initial refiner support

This commit is contained in:
AUTOMATIC1111 2023-08-06 17:01:07 +03:00
parent 57e8a11d17
commit f1975b0213
6 changed files with 76 additions and 9 deletions

View File

@ -666,6 +666,10 @@ def process_images(p: StableDiffusionProcessing) -> Processed:
stored_opts = {k: opts.data[k] for k in p.override_settings.keys()} stored_opts = {k: opts.data[k] for k in p.override_settings.keys()}
try: try:
# after running refiner, the refiner model is not unloaded - webui swaps back to main model here
if shared.sd_model.sd_checkpoint_info.title != opts.sd_model_checkpoint:
sd_models.reload_model_weights()
# if no checkpoint override or the override checkpoint can't be found, remove override entry and load opts checkpoint # if no checkpoint override or the override checkpoint can't be found, remove override entry and load opts checkpoint
if sd_models.checkpoint_aliases.get(p.override_settings.get('sd_model_checkpoint')) is None: if sd_models.checkpoint_aliases.get(p.override_settings.get('sd_model_checkpoint')) is None:
p.override_settings.pop('sd_model_checkpoint', None) p.override_settings.pop('sd_model_checkpoint', None)

View File

@ -289,11 +289,27 @@ def get_checkpoint_state_dict(checkpoint_info: CheckpointInfo, timer):
return res return res
class SkipWritingToConfig:
"""This context manager prevents load_model_weights from writing checkpoint name to the config when it loads weight."""
skip = False
previous = None
def __enter__(self):
self.previous = SkipWritingToConfig.skip
SkipWritingToConfig.skip = True
return self
def __exit__(self, exc_type, exc_value, exc_traceback):
SkipWritingToConfig.skip = self.previous
def load_model_weights(model, checkpoint_info: CheckpointInfo, state_dict, timer): def load_model_weights(model, checkpoint_info: CheckpointInfo, state_dict, timer):
sd_model_hash = checkpoint_info.calculate_shorthash() sd_model_hash = checkpoint_info.calculate_shorthash()
timer.record("calculate hash") timer.record("calculate hash")
shared.opts.data["sd_model_checkpoint"] = checkpoint_info.title if not SkipWritingToConfig.skip:
shared.opts.data["sd_model_checkpoint"] = checkpoint_info.title
if state_dict is None: if state_dict is None:
state_dict = get_checkpoint_state_dict(checkpoint_info, timer) state_dict = get_checkpoint_state_dict(checkpoint_info, timer)

View File

@ -2,7 +2,7 @@ from collections import namedtuple
import numpy as np import numpy as np
import torch import torch
from PIL import Image from PIL import Image
from modules import devices, images, sd_vae_approx, sd_samplers, sd_vae_taesd, shared from modules import devices, images, sd_vae_approx, sd_samplers, sd_vae_taesd, shared, sd_models
from modules.shared import opts, state from modules.shared import opts, state
SamplerData = namedtuple('SamplerData', ['name', 'constructor', 'aliases', 'options']) SamplerData = namedtuple('SamplerData', ['name', 'constructor', 'aliases', 'options'])
@ -127,3 +127,20 @@ def replace_torchsde_browinan():
replace_torchsde_browinan() replace_torchsde_browinan()
def apply_refiner(sampler):
completed_ratio = sampler.step / sampler.steps
if completed_ratio > shared.opts.sd_refiner_switch_at and shared.sd_model.sd_checkpoint_info.title != shared.opts.sd_refiner_checkpoint:
refiner_checkpoint_info = sd_models.get_closet_checkpoint_match(shared.opts.sd_refiner_checkpoint)
if refiner_checkpoint_info is None:
raise Exception(f'Could not find checkpoint with name {shared.opts.sd_refiner_checkpoint}')
with sd_models.SkipWritingToConfig():
sd_models.reload_model_weights(info=refiner_checkpoint_info)
devices.torch_gc()
sampler.update_inner_model()
sampler.p.setup_conds()

View File

@ -19,7 +19,8 @@ samplers_data_compvis = [
class VanillaStableDiffusionSampler: class VanillaStableDiffusionSampler:
def __init__(self, constructor, sd_model): def __init__(self, constructor, sd_model):
self.sampler = constructor(sd_model) self.p = None
self.sampler = constructor(shared.sd_model)
self.is_ddim = hasattr(self.sampler, 'p_sample_ddim') self.is_ddim = hasattr(self.sampler, 'p_sample_ddim')
self.is_plms = hasattr(self.sampler, 'p_sample_plms') self.is_plms = hasattr(self.sampler, 'p_sample_plms')
self.is_unipc = isinstance(self.sampler, modules.models.diffusion.uni_pc.UniPCSampler) self.is_unipc = isinstance(self.sampler, modules.models.diffusion.uni_pc.UniPCSampler)
@ -32,6 +33,7 @@ class VanillaStableDiffusionSampler:
self.nmask = None self.nmask = None
self.init_latent = None self.init_latent = None
self.sampler_noises = None self.sampler_noises = None
self.steps = None
self.step = 0 self.step = 0
self.stop_at = None self.stop_at = None
self.eta = None self.eta = None
@ -44,6 +46,7 @@ class VanillaStableDiffusionSampler:
return 0 return 0
def launch_sampling(self, steps, func): def launch_sampling(self, steps, func):
self.steps = steps
state.sampling_steps = steps state.sampling_steps = steps
state.sampling_step = 0 state.sampling_step = 0
@ -61,10 +64,15 @@ class VanillaStableDiffusionSampler:
return res return res
def update_inner_model(self):
self.sampler.model = shared.sd_model
def before_sample(self, x, ts, cond, unconditional_conditioning): def before_sample(self, x, ts, cond, unconditional_conditioning):
if state.interrupted or state.skipped: if state.interrupted or state.skipped:
raise sd_samplers_common.InterruptedException raise sd_samplers_common.InterruptedException
sd_samplers_common.apply_refiner(self)
if self.stop_at is not None and self.step > self.stop_at: if self.stop_at is not None and self.step > self.stop_at:
raise sd_samplers_common.InterruptedException raise sd_samplers_common.InterruptedException
@ -134,6 +142,8 @@ class VanillaStableDiffusionSampler:
self.update_step(x) self.update_step(x)
def initialize(self, p): def initialize(self, p):
self.p = p
if self.is_ddim: if self.is_ddim:
self.eta = p.eta if p.eta is not None else shared.opts.eta_ddim self.eta = p.eta if p.eta is not None else shared.opts.eta_ddim
else: else:

View File

@ -2,7 +2,7 @@ from collections import deque
import torch import torch
import inspect import inspect
import k_diffusion.sampling import k_diffusion.sampling
from modules import prompt_parser, devices, sd_samplers_common, sd_samplers_extra from modules import prompt_parser, devices, sd_samplers_common, sd_samplers_extra, sd_models
from modules.processing import StableDiffusionProcessing from modules.processing import StableDiffusionProcessing
from modules.shared import opts, state from modules.shared import opts, state
@ -87,15 +87,25 @@ class CFGDenoiser(torch.nn.Module):
negative prompt. negative prompt.
""" """
def __init__(self, model): def __init__(self):
super().__init__() super().__init__()
self.inner_model = model self.model_wrap = None
self.mask = None self.mask = None
self.nmask = None self.nmask = None
self.init_latent = None self.init_latent = None
self.steps = None
self.step = 0 self.step = 0
self.image_cfg_scale = None self.image_cfg_scale = None
self.padded_cond_uncond = False self.padded_cond_uncond = False
self.p = None
@property
def inner_model(self):
if self.model_wrap is None:
denoiser = k_diffusion.external.CompVisVDenoiser if shared.sd_model.parameterization == "v" else k_diffusion.external.CompVisDenoiser
self.model_wrap = denoiser(shared.sd_model, quantize=shared.opts.enable_quantization)
return self.model_wrap
def combine_denoised(self, x_out, conds_list, uncond, cond_scale): def combine_denoised(self, x_out, conds_list, uncond, cond_scale):
denoised_uncond = x_out[-uncond.shape[0]:] denoised_uncond = x_out[-uncond.shape[0]:]
@ -113,10 +123,15 @@ class CFGDenoiser(torch.nn.Module):
return denoised return denoised
def update_inner_model(self):
self.model_wrap = None
def forward(self, x, sigma, uncond, cond, cond_scale, s_min_uncond, image_cond): def forward(self, x, sigma, uncond, cond, cond_scale, s_min_uncond, image_cond):
if state.interrupted or state.skipped: if state.interrupted or state.skipped:
raise sd_samplers_common.InterruptedException raise sd_samplers_common.InterruptedException
sd_samplers_common.apply_refiner(self)
# at self.image_cfg_scale == 1.0 produced results for edit model are the same as with normal sampling, # at self.image_cfg_scale == 1.0 produced results for edit model are the same as with normal sampling,
# so is_edit_model is set to False to support AND composition. # so is_edit_model is set to False to support AND composition.
is_edit_model = shared.sd_model.cond_stage_key == "edit" and self.image_cfg_scale is not None and self.image_cfg_scale != 1.0 is_edit_model = shared.sd_model.cond_stage_key == "edit" and self.image_cfg_scale is not None and self.image_cfg_scale != 1.0
@ -267,13 +282,13 @@ class TorchHijack:
class KDiffusionSampler: class KDiffusionSampler:
def __init__(self, funcname, sd_model): def __init__(self, funcname, sd_model):
denoiser = k_diffusion.external.CompVisVDenoiser if sd_model.parameterization == "v" else k_diffusion.external.CompVisDenoiser
self.model_wrap = denoiser(sd_model, quantize=shared.opts.enable_quantization) self.p = None
self.funcname = funcname self.funcname = funcname
self.func = funcname if callable(funcname) else getattr(k_diffusion.sampling, self.funcname) self.func = funcname if callable(funcname) else getattr(k_diffusion.sampling, self.funcname)
self.extra_params = sampler_extra_params.get(funcname, []) self.extra_params = sampler_extra_params.get(funcname, [])
self.model_wrap_cfg = CFGDenoiser(self.model_wrap) self.model_wrap_cfg = CFGDenoiser()
self.model_wrap = self.model_wrap_cfg.inner_model
self.sampler_noises = None self.sampler_noises = None
self.stop_at = None self.stop_at = None
self.eta = None self.eta = None
@ -305,6 +320,7 @@ class KDiffusionSampler:
shared.total_tqdm.update() shared.total_tqdm.update()
def launch_sampling(self, steps, func): def launch_sampling(self, steps, func):
self.model_wrap_cfg.steps = steps
state.sampling_steps = steps state.sampling_steps = steps
state.sampling_step = 0 state.sampling_step = 0
@ -324,6 +340,8 @@ class KDiffusionSampler:
return p.steps return p.steps
def initialize(self, p: StableDiffusionProcessing): def initialize(self, p: StableDiffusionProcessing):
self.p = p
self.model_wrap_cfg.p = p
self.model_wrap_cfg.mask = p.mask if hasattr(p, 'mask') else None self.model_wrap_cfg.mask = p.mask if hasattr(p, 'mask') else None
self.model_wrap_cfg.nmask = p.nmask if hasattr(p, 'nmask') else None self.model_wrap_cfg.nmask = p.nmask if hasattr(p, 'nmask') else None
self.model_wrap_cfg.step = 0 self.model_wrap_cfg.step = 0

View File

@ -461,6 +461,8 @@ options_templates.update(options_section(('sd', "Stable Diffusion"), {
"CLIP_stop_at_last_layers": OptionInfo(1, "Clip skip", gr.Slider, {"minimum": 1, "maximum": 12, "step": 1}).link("wiki", "https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Features#clip-skip").info("ignore last layers of CLIP network; 1 ignores none, 2 ignores one layer"), "CLIP_stop_at_last_layers": OptionInfo(1, "Clip skip", gr.Slider, {"minimum": 1, "maximum": 12, "step": 1}).link("wiki", "https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Features#clip-skip").info("ignore last layers of CLIP network; 1 ignores none, 2 ignores one layer"),
"upcast_attn": OptionInfo(False, "Upcast cross attention layer to float32"), "upcast_attn": OptionInfo(False, "Upcast cross attention layer to float32"),
"randn_source": OptionInfo("GPU", "Random number generator source.", gr.Radio, {"choices": ["GPU", "CPU", "NV"]}).info("changes seeds drastically; use CPU to produce the same picture across different videocard vendors; use NV to produce same picture as on NVidia videocards"), "randn_source": OptionInfo("GPU", "Random number generator source.", gr.Radio, {"choices": ["GPU", "CPU", "NV"]}).info("changes seeds drastically; use CPU to produce the same picture across different videocard vendors; use NV to produce same picture as on NVidia videocards"),
"sd_refiner_checkpoint": OptionInfo(None, "Refiner checkpoint", gr.Dropdown, lambda: {"choices": list_checkpoint_tiles()}, refresh=refresh_checkpoints).info("switch to another model in the middle of generation"),
"sd_refiner_switch_at": OptionInfo(1.0, "Refiner switch at", gr.Slider, {"minimum": 0.01, "maximum": 1.0, "step": 0.01}).info("fraction of sampling steps when the swtch to refiner model should happen; 1=never, 0.5=switch in the middle of generation"),
})) }))
options_templates.update(options_section(('sdxl', "Stable Diffusion XL"), { options_templates.update(options_section(('sdxl', "Stable Diffusion XL"), {