index 266c8c652..a06b234f3 100644 --- a/.gitignore +++ b/.gitignore @@ -13,3 +13,4 @@ __pycache__ /embeddings /styles.csv /webui-user.bat +/interrogate diff --git a/README.md b/README.md index 77b0ff13f..245289811 100644 --- a/README.md +++ b/README.md @@ -40,6 +40,7 @@ A browser interface based on Gradio library for Stable Diffusion. - Styles - Variations - Seed resizing +- CLIP interrogator ## Installing and running @@ -289,5 +290,6 @@ After that follow the instructions in the `Manual instructions` section starting - Ideas for optimizations - https://github.com/basujindal/stable-diffusion - Cross Attention layer optimization - https://github.com/Doggettx/stable-diffusion - Idea for SD upscale - https://github.com/jquesnelle/txt2imghd +- CLIP interrogator idea and borrowing some code - https://github.com/pharmapsychotic/clip-interrogator - Initial Gradio script - posted on 4chan by an Anonymous user. Thank you Anonymous user. - (You) diff --git a/modules/devices.py b/modules/devices.py index 25008a042..30d30b99c 100644 --- a/modules/devices.py +++ b/modules/devices.py @@ -1,12 +1,16 @@ import torch - # has_mps is only available in nightly pytorch (for now), `getattr` for compatibility has_mps = getattr(torch, 'has_mps', False) +cpu = torch.device("cpu") + + def get_optimal_device(): - if torch.cuda.is_available(): - return torch.device("cuda") - if has_mps: - return torch.device("mps") - return torch.device("cpu") + if torch.cuda.is_available(): + return torch.device("cuda") + + if has_mps: + return torch.device("mps") + + return cpu diff --git a/modules/interrogate.py b/modules/interrogate.py new file mode 100644 index 000000000..ed97a58b3 --- /dev/null +++ b/modules/interrogate.py @@ -0,0 +1,142 @@ +import os +import sys +import traceback +from collections import namedtuple +import re + +import torch + +from PIL import Image +from torchvision import transforms +from torchvision.transforms.functional import InterpolationMode + +import modules.shared as shared +from modules import devices, paths + +blip_image_eval_size = 384 +blip_model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_caption_capfilt_large.pth' +clip_model_name = 'ViT-L/14' + +Category = namedtuple("Category", ["name", "topn", "items"]) + +re_topn = re.compile(r"\.top(\d+)\.") + +class InterrogateModels: + blip_model = None + clip_model = None + clip_preprocess = None + categories = None + + def __init__(self, content_dir): + self.categories = [] + + if os.path.exists(content_dir): + for filename in os.listdir(content_dir): + m = re_topn.search(filename) + topn = 1 if m is None else int(m.group(1)) + + with open(os.path.join(content_dir, filename), "r", encoding="utf8") as file: + lines = [x.strip() for x in file.readlines()] + + self.categories.append(Category(name=filename, topn=topn, items=lines)) + + def load_blip_model(self): + import models.blip + + blip_model = models.blip.blip_decoder(pretrained=blip_model_url, image_size=blip_image_eval_size, vit='base', med_config=os.path.join(paths.paths["BLIP"], "configs", "med_config.json")) + blip_model.eval() + + return blip_model + + def load_clip_model(self): + import clip + + model, preprocess = clip.load(clip_model_name) + model.eval() + model = model.to(shared.device) + + return model, preprocess + + def load(self): + if self.blip_model is None: + self.blip_model = self.load_blip_model() + + self.blip_model = self.blip_model.to(shared.device) + + if self.clip_model is None: + self.clip_model, self.clip_preprocess = self.load_clip_model() + + self.clip_model = self.clip_model.to(shared.device) + + def unload(self): + if not shared.opts.interrogate_keep_models_in_memory: + if self.clip_model is not None: + self.clip_model = self.clip_model.to(devices.cpu) + + if self.blip_model is not None: + self.blip_model = self.blip_model.to(devices.cpu) + + + def rank(self, image_features, text_array, top_count=1): + import clip + + top_count = min(top_count, len(text_array)) + text_tokens = clip.tokenize([text for text in text_array]).cuda() + with torch.no_grad(): + text_features = self.clip_model.encode_text(text_tokens).float() + text_features /= text_features.norm(dim=-1, keepdim=True) + + similarity = torch.zeros((1, len(text_array))).to(shared.device) + for i in range(image_features.shape[0]): + similarity += (100.0 * image_features[i].unsqueeze(0) @ text_features.T).softmax(dim=-1) + similarity /= image_features.shape[0] + + top_probs, top_labels = similarity.cpu().topk(top_count, dim=-1) + return [(text_array[top_labels[0][i].numpy()], (top_probs[0][i].numpy()*100)) for i in range(top_count)] + + + def generate_caption(self, pil_image): + gpu_image = transforms.Compose([ + transforms.Resize((blip_image_eval_size, blip_image_eval_size), interpolation=InterpolationMode.BICUBIC), + transforms.ToTensor(), + transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)) + ])(pil_image).unsqueeze(0).to(shared.device) + + with torch.no_grad(): + caption = self.blip_model.generate(gpu_image, sample=False, num_beams=shared.opts.interrogate_clip_num_beams, min_length=shared.opts.interrogate_clip_min_length, max_length=shared.opts.interrogate_clip_max_length) + + return caption[0] + + def interrogate(self, pil_image): + res = None + + try: + self.load() + + caption = self.generate_caption(pil_image) + res = caption + + images = self.clip_preprocess(pil_image).unsqueeze(0).to(shared.device) + + with torch.no_grad(): + image_features = self.clip_model.encode_image(images).float() + + image_features /= image_features.norm(dim=-1, keepdim=True) + + if shared.opts.interrogate_use_builtin_artists: + artist = self.rank(image_features, ["by " + artist.name for artist in shared.artist_db.artists])[0] + + res += ", " + artist[0] + + for name, topn, items in self.categories: + matches = self.rank(image_features, items, top_count=topn) + for match, score in matches: + res += ", " + match + + except Exception: + print(f"Error interrogating", file=sys.stderr) + print(traceback.format_exc(), file=sys.stderr) + + self.unload() + + return res diff --git a/modules/paths.py b/modules/paths.py index 130aecb91..97c17a981 100644 --- a/modules/paths.py +++ b/modules/paths.py @@ -18,6 +18,7 @@ path_dirs = [ (sd_path, 'ldm', 'Stable Diffusion'), (os.path.join(sd_path, '../taming-transformers'), 'taming', 'Taming Transformers'), (os.path.join(sd_path, '../CodeFormer'), 'inference_codeformer.py', 'CodeFormer'), + (os.path.join(sd_path, '../BLIP'), 'models/blip.py', 'BLIP'), ] paths = {} diff --git a/modules/shared.py b/modules/shared.py index 74b0ad89d..9eeb64e38 100644 --- a/modules/shared.py +++ b/modules/shared.py @@ -11,6 +11,7 @@ import modules.artists from modules.paths import script_path, sd_path from modules.devices import get_optimal_device import modules.styles +import modules.interrogate config_filename = "config.json" @@ -77,6 +78,8 @@ artist_db = modules.artists.ArtistsDatabase(os.path.join(script_path, 'artists.c styles_filename = os.path.join(script_path, 'styles.csv') prompt_styles = modules.styles.load_styles(styles_filename) +interrogator = modules.interrogate.InterrogateModels("interrogate") + face_restorers = [] class Options: @@ -123,6 +126,11 @@ class Options: "multiple_tqdm": OptionInfo(True, "Add a second progress bar to the console that shows progress for an entire job. Broken in PyCharm console."), "face_restoration_model": OptionInfo(None, "Face restoration model", gr.Radio, lambda: {"choices": [x.name() for x in face_restorers]}), "code_former_weight": OptionInfo(0.5, "CodeFormer weight parameter; 0 = maximum effect; 1 = minimum effect", gr.Slider, {"minimum": 0, "maximum": 1, "step": 0.01}), + "interrogate_keep_models_in_memory": OptionInfo(True, "Interrogate: keep models in VRAM"), + "interrogate_use_builtin_artists": OptionInfo(True, "Interrogate: use artists from artists.csv"), + "interrogate_clip_num_beams": OptionInfo(1, "Interrogate: num_beams for BLIP", gr.Slider, {"minimum": 1, "maximum": 16, "step": 1}), + "interrogate_clip_min_length": OptionInfo(24, "Interrogate: minimum descripton length (excluding artists, etc..)", gr.Slider, {"minimum": 1, "maximum": 128, "step": 1}), + "interrogate_clip_max_length": OptionInfo(48, "Interrogate: maximum descripton length", gr.Slider, {"minimum": 1, "maximum": 256, "step": 1}), } def __init__(self): diff --git a/modules/ui.py b/modules/ui.py index 032c20fff..ebc1ae637 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -242,9 +242,14 @@ def add_style(style_name, text): return [update, update] +def interrogate(image): + prompt = shared.interrogator.interrogate(image) + + return gr_show(True) if prompt is None else prompt + def create_ui(txt2img, img2img, run_extras, run_pnginfo): with gr.Blocks(analytics_enabled=False) as txt2img_interface: - with gr.Row(): + with gr.Row(elem_id="toprow"): txt2img_prompt = gr.Textbox(label="Prompt", elem_id="txt2img_prompt", show_label=False, placeholder="Prompt", lines=1) negative_prompt = gr.Textbox(label="Negative prompt", elem_id="txt2img_negative_prompt", show_label=False, placeholder="Negative prompt", lines=1) txt2img_prompt_style = gr.Dropdown(label="Style", show_label=False, elem_id="style_index", choices=[k for k, v in shared.prompt_styles.items()], value=next(iter(shared.prompt_styles.keys())), visible=len(shared.prompt_styles) > 1) @@ -365,10 +370,11 @@ def create_ui(txt2img, img2img, run_extras, run_pnginfo): ) with gr.Blocks(analytics_enabled=False) as img2img_interface: - with gr.Row(): + with gr.Row(elem_id="toprow"): img2img_prompt = gr.Textbox(label="Prompt", elem_id="img2img_prompt", show_label=False, placeholder="Prompt", lines=1) negative_prompt = gr.Textbox(label="Negative prompt", elem_id="img2img_negative_prompt", show_label=False, placeholder="Negative prompt", lines=1) img2img_prompt_style = gr.Dropdown(label="Style", show_label=False, elem_id="style_index", choices=[k for k, v in shared.prompt_styles.items()], value=next(iter(shared.prompt_styles.keys())), visible=len(shared.prompt_styles) > 1) + img2img_interrogate = gr.Button('Interrogate', elem_id="img2img_interrogate", variant='primary') submit = gr.Button('Generate', elem_id="img2img_generate", variant='primary') check_progress = gr.Button('Check progress', elem_id="check_progress", visible=False) @@ -461,6 +467,7 @@ def create_ui(txt2img, img2img, run_extras, run_pnginfo): inpaint_full_res: gr_show(is_inpaint), inpainting_mask_invert: gr_show(is_inpaint), denoising_strength_change_factor: gr_show(is_loopback), + img2img_interrogate: gr_show(not is_inpaint), } switch_mode.change( @@ -480,6 +487,7 @@ def create_ui(txt2img, img2img, run_extras, run_pnginfo): inpaint_full_res, inpainting_mask_invert, denoising_strength_change_factor, + img2img_interrogate, ] ) @@ -540,6 +548,12 @@ def create_ui(txt2img, img2img, run_extras, run_pnginfo): img2img_prompt.submit(**img2img_args) submit.click(**img2img_args) + img2img_interrogate.click( + fn=interrogate, + inputs=[init_img], + outputs=[img2img_prompt], + ) + check_progress.click( fn=check_progress_call, show_progress=False, diff --git a/requirements.txt b/requirements.txt index ce8f23388..84c9bbd28 100644 --- a/requirements.txt +++ b/requirements.txt @@ -15,3 +15,5 @@ fonts font-roboto git+https://github.com/crowsonkb/k-diffusion.git git+https://github.com/TencentARC/GFPGAN.git +timm==0.4.12 +fairscale==0.4.4 diff --git a/requirements_versions.txt b/requirements_versions.txt index 087040e15..f3a4d2b87 100644 --- a/requirements_versions.txt +++ b/requirements_versions.txt @@ -11,3 +11,5 @@ pytorch_lightning==1.7.2 scikit-image==0.19.2 fonts font-roboto +timm==0.4.12 +fairscale==0.4.4 diff --git a/script.js b/script.js index 9a6480217..f41cf90cb 100644 --- a/script.js +++ b/script.js @@ -51,6 +51,8 @@ titles = { "Variation strength": "How strong of a variation to produce. At 0, there will be no effect. At 1, you will get the complete picture with variation seed (except for ancestral samplers, where you will just get something).", "Resize seed from height": "Make an attempt to produce a picture similar to what would have been produced with same seed at specified resolution", "Resize seed from width": "Make an attempt to produce a picture similar to what would have been produced with same seed at specified resolution", + + "Interrogate": "Reconstruct frompt from existing image and put it into the prompt field.", } function gradioApp(){ diff --git a/style.css b/style.css index 502800006..a57b2420f 100644 --- a/style.css +++ b/style.css @@ -5,6 +5,10 @@ max-width: 13em; } +#img2img_interrogate{ + max-width: 10em; +} + #subseed_show{ min-width: 6em; max-width: 6em; @@ -26,7 +30,7 @@ padding-right: 0; } -#component-1 div{ +#toprow div{ border: none; gap: 0; } diff --git a/webui.bat b/webui.bat index 1b9734480..54734d070 100644 --- a/webui.bat +++ b/webui.bat @@ -85,7 +85,7 @@ if %ERRORLEVEL% == 0 goto :install_reqs goto :show_stdout_stderr :install_reqs -%PYTHON% -c "import omegaconf; import fonts" >tmp/stdout.txt 2>tmp/stderr.txt +%PYTHON% -c "import omegaconf; import fonts; import timm" >tmp/stdout.txt 2>tmp/stderr.txt if %ERRORLEVEL% == 0 goto :make_dirs echo Installing requirements... %PYTHON% -m pip install -r %REQS_FILE% --prefer-binary >tmp/stdout.txt 2>tmp/stderr.txt @@ -117,12 +117,19 @@ goto :show_stdout_stderr :install_codeformer_reqs %PYTHON% -c "import lpips" >tmp/stdout.txt 2>tmp/stderr.txt -if %ERRORLEVEL% == 0 goto :check_model +if %ERRORLEVEL% == 0 goto :clone_blip echo Installing requirements for CodeFormer... %PYTHON% -m pip install -r repositories\CodeFormer\requirements.txt --prefer-binary >tmp/stdout.txt 2>tmp/stderr.txt -if %ERRORLEVEL% == 0 goto :check_model +if %ERRORLEVEL% == 0 goto :clone_blip goto :show_stdout_stderr +:clone_blip +if exist repositories\BLIP goto :check_model +echo Cloning BLIP repository... +%GIT% clone https://github.com/salesforce/BLIP.git repositories\BLIP >tmp/stdout.txt 2>tmp/stderr.txt +if %ERRORLEVEL% NEQ 0 goto :show_stdout_stderr +%GIT% -C repositories/BLIP checkout 48211a1594f1321b00f14c9f7a5b4813144b2fb9 >tmp/stdout.txt 2>tmp/stderr.txt +if %ERRORLEVEL% NEQ 0 goto :show_stdout_stderr :check_model dir model.ckpt >tmp/stdout.txt 2>tmp/stderr.txt diff --git a/webui.py b/webui.py index 70c683385..ca809f798 100644 --- a/webui.py +++ b/webui.py @@ -20,7 +20,7 @@ import modules.gfpgan_model import modules.face_restoration import modules.realesrgan_model as realesrgan import modules.esrgan_model as esrgan -import modules.extras +import modules.extras import modules.lowvram import modules.txt2img import modules.img2img @@ -33,6 +33,7 @@ shared.face_restorers.append(modules.face_restoration.FaceRestoration()) esrgan.load_models(cmd_opts.esrgan_models_path) realesrgan.setup_realesrgan() + def load_model_from_config(config, ckpt, verbose=False): print(f"Loading model from {ckpt}") pl_sd = torch.load(ckpt, map_location="cpu") @@ -116,5 +117,6 @@ def webui(): demo.launch(share=cmd_opts.share, server_name="0.0.0.0" if cmd_opts.listen else None, server_port=cmd_opts.port) + if __name__ == "__main__": webui()