mirror of
https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
synced 2025-01-17 11:50:18 +08:00
Merge branch 'AUTOMATIC1111:master' into sub-quad_attn_opt
This commit is contained in:
commit
f6ab5a39d7
@ -127,6 +127,8 @@ Here's how to add code to this repo: [Contributing](https://github.com/AUTOMATIC
|
||||
The documentation was moved from this README over to the project's [wiki](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki).
|
||||
|
||||
## Credits
|
||||
Licenses for borrowed code can be found in `Settings -> Licenses` screen, and also in `html/licenses.html` file.
|
||||
|
||||
- Stable Diffusion - https://github.com/CompVis/stable-diffusion, https://github.com/CompVis/taming-transformers
|
||||
- k-diffusion - https://github.com/crowsonkb/k-diffusion.git
|
||||
- GFPGAN - https://github.com/TencentARC/GFPGAN.git
|
||||
|
72
configs/alt-diffusion-inference.yaml
Normal file
72
configs/alt-diffusion-inference.yaml
Normal file
@ -0,0 +1,72 @@
|
||||
model:
|
||||
base_learning_rate: 1.0e-04
|
||||
target: ldm.models.diffusion.ddpm.LatentDiffusion
|
||||
params:
|
||||
linear_start: 0.00085
|
||||
linear_end: 0.0120
|
||||
num_timesteps_cond: 1
|
||||
log_every_t: 200
|
||||
timesteps: 1000
|
||||
first_stage_key: "jpg"
|
||||
cond_stage_key: "txt"
|
||||
image_size: 64
|
||||
channels: 4
|
||||
cond_stage_trainable: false # Note: different from the one we trained before
|
||||
conditioning_key: crossattn
|
||||
monitor: val/loss_simple_ema
|
||||
scale_factor: 0.18215
|
||||
use_ema: False
|
||||
|
||||
scheduler_config: # 10000 warmup steps
|
||||
target: ldm.lr_scheduler.LambdaLinearScheduler
|
||||
params:
|
||||
warm_up_steps: [ 10000 ]
|
||||
cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
|
||||
f_start: [ 1.e-6 ]
|
||||
f_max: [ 1. ]
|
||||
f_min: [ 1. ]
|
||||
|
||||
unet_config:
|
||||
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
|
||||
params:
|
||||
image_size: 32 # unused
|
||||
in_channels: 4
|
||||
out_channels: 4
|
||||
model_channels: 320
|
||||
attention_resolutions: [ 4, 2, 1 ]
|
||||
num_res_blocks: 2
|
||||
channel_mult: [ 1, 2, 4, 4 ]
|
||||
num_heads: 8
|
||||
use_spatial_transformer: True
|
||||
transformer_depth: 1
|
||||
context_dim: 768
|
||||
use_checkpoint: True
|
||||
legacy: False
|
||||
|
||||
first_stage_config:
|
||||
target: ldm.models.autoencoder.AutoencoderKL
|
||||
params:
|
||||
embed_dim: 4
|
||||
monitor: val/rec_loss
|
||||
ddconfig:
|
||||
double_z: true
|
||||
z_channels: 4
|
||||
resolution: 256
|
||||
in_channels: 3
|
||||
out_ch: 3
|
||||
ch: 128
|
||||
ch_mult:
|
||||
- 1
|
||||
- 2
|
||||
- 4
|
||||
- 4
|
||||
num_res_blocks: 2
|
||||
attn_resolutions: []
|
||||
dropout: 0.0
|
||||
lossconfig:
|
||||
target: torch.nn.Identity
|
||||
|
||||
cond_stage_config:
|
||||
target: modules.xlmr.BertSeriesModelWithTransformation
|
||||
params:
|
||||
name: "XLMR-Large"
|
50
extensions-builtin/roll-artist/scripts/roll-artist.py
Normal file
50
extensions-builtin/roll-artist/scripts/roll-artist.py
Normal file
@ -0,0 +1,50 @@
|
||||
import random
|
||||
|
||||
from modules import script_callbacks, shared
|
||||
import gradio as gr
|
||||
|
||||
art_symbol = '\U0001f3a8' # 🎨
|
||||
global_prompt = None
|
||||
related_ids = {"txt2img_prompt", "txt2img_clear_prompt", "img2img_prompt", "img2img_clear_prompt" }
|
||||
|
||||
|
||||
def roll_artist(prompt):
|
||||
allowed_cats = set([x for x in shared.artist_db.categories() if len(shared.opts.random_artist_categories)==0 or x in shared.opts.random_artist_categories])
|
||||
artist = random.choice([x for x in shared.artist_db.artists if x.category in allowed_cats])
|
||||
|
||||
return prompt + ", " + artist.name if prompt != '' else artist.name
|
||||
|
||||
|
||||
def add_roll_button(prompt):
|
||||
roll = gr.Button(value=art_symbol, elem_id="roll", visible=len(shared.artist_db.artists) > 0)
|
||||
|
||||
roll.click(
|
||||
fn=roll_artist,
|
||||
_js="update_txt2img_tokens",
|
||||
inputs=[
|
||||
prompt,
|
||||
],
|
||||
outputs=[
|
||||
prompt,
|
||||
]
|
||||
)
|
||||
|
||||
|
||||
def after_component(component, **kwargs):
|
||||
global global_prompt
|
||||
|
||||
elem_id = kwargs.get('elem_id', None)
|
||||
if elem_id not in related_ids:
|
||||
return
|
||||
|
||||
if elem_id == "txt2img_prompt":
|
||||
global_prompt = component
|
||||
elif elem_id == "txt2img_clear_prompt":
|
||||
add_roll_button(global_prompt)
|
||||
elif elem_id == "img2img_prompt":
|
||||
global_prompt = component
|
||||
elif elem_id == "img2img_clear_prompt":
|
||||
add_roll_button(global_prompt)
|
||||
|
||||
|
||||
script_callbacks.on_after_component(after_component)
|
9
html/footer.html
Normal file
9
html/footer.html
Normal file
@ -0,0 +1,9 @@
|
||||
<div>
|
||||
<a href="/docs">API</a>
|
||||
•
|
||||
<a href="https://github.com/AUTOMATIC1111/stable-diffusion-webui">Github</a>
|
||||
•
|
||||
<a href="https://gradio.app">Gradio</a>
|
||||
•
|
||||
<a href="/" onclick="javascript:gradioApp().getElementById('settings_restart_gradio').click(); return false">Reload UI</a>
|
||||
</div>
|
392
html/licenses.html
Normal file
392
html/licenses.html
Normal file
@ -0,0 +1,392 @@
|
||||
<style>
|
||||
#licenses h2 {font-size: 1.2em; font-weight: bold; margin-bottom: 0.2em;}
|
||||
#licenses small {font-size: 0.95em; opacity: 0.85;}
|
||||
#licenses pre { margin: 1em 0 2em 0;}
|
||||
</style>
|
||||
|
||||
<h2><a href="https://github.com/sczhou/CodeFormer/blob/master/LICENSE">CodeFormer</a></h2>
|
||||
<small>Parts of CodeFormer code had to be copied to be compatible with GFPGAN.</small>
|
||||
<pre>
|
||||
S-Lab License 1.0
|
||||
|
||||
Copyright 2022 S-Lab
|
||||
|
||||
Redistribution and use for non-commercial purpose in source and
|
||||
binary forms, with or without modification, are permitted provided
|
||||
that the following conditions are met:
|
||||
|
||||
1. Redistributions of source code must retain the above copyright
|
||||
notice, this list of conditions and the following disclaimer.
|
||||
|
||||
2. Redistributions in binary form must reproduce the above copyright
|
||||
notice, this list of conditions and the following disclaimer in
|
||||
the documentation and/or other materials provided with the
|
||||
distribution.
|
||||
|
||||
3. Neither the name of the copyright holder nor the names of its
|
||||
contributors may be used to endorse or promote products derived
|
||||
from this software without specific prior written permission.
|
||||
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||||
HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||||
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||||
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
In the event that redistribution and/or use for commercial purpose in
|
||||
source or binary forms, with or without modification is required,
|
||||
please contact the contributor(s) of the work.
|
||||
</pre>
|
||||
|
||||
|
||||
<h2><a href="https://github.com/victorca25/iNNfer/blob/main/LICENSE">ESRGAN</a></h2>
|
||||
<small>Code for architecture and reading models copied.</small>
|
||||
<pre>
|
||||
MIT License
|
||||
|
||||
Copyright (c) 2021 victorca25
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
of this software and associated documentation files (the "Software"), to deal
|
||||
in the Software without restriction, including without limitation the rights
|
||||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
copies of the Software, and to permit persons to whom the Software is
|
||||
furnished to do so, subject to the following conditions:
|
||||
|
||||
The above copyright notice and this permission notice shall be included in all
|
||||
copies or substantial portions of the Software.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
SOFTWARE.
|
||||
</pre>
|
||||
|
||||
<h2><a href="https://github.com/xinntao/Real-ESRGAN/blob/master/LICENSE">Real-ESRGAN</a></h2>
|
||||
<small>Some code is copied to support ESRGAN models.</small>
|
||||
<pre>
|
||||
BSD 3-Clause License
|
||||
|
||||
Copyright (c) 2021, Xintao Wang
|
||||
All rights reserved.
|
||||
|
||||
Redistribution and use in source and binary forms, with or without
|
||||
modification, are permitted provided that the following conditions are met:
|
||||
|
||||
1. Redistributions of source code must retain the above copyright notice, this
|
||||
list of conditions and the following disclaimer.
|
||||
|
||||
2. Redistributions in binary form must reproduce the above copyright notice,
|
||||
this list of conditions and the following disclaimer in the documentation
|
||||
and/or other materials provided with the distribution.
|
||||
|
||||
3. Neither the name of the copyright holder nor the names of its
|
||||
contributors may be used to endorse or promote products derived from
|
||||
this software without specific prior written permission.
|
||||
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||||
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
||||
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
||||
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||||
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
||||
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
||||
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
||||
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
</pre>
|
||||
|
||||
<h2><a href="https://github.com/invoke-ai/InvokeAI/blob/main/LICENSE">InvokeAI</a></h2>
|
||||
<small>Some code for compatibility with OSX is taken from lstein's repository.</small>
|
||||
<pre>
|
||||
MIT License
|
||||
|
||||
Copyright (c) 2022 InvokeAI Team
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
of this software and associated documentation files (the "Software"), to deal
|
||||
in the Software without restriction, including without limitation the rights
|
||||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
copies of the Software, and to permit persons to whom the Software is
|
||||
furnished to do so, subject to the following conditions:
|
||||
|
||||
The above copyright notice and this permission notice shall be included in all
|
||||
copies or substantial portions of the Software.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
SOFTWARE.
|
||||
</pre>
|
||||
|
||||
<h2><a href="https://github.com/Hafiidz/latent-diffusion/blob/main/LICENSE">LDSR</a></h2>
|
||||
<small>Code added by contirubtors, most likely copied from this repository.</small>
|
||||
<pre>
|
||||
MIT License
|
||||
|
||||
Copyright (c) 2022 Machine Vision and Learning Group, LMU Munich
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
of this software and associated documentation files (the "Software"), to deal
|
||||
in the Software without restriction, including without limitation the rights
|
||||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
copies of the Software, and to permit persons to whom the Software is
|
||||
furnished to do so, subject to the following conditions:
|
||||
|
||||
The above copyright notice and this permission notice shall be included in all
|
||||
copies or substantial portions of the Software.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
SOFTWARE.
|
||||
</pre>
|
||||
|
||||
<h2><a href="https://github.com/pharmapsychotic/clip-interrogator/blob/main/LICENSE">CLIP Interrogator</a></h2>
|
||||
<small>Some small amounts of code borrowed and reworked.</small>
|
||||
<pre>
|
||||
MIT License
|
||||
|
||||
Copyright (c) 2022 pharmapsychotic
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
of this software and associated documentation files (the "Software"), to deal
|
||||
in the Software without restriction, including without limitation the rights
|
||||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
copies of the Software, and to permit persons to whom the Software is
|
||||
furnished to do so, subject to the following conditions:
|
||||
|
||||
The above copyright notice and this permission notice shall be included in all
|
||||
copies or substantial portions of the Software.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
SOFTWARE.
|
||||
</pre>
|
||||
|
||||
<h2><a href="https://github.com/JingyunLiang/SwinIR/blob/main/LICENSE">SwinIR</a></h2>
|
||||
<small>Code added by contirubtors, most likely copied from this repository.</small>
|
||||
|
||||
<pre>
|
||||
Apache License
|
||||
Version 2.0, January 2004
|
||||
http://www.apache.org/licenses/
|
||||
|
||||
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
||||
|
||||
1. Definitions.
|
||||
|
||||
"License" shall mean the terms and conditions for use, reproduction,
|
||||
and distribution as defined by Sections 1 through 9 of this document.
|
||||
|
||||
"Licensor" shall mean the copyright owner or entity authorized by
|
||||
the copyright owner that is granting the License.
|
||||
|
||||
"Legal Entity" shall mean the union of the acting entity and all
|
||||
other entities that control, are controlled by, or are under common
|
||||
control with that entity. For the purposes of this definition,
|
||||
"control" means (i) the power, direct or indirect, to cause the
|
||||
direction or management of such entity, whether by contract or
|
||||
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
||||
outstanding shares, or (iii) beneficial ownership of such entity.
|
||||
|
||||
"You" (or "Your") shall mean an individual or Legal Entity
|
||||
exercising permissions granted by this License.
|
||||
|
||||
"Source" form shall mean the preferred form for making modifications,
|
||||
including but not limited to software source code, documentation
|
||||
source, and configuration files.
|
||||
|
||||
"Object" form shall mean any form resulting from mechanical
|
||||
transformation or translation of a Source form, including but
|
||||
not limited to compiled object code, generated documentation,
|
||||
and conversions to other media types.
|
||||
|
||||
"Work" shall mean the work of authorship, whether in Source or
|
||||
Object form, made available under the License, as indicated by a
|
||||
copyright notice that is included in or attached to the work
|
||||
(an example is provided in the Appendix below).
|
||||
|
||||
"Derivative Works" shall mean any work, whether in Source or Object
|
||||
form, that is based on (or derived from) the Work and for which the
|
||||
editorial revisions, annotations, elaborations, or other modifications
|
||||
represent, as a whole, an original work of authorship. For the purposes
|
||||
of this License, Derivative Works shall not include works that remain
|
||||
separable from, or merely link (or bind by name) to the interfaces of,
|
||||
the Work and Derivative Works thereof.
|
||||
|
||||
"Contribution" shall mean any work of authorship, including
|
||||
the original version of the Work and any modifications or additions
|
||||
to that Work or Derivative Works thereof, that is intentionally
|
||||
submitted to Licensor for inclusion in the Work by the copyright owner
|
||||
or by an individual or Legal Entity authorized to submit on behalf of
|
||||
the copyright owner. For the purposes of this definition, "submitted"
|
||||
means any form of electronic, verbal, or written communication sent
|
||||
to the Licensor or its representatives, including but not limited to
|
||||
communication on electronic mailing lists, source code control systems,
|
||||
and issue tracking systems that are managed by, or on behalf of, the
|
||||
Licensor for the purpose of discussing and improving the Work, but
|
||||
excluding communication that is conspicuously marked or otherwise
|
||||
designated in writing by the copyright owner as "Not a Contribution."
|
||||
|
||||
"Contributor" shall mean Licensor and any individual or Legal Entity
|
||||
on behalf of whom a Contribution has been received by Licensor and
|
||||
subsequently incorporated within the Work.
|
||||
|
||||
2. Grant of Copyright License. Subject to the terms and conditions of
|
||||
this License, each Contributor hereby grants to You a perpetual,
|
||||
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
||||
copyright license to reproduce, prepare Derivative Works of,
|
||||
publicly display, publicly perform, sublicense, and distribute the
|
||||
Work and such Derivative Works in Source or Object form.
|
||||
|
||||
3. Grant of Patent License. Subject to the terms and conditions of
|
||||
this License, each Contributor hereby grants to You a perpetual,
|
||||
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
||||
(except as stated in this section) patent license to make, have made,
|
||||
use, offer to sell, sell, import, and otherwise transfer the Work,
|
||||
where such license applies only to those patent claims licensable
|
||||
by such Contributor that are necessarily infringed by their
|
||||
Contribution(s) alone or by combination of their Contribution(s)
|
||||
with the Work to which such Contribution(s) was submitted. If You
|
||||
institute patent litigation against any entity (including a
|
||||
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
||||
or a Contribution incorporated within the Work constitutes direct
|
||||
or contributory patent infringement, then any patent licenses
|
||||
granted to You under this License for that Work shall terminate
|
||||
as of the date such litigation is filed.
|
||||
|
||||
4. Redistribution. You may reproduce and distribute copies of the
|
||||
Work or Derivative Works thereof in any medium, with or without
|
||||
modifications, and in Source or Object form, provided that You
|
||||
meet the following conditions:
|
||||
|
||||
(a) You must give any other recipients of the Work or
|
||||
Derivative Works a copy of this License; and
|
||||
|
||||
(b) You must cause any modified files to carry prominent notices
|
||||
stating that You changed the files; and
|
||||
|
||||
(c) You must retain, in the Source form of any Derivative Works
|
||||
that You distribute, all copyright, patent, trademark, and
|
||||
attribution notices from the Source form of the Work,
|
||||
excluding those notices that do not pertain to any part of
|
||||
the Derivative Works; and
|
||||
|
||||
(d) If the Work includes a "NOTICE" text file as part of its
|
||||
distribution, then any Derivative Works that You distribute must
|
||||
include a readable copy of the attribution notices contained
|
||||
within such NOTICE file, excluding those notices that do not
|
||||
pertain to any part of the Derivative Works, in at least one
|
||||
of the following places: within a NOTICE text file distributed
|
||||
as part of the Derivative Works; within the Source form or
|
||||
documentation, if provided along with the Derivative Works; or,
|
||||
within a display generated by the Derivative Works, if and
|
||||
wherever such third-party notices normally appear. The contents
|
||||
of the NOTICE file are for informational purposes only and
|
||||
do not modify the License. You may add Your own attribution
|
||||
notices within Derivative Works that You distribute, alongside
|
||||
or as an addendum to the NOTICE text from the Work, provided
|
||||
that such additional attribution notices cannot be construed
|
||||
as modifying the License.
|
||||
|
||||
You may add Your own copyright statement to Your modifications and
|
||||
may provide additional or different license terms and conditions
|
||||
for use, reproduction, or distribution of Your modifications, or
|
||||
for any such Derivative Works as a whole, provided Your use,
|
||||
reproduction, and distribution of the Work otherwise complies with
|
||||
the conditions stated in this License.
|
||||
|
||||
5. Submission of Contributions. Unless You explicitly state otherwise,
|
||||
any Contribution intentionally submitted for inclusion in the Work
|
||||
by You to the Licensor shall be under the terms and conditions of
|
||||
this License, without any additional terms or conditions.
|
||||
Notwithstanding the above, nothing herein shall supersede or modify
|
||||
the terms of any separate license agreement you may have executed
|
||||
with Licensor regarding such Contributions.
|
||||
|
||||
6. Trademarks. This License does not grant permission to use the trade
|
||||
names, trademarks, service marks, or product names of the Licensor,
|
||||
except as required for reasonable and customary use in describing the
|
||||
origin of the Work and reproducing the content of the NOTICE file.
|
||||
|
||||
7. Disclaimer of Warranty. Unless required by applicable law or
|
||||
agreed to in writing, Licensor provides the Work (and each
|
||||
Contributor provides its Contributions) on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
||||
implied, including, without limitation, any warranties or conditions
|
||||
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
||||
PARTICULAR PURPOSE. You are solely responsible for determining the
|
||||
appropriateness of using or redistributing the Work and assume any
|
||||
risks associated with Your exercise of permissions under this License.
|
||||
|
||||
8. Limitation of Liability. In no event and under no legal theory,
|
||||
whether in tort (including negligence), contract, or otherwise,
|
||||
unless required by applicable law (such as deliberate and grossly
|
||||
negligent acts) or agreed to in writing, shall any Contributor be
|
||||
liable to You for damages, including any direct, indirect, special,
|
||||
incidental, or consequential damages of any character arising as a
|
||||
result of this License or out of the use or inability to use the
|
||||
Work (including but not limited to damages for loss of goodwill,
|
||||
work stoppage, computer failure or malfunction, or any and all
|
||||
other commercial damages or losses), even if such Contributor
|
||||
has been advised of the possibility of such damages.
|
||||
|
||||
9. Accepting Warranty or Additional Liability. While redistributing
|
||||
the Work or Derivative Works thereof, You may choose to offer,
|
||||
and charge a fee for, acceptance of support, warranty, indemnity,
|
||||
or other liability obligations and/or rights consistent with this
|
||||
License. However, in accepting such obligations, You may act only
|
||||
on Your own behalf and on Your sole responsibility, not on behalf
|
||||
of any other Contributor, and only if You agree to indemnify,
|
||||
defend, and hold each Contributor harmless for any liability
|
||||
incurred by, or claims asserted against, such Contributor by reason
|
||||
of your accepting any such warranty or additional liability.
|
||||
|
||||
END OF TERMS AND CONDITIONS
|
||||
|
||||
APPENDIX: How to apply the Apache License to your work.
|
||||
|
||||
To apply the Apache License to your work, attach the following
|
||||
boilerplate notice, with the fields enclosed by brackets "[]"
|
||||
replaced with your own identifying information. (Don't include
|
||||
the brackets!) The text should be enclosed in the appropriate
|
||||
comment syntax for the file format. We also recommend that a
|
||||
file or class name and description of purpose be included on the
|
||||
same "printed page" as the copyright notice for easier
|
||||
identification within third-party archives.
|
||||
|
||||
Copyright [2021] [SwinIR Authors]
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
</pre>
|
||||
|
@ -19,7 +19,7 @@ function selected_gallery_index(){
|
||||
|
||||
function extract_image_from_gallery(gallery){
|
||||
if(gallery.length == 1){
|
||||
return gallery[0]
|
||||
return [gallery[0]]
|
||||
}
|
||||
|
||||
index = selected_gallery_index()
|
||||
@ -28,7 +28,7 @@ function extract_image_from_gallery(gallery){
|
||||
return [null]
|
||||
}
|
||||
|
||||
return gallery[index];
|
||||
return [gallery[index]];
|
||||
}
|
||||
|
||||
function args_to_array(args){
|
||||
@ -188,6 +188,17 @@ onUiUpdate(function(){
|
||||
img2img_textarea = gradioApp().querySelector("#img2img_prompt > label > textarea");
|
||||
img2img_textarea?.addEventListener("input", () => update_token_counter("img2img_token_button"));
|
||||
}
|
||||
|
||||
show_all_pages = gradioApp().getElementById('settings_show_all_pages')
|
||||
settings_tabs = gradioApp().querySelector('#settings div')
|
||||
if(show_all_pages && settings_tabs){
|
||||
settings_tabs.appendChild(show_all_pages)
|
||||
show_all_pages.onclick = function(){
|
||||
gradioApp().querySelectorAll('#settings > div').forEach(function(elem){
|
||||
elem.style.display = "block";
|
||||
})
|
||||
}
|
||||
}
|
||||
})
|
||||
|
||||
let txt2img_textarea, img2img_textarea = undefined;
|
||||
|
@ -100,6 +100,7 @@ class Api:
|
||||
self.add_api_route("/sdapi/v1/prompt-styles", self.get_prompt_styles, methods=["GET"], response_model=List[PromptStyleItem])
|
||||
self.add_api_route("/sdapi/v1/artist-categories", self.get_artists_categories, methods=["GET"], response_model=List[str])
|
||||
self.add_api_route("/sdapi/v1/artists", self.get_artists, methods=["GET"], response_model=List[ArtistItem])
|
||||
self.add_api_route("/sdapi/v1/embeddings", self.get_embeddings, methods=["GET"], response_model=EmbeddingsResponse)
|
||||
self.add_api_route("/sdapi/v1/refresh-checkpoints", self.refresh_checkpoints, methods=["POST"])
|
||||
self.add_api_route("/sdapi/v1/create/embedding", self.create_embedding, methods=["POST"], response_model=CreateResponse)
|
||||
self.add_api_route("/sdapi/v1/create/hypernetwork", self.create_hypernetwork, methods=["POST"], response_model=CreateResponse)
|
||||
@ -121,7 +122,6 @@ class Api:
|
||||
|
||||
def text2imgapi(self, txt2imgreq: StableDiffusionTxt2ImgProcessingAPI):
|
||||
populate = txt2imgreq.copy(update={ # Override __init__ params
|
||||
"sd_model": shared.sd_model,
|
||||
"sampler_name": validate_sampler_name(txt2imgreq.sampler_name or txt2imgreq.sampler_index),
|
||||
"do_not_save_samples": True,
|
||||
"do_not_save_grid": True
|
||||
@ -129,16 +129,15 @@ class Api:
|
||||
)
|
||||
if populate.sampler_name:
|
||||
populate.sampler_index = None # prevent a warning later on
|
||||
p = StableDiffusionProcessingTxt2Img(**vars(populate))
|
||||
# Override object param
|
||||
|
||||
shared.state.begin()
|
||||
|
||||
with self.queue_lock:
|
||||
processed = process_images(p)
|
||||
p = StableDiffusionProcessingTxt2Img(sd_model=shared.sd_model, **vars(populate))
|
||||
|
||||
shared.state.begin()
|
||||
processed = process_images(p)
|
||||
shared.state.end()
|
||||
|
||||
|
||||
b64images = list(map(encode_pil_to_base64, processed.images))
|
||||
|
||||
return TextToImageResponse(images=b64images, parameters=vars(txt2imgreq), info=processed.js())
|
||||
@ -153,7 +152,6 @@ class Api:
|
||||
mask = decode_base64_to_image(mask)
|
||||
|
||||
populate = img2imgreq.copy(update={ # Override __init__ params
|
||||
"sd_model": shared.sd_model,
|
||||
"sampler_name": validate_sampler_name(img2imgreq.sampler_name or img2imgreq.sampler_index),
|
||||
"do_not_save_samples": True,
|
||||
"do_not_save_grid": True,
|
||||
@ -165,15 +163,13 @@ class Api:
|
||||
|
||||
args = vars(populate)
|
||||
args.pop('include_init_images', None) # this is meant to be done by "exclude": True in model, but it's for a reason that I cannot determine.
|
||||
p = StableDiffusionProcessingImg2Img(**args)
|
||||
|
||||
with self.queue_lock:
|
||||
p = StableDiffusionProcessingImg2Img(sd_model=shared.sd_model, **args)
|
||||
p.init_images = [decode_base64_to_image(x) for x in init_images]
|
||||
|
||||
shared.state.begin()
|
||||
|
||||
with self.queue_lock:
|
||||
processed = process_images(p)
|
||||
|
||||
shared.state.end()
|
||||
|
||||
b64images = list(map(encode_pil_to_base64, processed.images))
|
||||
@ -332,6 +328,26 @@ class Api:
|
||||
def get_artists(self):
|
||||
return [{"name":x[0], "score":x[1], "category":x[2]} for x in shared.artist_db.artists]
|
||||
|
||||
def get_embeddings(self):
|
||||
db = sd_hijack.model_hijack.embedding_db
|
||||
|
||||
def convert_embedding(embedding):
|
||||
return {
|
||||
"step": embedding.step,
|
||||
"sd_checkpoint": embedding.sd_checkpoint,
|
||||
"sd_checkpoint_name": embedding.sd_checkpoint_name,
|
||||
"shape": embedding.shape,
|
||||
"vectors": embedding.vectors,
|
||||
}
|
||||
|
||||
def convert_embeddings(embeddings):
|
||||
return {embedding.name: convert_embedding(embedding) for embedding in embeddings.values()}
|
||||
|
||||
return {
|
||||
"loaded": convert_embeddings(db.word_embeddings),
|
||||
"skipped": convert_embeddings(db.skipped_embeddings),
|
||||
}
|
||||
|
||||
def refresh_checkpoints(self):
|
||||
shared.refresh_checkpoints()
|
||||
|
||||
|
@ -249,3 +249,13 @@ class ArtistItem(BaseModel):
|
||||
score: float = Field(title="Score")
|
||||
category: str = Field(title="Category")
|
||||
|
||||
class EmbeddingItem(BaseModel):
|
||||
step: Optional[int] = Field(title="Step", description="The number of steps that were used to train this embedding, if available")
|
||||
sd_checkpoint: Optional[str] = Field(title="SD Checkpoint", description="The hash of the checkpoint this embedding was trained on, if available")
|
||||
sd_checkpoint_name: Optional[str] = Field(title="SD Checkpoint Name", description="The name of the checkpoint this embedding was trained on, if available. Note that this is the name that was used by the trainer; for a stable identifier, use `sd_checkpoint` instead")
|
||||
shape: int = Field(title="Shape", description="The length of each individual vector in the embedding")
|
||||
vectors: int = Field(title="Vectors", description="The number of vectors in the embedding")
|
||||
|
||||
class EmbeddingsResponse(BaseModel):
|
||||
loaded: Dict[str, EmbeddingItem] = Field(title="Loaded", description="Embeddings loaded for the current model")
|
||||
skipped: Dict[str, EmbeddingItem] = Field(title="Skipped", description="Embeddings skipped for the current model (likely due to architecture incompatibility)")
|
@ -303,6 +303,8 @@ def run_modelmerger(primary_model_name, secondary_model_name, tertiary_model_nam
|
||||
theta_0[key][:, 0:4, :, :] = theta_func2(a[:, 0:4, :, :], b, multiplier)
|
||||
result_is_inpainting_model = True
|
||||
else:
|
||||
assert a.shape == b.shape, f'Incompatible shapes for layer {key}: A is {a.shape}, and B is {b.shape}'
|
||||
|
||||
theta_0[key] = theta_func2(a, b, multiplier)
|
||||
|
||||
if save_as_half:
|
||||
|
@ -1,12 +1,13 @@
|
||||
import base64
|
||||
import io
|
||||
import math
|
||||
import os
|
||||
import re
|
||||
from pathlib import Path
|
||||
|
||||
import gradio as gr
|
||||
from modules.shared import script_path
|
||||
from modules import shared
|
||||
from modules import shared, ui_tempdir
|
||||
import tempfile
|
||||
from PIL import Image
|
||||
|
||||
@ -36,9 +37,12 @@ def quote(text):
|
||||
|
||||
|
||||
def image_from_url_text(filedata):
|
||||
if type(filedata) == dict and filedata["is_file"]:
|
||||
if type(filedata) == list and len(filedata) > 0 and type(filedata[0]) == dict and filedata[0].get("is_file", False):
|
||||
filedata = filedata[0]
|
||||
|
||||
if type(filedata) == dict and filedata.get("is_file", False):
|
||||
filename = filedata["name"]
|
||||
is_in_right_dir = any(Path(temp_dir).resolve() in Path(filename).resolve().parents for temp_dir in shared.demo.temp_dirs)
|
||||
is_in_right_dir = ui_tempdir.check_tmp_file(shared.demo, filename)
|
||||
assert is_in_right_dir, 'trying to open image file outside of allowed directories'
|
||||
|
||||
return Image.open(filename)
|
||||
@ -93,7 +97,7 @@ def integrate_settings_paste_fields(component_dict):
|
||||
def create_buttons(tabs_list):
|
||||
buttons = {}
|
||||
for tab in tabs_list:
|
||||
buttons[tab] = gr.Button(f"Send to {tab}")
|
||||
buttons[tab] = gr.Button(f"Send to {tab}", elem_id=f"{tab}_tab")
|
||||
return buttons
|
||||
|
||||
|
||||
@ -102,35 +106,57 @@ def bind_buttons(buttons, send_image, send_generate_info):
|
||||
bind_list.append([buttons, send_image, send_generate_info])
|
||||
|
||||
|
||||
def send_image_and_dimensions(x):
|
||||
if isinstance(x, Image.Image):
|
||||
img = x
|
||||
else:
|
||||
img = image_from_url_text(x)
|
||||
|
||||
if shared.opts.send_size and isinstance(img, Image.Image):
|
||||
w = img.width
|
||||
h = img.height
|
||||
else:
|
||||
w = gr.update()
|
||||
h = gr.update()
|
||||
|
||||
return img, w, h
|
||||
|
||||
|
||||
def run_bind():
|
||||
for buttons, send_image, send_generate_info in bind_list:
|
||||
for buttons, source_image_component, send_generate_info in bind_list:
|
||||
for tab in buttons:
|
||||
button = buttons[tab]
|
||||
if send_image and paste_fields[tab]["init_img"]:
|
||||
if type(send_image) == gr.Gallery:
|
||||
button.click(
|
||||
fn=lambda x: image_from_url_text(x),
|
||||
_js="extract_image_from_gallery",
|
||||
inputs=[send_image],
|
||||
outputs=[paste_fields[tab]["init_img"]],
|
||||
)
|
||||
destination_image_component = paste_fields[tab]["init_img"]
|
||||
fields = paste_fields[tab]["fields"]
|
||||
|
||||
destination_width_component = next(iter([field for field, name in fields if name == "Size-1"] if fields else []), None)
|
||||
destination_height_component = next(iter([field for field, name in fields if name == "Size-2"] if fields else []), None)
|
||||
|
||||
if source_image_component and destination_image_component:
|
||||
if isinstance(source_image_component, gr.Gallery):
|
||||
func = send_image_and_dimensions if destination_width_component else image_from_url_text
|
||||
jsfunc = "extract_image_from_gallery"
|
||||
else:
|
||||
func = send_image_and_dimensions if destination_width_component else lambda x: x
|
||||
jsfunc = None
|
||||
|
||||
button.click(
|
||||
fn=lambda x: x,
|
||||
inputs=[send_image],
|
||||
outputs=[paste_fields[tab]["init_img"]],
|
||||
fn=func,
|
||||
_js=jsfunc,
|
||||
inputs=[source_image_component],
|
||||
outputs=[destination_image_component, destination_width_component, destination_height_component] if destination_width_component else [destination_image_component],
|
||||
)
|
||||
|
||||
if send_generate_info and paste_fields[tab]["fields"] is not None:
|
||||
if send_generate_info and fields is not None:
|
||||
if send_generate_info in paste_fields:
|
||||
paste_field_names = ['Prompt', 'Negative prompt', 'Steps', 'Face restoration'] + (['Size-1', 'Size-2'] if shared.opts.send_size else []) + (["Seed"] if shared.opts.send_seed else [])
|
||||
paste_field_names = ['Prompt', 'Negative prompt', 'Steps', 'Face restoration'] + (["Seed"] if shared.opts.send_seed else [])
|
||||
button.click(
|
||||
fn=lambda *x: x,
|
||||
inputs=[field for field, name in paste_fields[send_generate_info]["fields"] if name in paste_field_names],
|
||||
outputs=[field for field, name in paste_fields[tab]["fields"] if name in paste_field_names],
|
||||
outputs=[field for field, name in fields if name in paste_field_names],
|
||||
)
|
||||
else:
|
||||
connect_paste(button, paste_fields[tab]["fields"], send_generate_info)
|
||||
connect_paste(button, fields, send_generate_info)
|
||||
|
||||
button.click(
|
||||
fn=None,
|
||||
@ -164,6 +190,35 @@ def find_hypernetwork_key(hypernet_name, hypernet_hash=None):
|
||||
return None
|
||||
|
||||
|
||||
def restore_old_hires_fix_params(res):
|
||||
"""for infotexts that specify old First pass size parameter, convert it into
|
||||
width, height, and hr scale"""
|
||||
|
||||
firstpass_width = res.get('First pass size-1', None)
|
||||
firstpass_height = res.get('First pass size-2', None)
|
||||
|
||||
if firstpass_width is None or firstpass_height is None:
|
||||
return
|
||||
|
||||
firstpass_width, firstpass_height = int(firstpass_width), int(firstpass_height)
|
||||
width = int(res.get("Size-1", 512))
|
||||
height = int(res.get("Size-2", 512))
|
||||
|
||||
if firstpass_width == 0 or firstpass_height == 0:
|
||||
# old algorithm for auto-calculating first pass size
|
||||
desired_pixel_count = 512 * 512
|
||||
actual_pixel_count = width * height
|
||||
scale = math.sqrt(desired_pixel_count / actual_pixel_count)
|
||||
firstpass_width = math.ceil(scale * width / 64) * 64
|
||||
firstpass_height = math.ceil(scale * height / 64) * 64
|
||||
|
||||
hr_scale = width / firstpass_width if firstpass_width > 0 else height / firstpass_height
|
||||
|
||||
res['Size-1'] = firstpass_width
|
||||
res['Size-2'] = firstpass_height
|
||||
res['Hires upscale'] = hr_scale
|
||||
|
||||
|
||||
def parse_generation_parameters(x: str):
|
||||
"""parses generation parameters string, the one you see in text field under the picture in UI:
|
||||
```
|
||||
@ -221,6 +276,8 @@ Steps: 20, Sampler: Euler a, CFG scale: 7, Seed: 965400086, Size: 512x512, Model
|
||||
hypernet_hash = res.get("Hypernet hash", None)
|
||||
res["Hypernet"] = find_hypernetwork_key(hypernet_name, hypernet_hash)
|
||||
|
||||
restore_old_hires_fix_params(res)
|
||||
|
||||
return res
|
||||
|
||||
|
||||
|
@ -39,11 +39,14 @@ def image_grid(imgs, batch_size=1, rows=None):
|
||||
|
||||
cols = math.ceil(len(imgs) / rows)
|
||||
|
||||
w, h = imgs[0].size
|
||||
grid = Image.new('RGB', size=(cols * w, rows * h), color='black')
|
||||
params = script_callbacks.ImageGridLoopParams(imgs, cols, rows)
|
||||
script_callbacks.image_grid_callback(params)
|
||||
|
||||
for i, img in enumerate(imgs):
|
||||
grid.paste(img, box=(i % cols * w, i // cols * h))
|
||||
w, h = imgs[0].size
|
||||
grid = Image.new('RGB', size=(params.cols * w, params.rows * h), color='black')
|
||||
|
||||
for i, img in enumerate(params.imgs):
|
||||
grid.paste(img, box=(i % params.cols * w, i // params.cols * h))
|
||||
|
||||
return grid
|
||||
|
||||
@ -227,16 +230,32 @@ def draw_prompt_matrix(im, width, height, all_prompts):
|
||||
return draw_grid_annotations(im, width, height, hor_texts, ver_texts)
|
||||
|
||||
|
||||
def resize_image(resize_mode, im, width, height):
|
||||
def resize_image(resize_mode, im, width, height, upscaler_name=None):
|
||||
"""
|
||||
Resizes an image with the specified resize_mode, width, and height.
|
||||
|
||||
Args:
|
||||
resize_mode: The mode to use when resizing the image.
|
||||
0: Resize the image to the specified width and height.
|
||||
1: Resize the image to fill the specified width and height, maintaining the aspect ratio, and then center the image within the dimensions, cropping the excess.
|
||||
2: Resize the image to fit within the specified width and height, maintaining the aspect ratio, and then center the image within the dimensions, filling empty with data from image.
|
||||
im: The image to resize.
|
||||
width: The width to resize the image to.
|
||||
height: The height to resize the image to.
|
||||
upscaler_name: The name of the upscaler to use. If not provided, defaults to opts.upscaler_for_img2img.
|
||||
"""
|
||||
|
||||
upscaler_name = upscaler_name or opts.upscaler_for_img2img
|
||||
|
||||
def resize(im, w, h):
|
||||
if opts.upscaler_for_img2img is None or opts.upscaler_for_img2img == "None" or im.mode == 'L':
|
||||
if upscaler_name is None or upscaler_name == "None" or im.mode == 'L':
|
||||
return im.resize((w, h), resample=LANCZOS)
|
||||
|
||||
scale = max(w / im.width, h / im.height)
|
||||
|
||||
if scale > 1.0:
|
||||
upscalers = [x for x in shared.sd_upscalers if x.name == opts.upscaler_for_img2img]
|
||||
assert len(upscalers) > 0, f"could not find upscaler named {opts.upscaler_for_img2img}"
|
||||
upscalers = [x for x in shared.sd_upscalers if x.name == upscaler_name]
|
||||
assert len(upscalers) > 0, f"could not find upscaler named {upscaler_name}"
|
||||
|
||||
upscaler = upscalers[0]
|
||||
im = upscaler.scaler.upscale(im, scale, upscaler.data_path)
|
||||
@ -525,6 +544,9 @@ def save_image(image, path, basename, seed=None, prompt=None, extension='png', i
|
||||
image_to_save.save(temp_file_path, format=image_format, quality=opts.jpeg_quality, pnginfo=pnginfo_data)
|
||||
|
||||
elif extension.lower() in (".jpg", ".jpeg", ".webp"):
|
||||
if image_to_save.mode == 'RGBA':
|
||||
image_to_save = image_to_save.convert("RGB")
|
||||
|
||||
image_to_save.save(temp_file_path, format=image_format, quality=opts.jpeg_quality)
|
||||
|
||||
if opts.enable_pnginfo and info is not None:
|
||||
|
@ -162,4 +162,4 @@ def img2img(mode: int, prompt: str, negative_prompt: str, prompt_style: str, pro
|
||||
if opts.do_not_show_images:
|
||||
processed.images = []
|
||||
|
||||
return processed.images, generation_info_js, plaintext_to_html(processed.info)
|
||||
return processed.images, generation_info_js, plaintext_to_html(processed.info), plaintext_to_html(processed.comments)
|
||||
|
@ -135,7 +135,7 @@ class InterrogateModels:
|
||||
return caption[0]
|
||||
|
||||
def interrogate(self, pil_image):
|
||||
res = None
|
||||
res = ""
|
||||
|
||||
try:
|
||||
|
||||
|
@ -71,10 +71,13 @@ class MemUsageMonitor(threading.Thread):
|
||||
def read(self):
|
||||
if not self.disabled:
|
||||
free, total = torch.cuda.mem_get_info()
|
||||
self.data["free"] = free
|
||||
self.data["total"] = total
|
||||
|
||||
torch_stats = torch.cuda.memory_stats(self.device)
|
||||
self.data["active"] = torch_stats["active.all.current"]
|
||||
self.data["active_peak"] = torch_stats["active_bytes.all.peak"]
|
||||
self.data["reserved"] = torch_stats["reserved_bytes.all.current"]
|
||||
self.data["reserved_peak"] = torch_stats["reserved_bytes.all.peak"]
|
||||
self.data["system_peak"] = total - self.data["min_free"]
|
||||
|
||||
|
@ -123,6 +123,23 @@ def move_files(src_path: str, dest_path: str, ext_filter: str = None):
|
||||
pass
|
||||
|
||||
|
||||
builtin_upscaler_classes = []
|
||||
forbidden_upscaler_classes = set()
|
||||
|
||||
|
||||
def list_builtin_upscalers():
|
||||
load_upscalers()
|
||||
|
||||
builtin_upscaler_classes.clear()
|
||||
builtin_upscaler_classes.extend(Upscaler.__subclasses__())
|
||||
|
||||
|
||||
def forbid_loaded_nonbuiltin_upscalers():
|
||||
for cls in Upscaler.__subclasses__():
|
||||
if cls not in builtin_upscaler_classes:
|
||||
forbidden_upscaler_classes.add(cls)
|
||||
|
||||
|
||||
def load_upscalers():
|
||||
# We can only do this 'magic' method to dynamically load upscalers if they are referenced,
|
||||
# so we'll try to import any _model.py files before looking in __subclasses__
|
||||
@ -139,6 +156,9 @@ def load_upscalers():
|
||||
datas = []
|
||||
commandline_options = vars(shared.cmd_opts)
|
||||
for cls in Upscaler.__subclasses__():
|
||||
if cls in forbidden_upscaler_classes:
|
||||
continue
|
||||
|
||||
name = cls.__name__
|
||||
cmd_name = f"{name.lower().replace('upscaler', '')}_models_path"
|
||||
scaler = cls(commandline_options.get(cmd_name, None))
|
||||
|
@ -239,7 +239,7 @@ class StableDiffusionProcessing():
|
||||
|
||||
|
||||
class Processed:
|
||||
def __init__(self, p: StableDiffusionProcessing, images_list, seed=-1, info="", subseed=None, all_prompts=None, all_negative_prompts=None, all_seeds=None, all_subseeds=None, index_of_first_image=0, infotexts=None):
|
||||
def __init__(self, p: StableDiffusionProcessing, images_list, seed=-1, info="", subseed=None, all_prompts=None, all_negative_prompts=None, all_seeds=None, all_subseeds=None, index_of_first_image=0, infotexts=None, comments=""):
|
||||
self.images = images_list
|
||||
self.prompt = p.prompt
|
||||
self.negative_prompt = p.negative_prompt
|
||||
@ -247,6 +247,7 @@ class Processed:
|
||||
self.subseed = subseed
|
||||
self.subseed_strength = p.subseed_strength
|
||||
self.info = info
|
||||
self.comments = comments
|
||||
self.width = p.width
|
||||
self.height = p.height
|
||||
self.sampler_name = p.sampler_name
|
||||
@ -646,7 +647,7 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
|
||||
|
||||
devices.torch_gc()
|
||||
|
||||
res = Processed(p, output_images, p.all_seeds[0], infotext() + "".join(["\n\n" + x for x in comments]), subseed=p.all_subseeds[0], index_of_first_image=index_of_first_image, infotexts=infotexts)
|
||||
res = Processed(p, output_images, p.all_seeds[0], infotext(), comments="".join(["\n\n" + x for x in comments]), subseed=p.all_subseeds[0], index_of_first_image=index_of_first_image, infotexts=infotexts)
|
||||
|
||||
if p.scripts is not None:
|
||||
p.scripts.postprocess(p, res)
|
||||
@ -657,14 +658,18 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
|
||||
class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
|
||||
sampler = None
|
||||
|
||||
def __init__(self, enable_hr: bool=False, denoising_strength: float=0.75, firstphase_width: int=0, firstphase_height: int=0, **kwargs):
|
||||
def __init__(self, enable_hr: bool = False, denoising_strength: float = 0.75, firstphase_width: int = 0, firstphase_height: int = 0, hr_scale: float = 2.0, hr_upscaler: str = None, **kwargs):
|
||||
super().__init__(**kwargs)
|
||||
self.enable_hr = enable_hr
|
||||
self.denoising_strength = denoising_strength
|
||||
self.firstphase_width = firstphase_width
|
||||
self.firstphase_height = firstphase_height
|
||||
self.truncate_x = 0
|
||||
self.truncate_y = 0
|
||||
self.hr_scale = hr_scale
|
||||
self.hr_upscaler = hr_upscaler
|
||||
|
||||
if firstphase_width != 0 or firstphase_height != 0:
|
||||
print("firstphase_width/firstphase_height no longer supported; use hr_scale", file=sys.stderr)
|
||||
self.hr_scale = self.width / firstphase_width
|
||||
self.width = firstphase_width
|
||||
self.height = firstphase_height
|
||||
|
||||
def init(self, all_prompts, all_seeds, all_subseeds):
|
||||
if self.enable_hr:
|
||||
@ -673,47 +678,29 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
|
||||
else:
|
||||
state.job_count = state.job_count * 2
|
||||
|
||||
self.extra_generation_params["First pass size"] = f"{self.firstphase_width}x{self.firstphase_height}"
|
||||
|
||||
if self.firstphase_width == 0 or self.firstphase_height == 0:
|
||||
desired_pixel_count = 512 * 512
|
||||
actual_pixel_count = self.width * self.height
|
||||
scale = math.sqrt(desired_pixel_count / actual_pixel_count)
|
||||
self.firstphase_width = math.ceil(scale * self.width / 64) * 64
|
||||
self.firstphase_height = math.ceil(scale * self.height / 64) * 64
|
||||
firstphase_width_truncated = int(scale * self.width)
|
||||
firstphase_height_truncated = int(scale * self.height)
|
||||
|
||||
else:
|
||||
|
||||
width_ratio = self.width / self.firstphase_width
|
||||
height_ratio = self.height / self.firstphase_height
|
||||
|
||||
if width_ratio > height_ratio:
|
||||
firstphase_width_truncated = self.firstphase_width
|
||||
firstphase_height_truncated = self.firstphase_width * self.height / self.width
|
||||
else:
|
||||
firstphase_width_truncated = self.firstphase_height * self.width / self.height
|
||||
firstphase_height_truncated = self.firstphase_height
|
||||
|
||||
self.truncate_x = int(self.firstphase_width - firstphase_width_truncated) // opt_f
|
||||
self.truncate_y = int(self.firstphase_height - firstphase_height_truncated) // opt_f
|
||||
self.extra_generation_params["Hires upscale"] = self.hr_scale
|
||||
if self.hr_upscaler is not None:
|
||||
self.extra_generation_params["Hires upscaler"] = self.hr_upscaler
|
||||
|
||||
def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength, prompts):
|
||||
self.sampler = sd_samplers.create_sampler(self.sampler_name, self.sd_model)
|
||||
|
||||
if not self.enable_hr:
|
||||
latent_scale_mode = shared.latent_upscale_modes.get(self.hr_upscaler, None) if self.hr_upscaler is not None else shared.latent_upscale_modes.get(shared.latent_upscale_default_mode, "nearest")
|
||||
if self.enable_hr and latent_scale_mode is None:
|
||||
assert len([x for x in shared.sd_upscalers if x.name == self.hr_upscaler]) > 0, f"could not find upscaler named {self.hr_upscaler}"
|
||||
|
||||
x = create_random_tensors([opt_C, self.height // opt_f, self.width // opt_f], seeds=seeds, subseeds=subseeds, subseed_strength=self.subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self)
|
||||
samples = self.sampler.sample(self, x, conditioning, unconditional_conditioning, image_conditioning=self.txt2img_image_conditioning(x))
|
||||
|
||||
if not self.enable_hr:
|
||||
return samples
|
||||
|
||||
x = create_random_tensors([opt_C, self.firstphase_height // opt_f, self.firstphase_width // opt_f], seeds=seeds, subseeds=subseeds, subseed_strength=self.subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self)
|
||||
samples = self.sampler.sample(self, x, conditioning, unconditional_conditioning, image_conditioning=self.txt2img_image_conditioning(x, self.firstphase_width, self.firstphase_height))
|
||||
target_width = int(self.width * self.hr_scale)
|
||||
target_height = int(self.height * self.hr_scale)
|
||||
|
||||
samples = samples[:, :, self.truncate_y//2:samples.shape[2]-self.truncate_y//2, self.truncate_x//2:samples.shape[3]-self.truncate_x//2]
|
||||
|
||||
"""saves image before applying hires fix, if enabled in options; takes as an argument either an image or batch with latent space images"""
|
||||
def save_intermediate(image, index):
|
||||
"""saves image before applying hires fix, if enabled in options; takes as an argument either an image or batch with latent space images"""
|
||||
|
||||
if not opts.save or self.do_not_save_samples or not opts.save_images_before_highres_fix:
|
||||
return
|
||||
|
||||
@ -722,11 +709,11 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
|
||||
|
||||
images.save_image(image, self.outpath_samples, "", seeds[index], prompts[index], opts.samples_format, suffix="-before-highres-fix")
|
||||
|
||||
if opts.use_scale_latent_for_hires_fix:
|
||||
if latent_scale_mode is not None:
|
||||
for i in range(samples.shape[0]):
|
||||
save_intermediate(samples, i)
|
||||
|
||||
samples = torch.nn.functional.interpolate(samples, size=(self.height // opt_f, self.width // opt_f), mode="bilinear")
|
||||
samples = torch.nn.functional.interpolate(samples, size=(target_height // opt_f, target_width // opt_f), mode=latent_scale_mode)
|
||||
|
||||
# Avoid making the inpainting conditioning unless necessary as
|
||||
# this does need some extra compute to decode / encode the image again.
|
||||
@ -746,7 +733,7 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
|
||||
|
||||
save_intermediate(image, i)
|
||||
|
||||
image = images.resize_image(0, image, self.width, self.height)
|
||||
image = images.resize_image(0, image, target_width, target_height, upscaler_name=self.hr_upscaler)
|
||||
image = np.array(image).astype(np.float32) / 255.0
|
||||
image = np.moveaxis(image, 2, 0)
|
||||
batch_images.append(image)
|
||||
@ -763,7 +750,7 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
|
||||
|
||||
self.sampler = sd_samplers.create_sampler(self.sampler_name, self.sd_model)
|
||||
|
||||
noise = create_random_tensors(samples.shape[1:], seeds=seeds, subseeds=subseeds, subseed_strength=subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self)
|
||||
noise = create_random_tensors(samples.shape[1:], seeds=seeds, subseeds=subseeds, subseed_strength=subseed_strength, p=self)
|
||||
|
||||
# GC now before running the next img2img to prevent running out of memory
|
||||
x = None
|
||||
|
@ -51,6 +51,13 @@ class UiTrainTabParams:
|
||||
self.txt2img_preview_params = txt2img_preview_params
|
||||
|
||||
|
||||
class ImageGridLoopParams:
|
||||
def __init__(self, imgs, cols, rows):
|
||||
self.imgs = imgs
|
||||
self.cols = cols
|
||||
self.rows = rows
|
||||
|
||||
|
||||
ScriptCallback = namedtuple("ScriptCallback", ["script", "callback"])
|
||||
callback_map = dict(
|
||||
callbacks_app_started=[],
|
||||
@ -63,6 +70,7 @@ callback_map = dict(
|
||||
callbacks_cfg_denoiser=[],
|
||||
callbacks_before_component=[],
|
||||
callbacks_after_component=[],
|
||||
callbacks_image_grid=[],
|
||||
)
|
||||
|
||||
|
||||
@ -155,6 +163,14 @@ def after_component_callback(component, **kwargs):
|
||||
report_exception(c, 'after_component_callback')
|
||||
|
||||
|
||||
def image_grid_callback(params: ImageGridLoopParams):
|
||||
for c in callback_map['callbacks_image_grid']:
|
||||
try:
|
||||
c.callback(params)
|
||||
except Exception:
|
||||
report_exception(c, 'image_grid')
|
||||
|
||||
|
||||
def add_callback(callbacks, fun):
|
||||
stack = [x for x in inspect.stack() if x.filename != __file__]
|
||||
filename = stack[0].filename if len(stack) > 0 else 'unknown file'
|
||||
@ -255,3 +271,11 @@ def on_before_component(callback):
|
||||
def on_after_component(callback):
|
||||
"""register a function to be called after a component is created. See on_before_component for more."""
|
||||
add_callback(callback_map['callbacks_after_component'], callback)
|
||||
|
||||
|
||||
def on_image_grid(callback):
|
||||
"""register a function to be called before making an image grid.
|
||||
The callback is called with one argument:
|
||||
- params: ImageGridLoopParams - parameters to be used for grid creation. Can be modified.
|
||||
"""
|
||||
add_callback(callback_map['callbacks_image_grid'], callback)
|
||||
|
@ -5,7 +5,7 @@ import modules.textual_inversion.textual_inversion
|
||||
from modules import devices, sd_hijack_optimizations, shared, sd_hijack_checkpoint
|
||||
from modules.hypernetworks import hypernetwork
|
||||
from modules.shared import cmd_opts
|
||||
from modules import sd_hijack_clip, sd_hijack_open_clip, sd_hijack_unet
|
||||
from modules import sd_hijack_clip, sd_hijack_open_clip, sd_hijack_unet, sd_hijack_xlmr, xlmr
|
||||
|
||||
import ldm.modules.attention
|
||||
import ldm.modules.diffusionmodules.model
|
||||
@ -65,6 +65,7 @@ def fix_checkpoint():
|
||||
ldm.modules.diffusionmodules.openaimodel.ResBlock.forward = sd_hijack_checkpoint.ResBlock_forward
|
||||
ldm.modules.diffusionmodules.openaimodel.AttentionBlock.forward = sd_hijack_checkpoint.AttentionBlock_forward
|
||||
|
||||
|
||||
class StableDiffusionModelHijack:
|
||||
fixes = None
|
||||
comments = []
|
||||
@ -75,17 +76,25 @@ class StableDiffusionModelHijack:
|
||||
embedding_db = modules.textual_inversion.textual_inversion.EmbeddingDatabase(cmd_opts.embeddings_dir)
|
||||
|
||||
def hijack(self, m):
|
||||
if type(m.cond_stage_model) == ldm.modules.encoders.modules.FrozenCLIPEmbedder:
|
||||
|
||||
if type(m.cond_stage_model) == xlmr.BertSeriesModelWithTransformation:
|
||||
model_embeddings = m.cond_stage_model.roberta.embeddings
|
||||
model_embeddings.token_embedding = EmbeddingsWithFixes(model_embeddings.word_embeddings, self)
|
||||
m.cond_stage_model = sd_hijack_xlmr.FrozenXLMREmbedderWithCustomWords(m.cond_stage_model, self)
|
||||
|
||||
elif type(m.cond_stage_model) == ldm.modules.encoders.modules.FrozenCLIPEmbedder:
|
||||
model_embeddings = m.cond_stage_model.transformer.text_model.embeddings
|
||||
model_embeddings.token_embedding = EmbeddingsWithFixes(model_embeddings.token_embedding, self)
|
||||
m.cond_stage_model = sd_hijack_clip.FrozenCLIPEmbedderWithCustomWords(m.cond_stage_model, self)
|
||||
|
||||
elif type(m.cond_stage_model) == ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder:
|
||||
m.cond_stage_model.model.token_embedding = EmbeddingsWithFixes(m.cond_stage_model.model.token_embedding, self)
|
||||
m.cond_stage_model = sd_hijack_open_clip.FrozenOpenCLIPEmbedderWithCustomWords(m.cond_stage_model, self)
|
||||
|
||||
apply_optimizations()
|
||||
|
||||
self.clip = m.cond_stage_model
|
||||
|
||||
apply_optimizations()
|
||||
fix_checkpoint()
|
||||
|
||||
def flatten(el):
|
||||
@ -98,7 +107,11 @@ class StableDiffusionModelHijack:
|
||||
self.layers = flatten(m)
|
||||
|
||||
def undo_hijack(self, m):
|
||||
if type(m.cond_stage_model) == sd_hijack_clip.FrozenCLIPEmbedderWithCustomWords:
|
||||
|
||||
if type(m.cond_stage_model) == xlmr.BertSeriesModelWithTransformation:
|
||||
m.cond_stage_model = m.cond_stage_model.wrapped
|
||||
|
||||
elif type(m.cond_stage_model) == sd_hijack_clip.FrozenCLIPEmbedderWithCustomWords:
|
||||
m.cond_stage_model = m.cond_stage_model.wrapped
|
||||
|
||||
model_embeddings = m.cond_stage_model.transformer.text_model.embeddings
|
||||
@ -126,8 +139,8 @@ class StableDiffusionModelHijack:
|
||||
|
||||
def tokenize(self, text):
|
||||
_, remade_batch_tokens, _, _, _, token_count = self.clip.process_text([text])
|
||||
return remade_batch_tokens[0], token_count, sd_hijack_clip.get_target_prompt_token_count(token_count)
|
||||
|
||||
return remade_batch_tokens[0], token_count, sd_hijack_clip.get_target_prompt_token_count(token_count)
|
||||
|
||||
|
||||
class EmbeddingsWithFixes(torch.nn.Module):
|
||||
|
@ -5,7 +5,6 @@ import torch
|
||||
from modules import prompt_parser, devices
|
||||
from modules.shared import opts
|
||||
|
||||
|
||||
def get_target_prompt_token_count(token_count):
|
||||
return math.ceil(max(token_count, 1) / 75) * 75
|
||||
|
||||
@ -254,10 +253,13 @@ class FrozenCLIPEmbedderWithCustomWords(FrozenCLIPEmbedderWithCustomWordsBase):
|
||||
def __init__(self, wrapped, hijack):
|
||||
super().__init__(wrapped, hijack)
|
||||
self.tokenizer = wrapped.tokenizer
|
||||
self.comma_token = [v for k, v in self.tokenizer.get_vocab().items() if k == ',</w>'][0]
|
||||
|
||||
vocab = self.tokenizer.get_vocab()
|
||||
|
||||
self.comma_token = vocab.get(',</w>', None)
|
||||
|
||||
self.token_mults = {}
|
||||
tokens_with_parens = [(k, v) for k, v in self.tokenizer.get_vocab().items() if '(' in k or ')' in k or '[' in k or ']' in k]
|
||||
tokens_with_parens = [(k, v) for k, v in vocab.items() if '(' in k or ')' in k or '[' in k or ']' in k]
|
||||
for text, ident in tokens_with_parens:
|
||||
mult = 1.0
|
||||
for c in text:
|
||||
@ -296,6 +298,6 @@ class FrozenCLIPEmbedderWithCustomWords(FrozenCLIPEmbedderWithCustomWordsBase):
|
||||
def encode_embedding_init_text(self, init_text, nvpt):
|
||||
embedding_layer = self.wrapped.transformer.text_model.embeddings
|
||||
ids = self.wrapped.tokenizer(init_text, max_length=nvpt, return_tensors="pt", add_special_tokens=False)["input_ids"]
|
||||
embedded = embedding_layer.token_embedding.wrapped(ids.to(devices.device)).squeeze(0)
|
||||
embedded = embedding_layer.token_embedding.wrapped(ids.to(embedding_layer.token_embedding.wrapped.weight.device)).squeeze(0)
|
||||
|
||||
return embedded
|
||||
|
@ -12,191 +12,6 @@ from ldm.models.diffusion.ddpm import LatentDiffusion
|
||||
from ldm.models.diffusion.plms import PLMSSampler
|
||||
from ldm.models.diffusion.ddim import DDIMSampler, noise_like
|
||||
|
||||
# =================================================================================================
|
||||
# Monkey patch DDIMSampler methods from RunwayML repo directly.
|
||||
# Adapted from:
|
||||
# https://github.com/runwayml/stable-diffusion/blob/main/ldm/models/diffusion/ddim.py
|
||||
# =================================================================================================
|
||||
@torch.no_grad()
|
||||
def sample_ddim(self,
|
||||
S,
|
||||
batch_size,
|
||||
shape,
|
||||
conditioning=None,
|
||||
callback=None,
|
||||
normals_sequence=None,
|
||||
img_callback=None,
|
||||
quantize_x0=False,
|
||||
eta=0.,
|
||||
mask=None,
|
||||
x0=None,
|
||||
temperature=1.,
|
||||
noise_dropout=0.,
|
||||
score_corrector=None,
|
||||
corrector_kwargs=None,
|
||||
verbose=True,
|
||||
x_T=None,
|
||||
log_every_t=100,
|
||||
unconditional_guidance_scale=1.,
|
||||
unconditional_conditioning=None,
|
||||
# this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
|
||||
**kwargs
|
||||
):
|
||||
if conditioning is not None:
|
||||
if isinstance(conditioning, dict):
|
||||
ctmp = conditioning[list(conditioning.keys())[0]]
|
||||
while isinstance(ctmp, list):
|
||||
ctmp = ctmp[0]
|
||||
cbs = ctmp.shape[0]
|
||||
if cbs != batch_size:
|
||||
print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
|
||||
else:
|
||||
if conditioning.shape[0] != batch_size:
|
||||
print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
|
||||
|
||||
self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose)
|
||||
# sampling
|
||||
C, H, W = shape
|
||||
size = (batch_size, C, H, W)
|
||||
print(f'Data shape for DDIM sampling is {size}, eta {eta}')
|
||||
|
||||
samples, intermediates = self.ddim_sampling(conditioning, size,
|
||||
callback=callback,
|
||||
img_callback=img_callback,
|
||||
quantize_denoised=quantize_x0,
|
||||
mask=mask, x0=x0,
|
||||
ddim_use_original_steps=False,
|
||||
noise_dropout=noise_dropout,
|
||||
temperature=temperature,
|
||||
score_corrector=score_corrector,
|
||||
corrector_kwargs=corrector_kwargs,
|
||||
x_T=x_T,
|
||||
log_every_t=log_every_t,
|
||||
unconditional_guidance_scale=unconditional_guidance_scale,
|
||||
unconditional_conditioning=unconditional_conditioning,
|
||||
)
|
||||
return samples, intermediates
|
||||
|
||||
@torch.no_grad()
|
||||
def p_sample_ddim(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
|
||||
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
|
||||
unconditional_guidance_scale=1., unconditional_conditioning=None):
|
||||
b, *_, device = *x.shape, x.device
|
||||
|
||||
if unconditional_conditioning is None or unconditional_guidance_scale == 1.:
|
||||
e_t = self.model.apply_model(x, t, c)
|
||||
else:
|
||||
x_in = torch.cat([x] * 2)
|
||||
t_in = torch.cat([t] * 2)
|
||||
if isinstance(c, dict):
|
||||
assert isinstance(unconditional_conditioning, dict)
|
||||
c_in = dict()
|
||||
for k in c:
|
||||
if isinstance(c[k], list):
|
||||
c_in[k] = [
|
||||
torch.cat([unconditional_conditioning[k][i], c[k][i]])
|
||||
for i in range(len(c[k]))
|
||||
]
|
||||
else:
|
||||
c_in[k] = torch.cat([unconditional_conditioning[k], c[k]])
|
||||
else:
|
||||
c_in = torch.cat([unconditional_conditioning, c])
|
||||
e_t_uncond, e_t = self.model.apply_model(x_in, t_in, c_in).chunk(2)
|
||||
e_t = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond)
|
||||
|
||||
if score_corrector is not None:
|
||||
assert self.model.parameterization == "eps"
|
||||
e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs)
|
||||
|
||||
alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
|
||||
alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev
|
||||
sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas
|
||||
sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas
|
||||
# select parameters corresponding to the currently considered timestep
|
||||
a_t = torch.full((b, 1, 1, 1), alphas[index], device=device)
|
||||
a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device)
|
||||
sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device)
|
||||
sqrt_one_minus_at = torch.full((b, 1, 1, 1), sqrt_one_minus_alphas[index],device=device)
|
||||
|
||||
# current prediction for x_0
|
||||
pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
|
||||
if quantize_denoised:
|
||||
pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
|
||||
# direction pointing to x_t
|
||||
dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t
|
||||
noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
|
||||
if noise_dropout > 0.:
|
||||
noise = torch.nn.functional.dropout(noise, p=noise_dropout)
|
||||
x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
|
||||
return x_prev, pred_x0
|
||||
|
||||
|
||||
# =================================================================================================
|
||||
# Monkey patch PLMSSampler methods.
|
||||
# This one was not actually patched correctly in the RunwayML repo, but we can replicate the changes.
|
||||
# Adapted from:
|
||||
# https://github.com/CompVis/stable-diffusion/blob/main/ldm/models/diffusion/plms.py
|
||||
# =================================================================================================
|
||||
@torch.no_grad()
|
||||
def sample_plms(self,
|
||||
S,
|
||||
batch_size,
|
||||
shape,
|
||||
conditioning=None,
|
||||
callback=None,
|
||||
normals_sequence=None,
|
||||
img_callback=None,
|
||||
quantize_x0=False,
|
||||
eta=0.,
|
||||
mask=None,
|
||||
x0=None,
|
||||
temperature=1.,
|
||||
noise_dropout=0.,
|
||||
score_corrector=None,
|
||||
corrector_kwargs=None,
|
||||
verbose=True,
|
||||
x_T=None,
|
||||
log_every_t=100,
|
||||
unconditional_guidance_scale=1.,
|
||||
unconditional_conditioning=None,
|
||||
# this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
|
||||
**kwargs
|
||||
):
|
||||
if conditioning is not None:
|
||||
if isinstance(conditioning, dict):
|
||||
ctmp = conditioning[list(conditioning.keys())[0]]
|
||||
while isinstance(ctmp, list):
|
||||
ctmp = ctmp[0]
|
||||
cbs = ctmp.shape[0]
|
||||
if cbs != batch_size:
|
||||
print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
|
||||
else:
|
||||
if conditioning.shape[0] != batch_size:
|
||||
print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
|
||||
|
||||
self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose)
|
||||
# sampling
|
||||
C, H, W = shape
|
||||
size = (batch_size, C, H, W)
|
||||
print(f'Data shape for PLMS sampling is {size}')
|
||||
|
||||
samples, intermediates = self.plms_sampling(conditioning, size,
|
||||
callback=callback,
|
||||
img_callback=img_callback,
|
||||
quantize_denoised=quantize_x0,
|
||||
mask=mask, x0=x0,
|
||||
ddim_use_original_steps=False,
|
||||
noise_dropout=noise_dropout,
|
||||
temperature=temperature,
|
||||
score_corrector=score_corrector,
|
||||
corrector_kwargs=corrector_kwargs,
|
||||
x_T=x_T,
|
||||
log_every_t=log_every_t,
|
||||
unconditional_guidance_scale=unconditional_guidance_scale,
|
||||
unconditional_conditioning=unconditional_conditioning,
|
||||
)
|
||||
return samples, intermediates
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def p_sample_plms(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
|
||||
@ -280,44 +95,6 @@ def p_sample_plms(self, x, c, t, index, repeat_noise=False, use_original_steps=F
|
||||
|
||||
return x_prev, pred_x0, e_t
|
||||
|
||||
# =================================================================================================
|
||||
# Monkey patch LatentInpaintDiffusion to load the checkpoint with a proper config.
|
||||
# Adapted from:
|
||||
# https://github.com/runwayml/stable-diffusion/blob/main/ldm/models/diffusion/ddpm.py
|
||||
# =================================================================================================
|
||||
|
||||
@torch.no_grad()
|
||||
def get_unconditional_conditioning(self, batch_size, null_label=None):
|
||||
if null_label is not None:
|
||||
xc = null_label
|
||||
if isinstance(xc, ListConfig):
|
||||
xc = list(xc)
|
||||
if isinstance(xc, dict) or isinstance(xc, list):
|
||||
c = self.get_learned_conditioning(xc)
|
||||
else:
|
||||
if hasattr(xc, "to"):
|
||||
xc = xc.to(self.device)
|
||||
c = self.get_learned_conditioning(xc)
|
||||
else:
|
||||
# todo: get null label from cond_stage_model
|
||||
raise NotImplementedError()
|
||||
c = repeat(c, "1 ... -> b ...", b=batch_size).to(self.device)
|
||||
return c
|
||||
|
||||
|
||||
class LatentInpaintDiffusion(LatentDiffusion):
|
||||
def __init__(
|
||||
self,
|
||||
concat_keys=("mask", "masked_image"),
|
||||
masked_image_key="masked_image",
|
||||
*args,
|
||||
**kwargs,
|
||||
):
|
||||
super().__init__(*args, **kwargs)
|
||||
self.masked_image_key = masked_image_key
|
||||
assert self.masked_image_key in concat_keys
|
||||
self.concat_keys = concat_keys
|
||||
|
||||
|
||||
def should_hijack_inpainting(checkpoint_info):
|
||||
ckpt_basename = os.path.basename(checkpoint_info.filename).lower()
|
||||
@ -326,15 +103,6 @@ def should_hijack_inpainting(checkpoint_info):
|
||||
|
||||
|
||||
def do_inpainting_hijack():
|
||||
# most of this stuff seems to no longer be needed because it is already included into SD2.0
|
||||
# p_sample_plms is needed because PLMS can't work with dicts as conditionings
|
||||
# this file should be cleaned up later if everything turns out to work fine
|
||||
|
||||
# ldm.models.diffusion.ddpm.get_unconditional_conditioning = get_unconditional_conditioning
|
||||
# ldm.models.diffusion.ddpm.LatentInpaintDiffusion = LatentInpaintDiffusion
|
||||
|
||||
# ldm.models.diffusion.ddim.DDIMSampler.p_sample_ddim = p_sample_ddim
|
||||
# ldm.models.diffusion.ddim.DDIMSampler.sample = sample_ddim
|
||||
|
||||
ldm.models.diffusion.plms.PLMSSampler.p_sample_plms = p_sample_plms
|
||||
# ldm.models.diffusion.plms.PLMSSampler.sample = sample_plms
|
||||
|
34
modules/sd_hijack_xlmr.py
Normal file
34
modules/sd_hijack_xlmr.py
Normal file
@ -0,0 +1,34 @@
|
||||
import open_clip.tokenizer
|
||||
import torch
|
||||
|
||||
from modules import sd_hijack_clip, devices
|
||||
from modules.shared import opts
|
||||
|
||||
|
||||
class FrozenXLMREmbedderWithCustomWords(sd_hijack_clip.FrozenCLIPEmbedderWithCustomWords):
|
||||
def __init__(self, wrapped, hijack):
|
||||
super().__init__(wrapped, hijack)
|
||||
|
||||
self.id_start = wrapped.config.bos_token_id
|
||||
self.id_end = wrapped.config.eos_token_id
|
||||
self.id_pad = wrapped.config.pad_token_id
|
||||
|
||||
self.comma_token = self.tokenizer.get_vocab().get(',', None) # alt diffusion doesn't have </w> bits for comma
|
||||
|
||||
def encode_with_transformers(self, tokens):
|
||||
# there's no CLIP Skip here because all hidden layers have size of 1024 and the last one uses a
|
||||
# trained layer to transform those 1024 into 768 for unet; so you can't choose which transformer
|
||||
# layer to work with - you have to use the last
|
||||
|
||||
attention_mask = (tokens != self.id_pad).to(device=tokens.device, dtype=torch.int64)
|
||||
features = self.wrapped(input_ids=tokens, attention_mask=attention_mask)
|
||||
z = features['projection_state']
|
||||
|
||||
return z
|
||||
|
||||
def encode_embedding_init_text(self, init_text, nvpt):
|
||||
embedding_layer = self.wrapped.roberta.embeddings
|
||||
ids = self.wrapped.tokenizer(init_text, max_length=nvpt, return_tensors="pt", add_special_tokens=False)["input_ids"]
|
||||
embedded = embedding_layer.token_embedding.wrapped(ids.to(devices.device)).squeeze(0)
|
||||
|
||||
return embedded
|
@ -228,6 +228,8 @@ def load_model_weights(model, checkpoint_info, vae_file="auto"):
|
||||
model.sd_model_checkpoint = checkpoint_file
|
||||
model.sd_checkpoint_info = checkpoint_info
|
||||
|
||||
model.logvar = model.logvar.to(devices.device) # fix for training
|
||||
|
||||
sd_vae.delete_base_vae()
|
||||
sd_vae.clear_loaded_vae()
|
||||
vae_file = sd_vae.resolve_vae(checkpoint_file, vae_file=vae_file)
|
||||
@ -322,9 +324,12 @@ def load_model(checkpoint_info=None):
|
||||
sd_model.eval()
|
||||
shared.sd_model = sd_model
|
||||
|
||||
sd_hijack.model_hijack.embedding_db.load_textual_inversion_embeddings(force_reload=True) # Reload embeddings after model load as they may or may not fit the model
|
||||
|
||||
script_callbacks.model_loaded_callback(sd_model)
|
||||
|
||||
print("Model loaded.")
|
||||
|
||||
return sd_model
|
||||
|
||||
|
||||
|
@ -465,7 +465,9 @@ class KDiffusionSampler:
|
||||
if p.sampler_noise_scheduler_override:
|
||||
sigmas = p.sampler_noise_scheduler_override(steps)
|
||||
elif self.config is not None and self.config.options.get('scheduler', None) == 'karras':
|
||||
sigmas = k_diffusion.sampling.get_sigmas_karras(n=steps, sigma_min=0.1, sigma_max=10, device=shared.device)
|
||||
sigma_min, sigma_max = (0.1, 10) if opts.use_old_karras_scheduler_sigmas else (self.model_wrap.sigmas[0].item(), self.model_wrap.sigmas[-1].item())
|
||||
|
||||
sigmas = k_diffusion.sampling.get_sigmas_karras(n=steps, sigma_min=sigma_min, sigma_max=sigma_max, device=shared.device)
|
||||
else:
|
||||
sigmas = self.model_wrap.get_sigmas(steps)
|
||||
|
||||
|
@ -1,5 +1,6 @@
|
||||
import torch
|
||||
import os
|
||||
import collections
|
||||
from collections import namedtuple
|
||||
from modules import shared, devices, script_callbacks
|
||||
from modules.paths import models_path
|
||||
@ -30,6 +31,7 @@ base_vae = None
|
||||
loaded_vae_file = None
|
||||
checkpoint_info = None
|
||||
|
||||
checkpoints_loaded = collections.OrderedDict()
|
||||
|
||||
def get_base_vae(model):
|
||||
if base_vae is not None and checkpoint_info == model.sd_checkpoint_info and model:
|
||||
@ -149,7 +151,15 @@ def load_vae(model, vae_file=None):
|
||||
global first_load, vae_dict, vae_list, loaded_vae_file
|
||||
# save_settings = False
|
||||
|
||||
cache_enabled = shared.opts.sd_vae_checkpoint_cache > 0
|
||||
|
||||
if vae_file:
|
||||
if cache_enabled and vae_file in checkpoints_loaded:
|
||||
# use vae checkpoint cache
|
||||
print(f"Loading VAE weights [{get_filename(vae_file)}] from cache")
|
||||
store_base_vae(model)
|
||||
_load_vae_dict(model, checkpoints_loaded[vae_file])
|
||||
else:
|
||||
assert os.path.isfile(vae_file), f"VAE file doesn't exist: {vae_file}"
|
||||
print(f"Loading VAE weights from: {vae_file}")
|
||||
store_base_vae(model)
|
||||
@ -157,6 +167,15 @@ def load_vae(model, vae_file=None):
|
||||
vae_dict_1 = {k: v for k, v in vae_ckpt["state_dict"].items() if k[0:4] != "loss" and k not in vae_ignore_keys}
|
||||
_load_vae_dict(model, vae_dict_1)
|
||||
|
||||
if cache_enabled:
|
||||
# cache newly loaded vae
|
||||
checkpoints_loaded[vae_file] = vae_dict_1.copy()
|
||||
|
||||
# clean up cache if limit is reached
|
||||
if cache_enabled:
|
||||
while len(checkpoints_loaded) > shared.opts.sd_vae_checkpoint_cache + 1: # we need to count the current model
|
||||
checkpoints_loaded.popitem(last=False) # LRU
|
||||
|
||||
# If vae used is not in dict, update it
|
||||
# It will be removed on refresh though
|
||||
vae_opt = get_filename(vae_file)
|
||||
|
@ -23,7 +23,7 @@ demo = None
|
||||
sd_model_file = os.path.join(script_path, 'model.ckpt')
|
||||
default_sd_model_file = sd_model_file
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--config", type=str, default=os.path.join(script_path, "v1-inference.yaml"), help="path to config which constructs model",)
|
||||
parser.add_argument("--config", type=str, default=os.path.join(script_path, "configs/v1-inference.yaml"), help="path to config which constructs model",)
|
||||
parser.add_argument("--ckpt", type=str, default=sd_model_file, help="path to checkpoint of stable diffusion model; if specified, this checkpoint will be added to the list of checkpoints and loaded",)
|
||||
parser.add_argument("--ckpt-dir", type=str, default=None, help="Path to directory with stable diffusion checkpoints")
|
||||
parser.add_argument("--gfpgan-dir", type=str, help="GFPGAN directory", default=('./src/gfpgan' if os.path.exists('./src/gfpgan') else './GFPGAN'))
|
||||
@ -113,6 +113,17 @@ restricted_opts = {
|
||||
"outdir_save",
|
||||
}
|
||||
|
||||
ui_reorder_categories = [
|
||||
"sampler",
|
||||
"dimensions",
|
||||
"cfg",
|
||||
"seed",
|
||||
"checkboxes",
|
||||
"hires_fix",
|
||||
"batch",
|
||||
"scripts",
|
||||
]
|
||||
|
||||
cmd_opts.disable_extension_access = (cmd_opts.share or cmd_opts.listen or cmd_opts.server_name) and not cmd_opts.enable_insecure_extension_access
|
||||
|
||||
devices.device, devices.device_interrogate, devices.device_gfpgan, devices.device_esrgan, devices.device_codeformer = \
|
||||
@ -172,7 +183,7 @@ class State:
|
||||
def dict(self):
|
||||
obj = {
|
||||
"skipped": self.skipped,
|
||||
"interrupted": self.skipped,
|
||||
"interrupted": self.interrupted,
|
||||
"job": self.job,
|
||||
"job_count": self.job_count,
|
||||
"job_no": self.job_no,
|
||||
@ -331,7 +342,6 @@ options_templates.update(options_section(('upscaling', "Upscaling"), {
|
||||
"ESRGAN_tile_overlap": OptionInfo(8, "Tile overlap, in pixels for ESRGAN upscalers. Low values = visible seam.", gr.Slider, {"minimum": 0, "maximum": 48, "step": 1}),
|
||||
"realesrgan_enabled_models": OptionInfo(["R-ESRGAN 4x+", "R-ESRGAN 4x+ Anime6B"], "Select which Real-ESRGAN models to show in the web UI. (Requires restart)", gr.CheckboxGroup, lambda: {"choices": realesrgan_models_names()}),
|
||||
"upscaler_for_img2img": OptionInfo(None, "Upscaler for img2img", gr.Dropdown, lambda: {"choices": [x.name for x in sd_upscalers]}),
|
||||
"use_scale_latent_for_hires_fix": OptionInfo(False, "Upscale latent space image when doing hires. fix"),
|
||||
}))
|
||||
|
||||
options_templates.update(options_section(('face-restoration', "Face restoration"), {
|
||||
@ -360,6 +370,7 @@ options_templates.update(options_section(('training', "Training"), {
|
||||
options_templates.update(options_section(('sd', "Stable Diffusion"), {
|
||||
"sd_model_checkpoint": OptionInfo(None, "Stable Diffusion checkpoint", gr.Dropdown, lambda: {"choices": list_checkpoint_tiles()}, refresh=refresh_checkpoints),
|
||||
"sd_checkpoint_cache": OptionInfo(0, "Checkpoints to cache in RAM", gr.Slider, {"minimum": 0, "maximum": 10, "step": 1}),
|
||||
"sd_vae_checkpoint_cache": OptionInfo(0, "VAE Checkpoints to cache in RAM", gr.Slider, {"minimum": 0, "maximum": 10, "step": 1}),
|
||||
"sd_vae": OptionInfo("auto", "SD VAE", gr.Dropdown, lambda: {"choices": sd_vae.vae_list}, refresh=sd_vae.refresh_vae_list),
|
||||
"sd_vae_as_default": OptionInfo(False, "Ignore selected VAE for stable diffusion checkpoints that have their own .vae.pt next to them"),
|
||||
"sd_hypernetwork": OptionInfo("None", "Hypernetwork", gr.Dropdown, lambda: {"choices": ["None"] + [x for x in hypernetworks.keys()]}, refresh=reload_hypernetworks),
|
||||
@ -371,13 +382,17 @@ options_templates.update(options_section(('sd', "Stable Diffusion"), {
|
||||
"img2img_background_color": OptionInfo("#ffffff", "With img2img, fill image's transparent parts with this color.", gr.ColorPicker, {}),
|
||||
"enable_quantization": OptionInfo(False, "Enable quantization in K samplers for sharper and cleaner results. This may change existing seeds. Requires restart to apply."),
|
||||
"enable_emphasis": OptionInfo(True, "Emphasis: use (text) to make model pay more attention to text and [text] to make it pay less attention"),
|
||||
"use_old_emphasis_implementation": OptionInfo(False, "Use old emphasis implementation. Can be useful to reproduce old seeds."),
|
||||
"enable_batch_seeds": OptionInfo(True, "Make K-diffusion samplers produce same images in a batch as when making a single image"),
|
||||
"comma_padding_backtrack": OptionInfo(20, "Increase coherency by padding from the last comma within n tokens when using more than 75 tokens", gr.Slider, {"minimum": 0, "maximum": 74, "step": 1 }),
|
||||
'CLIP_stop_at_last_layers': OptionInfo(1, "Clip skip", gr.Slider, {"minimum": 1, "maximum": 12, "step": 1}),
|
||||
"random_artist_categories": OptionInfo([], "Allowed categories for random artists selection when using the Roll button", gr.CheckboxGroup, {"choices": artist_db.categories()}),
|
||||
}))
|
||||
|
||||
options_templates.update(options_section(('compatibility', "Compatibility"), {
|
||||
"use_old_emphasis_implementation": OptionInfo(False, "Use old emphasis implementation. Can be useful to reproduce old seeds."),
|
||||
"use_old_karras_scheduler_sigmas": OptionInfo(False, "Use old karras scheduler sigmas (0.1 to 10)."),
|
||||
}))
|
||||
|
||||
options_templates.update(options_section(('interrogate', "Interrogate Options"), {
|
||||
"interrogate_keep_models_in_memory": OptionInfo(False, "Interrogate: keep models in VRAM"),
|
||||
"interrogate_use_builtin_artists": OptionInfo(True, "Interrogate: use artists from artists.csv"),
|
||||
@ -409,7 +424,10 @@ options_templates.update(options_section(('ui', "User interface"), {
|
||||
"js_modal_lightbox": OptionInfo(True, "Enable full page image viewer"),
|
||||
"js_modal_lightbox_initially_zoomed": OptionInfo(True, "Show images zoomed in by default in full page image viewer"),
|
||||
"show_progress_in_title": OptionInfo(True, "Show generation progress in window title."),
|
||||
"samplers_in_dropdown": OptionInfo(True, "Use dropdown for sampler selection instead of radio group"),
|
||||
"dimensions_and_batch_together": OptionInfo(True, "Show Witdth/Height and Batch sliders in same row"),
|
||||
'quicksettings': OptionInfo("sd_model_checkpoint", "Quicksettings list"),
|
||||
'ui_reorder': OptionInfo(", ".join(ui_reorder_categories), "txt2img/ing2img UI item order"),
|
||||
'localization': OptionInfo("None", "Localization (requires restart)", gr.Dropdown, lambda: {"choices": ["None"] + list(localization.localizations.keys())}, refresh=lambda: localization.list_localizations(cmd_opts.localizations_dir)),
|
||||
}))
|
||||
|
||||
@ -543,6 +561,12 @@ opts = Options()
|
||||
if os.path.exists(config_filename):
|
||||
opts.load(config_filename)
|
||||
|
||||
latent_upscale_default_mode = "Latent"
|
||||
latent_upscale_modes = {
|
||||
"Latent": "bilinear",
|
||||
"Latent (nearest)": "nearest",
|
||||
}
|
||||
|
||||
sd_upscalers = []
|
||||
|
||||
sd_model = None
|
||||
|
@ -23,6 +23,8 @@ class Embedding:
|
||||
self.vec = vec
|
||||
self.name = name
|
||||
self.step = step
|
||||
self.shape = None
|
||||
self.vectors = 0
|
||||
self.cached_checksum = None
|
||||
self.sd_checkpoint = None
|
||||
self.sd_checkpoint_name = None
|
||||
@ -57,8 +59,10 @@ class EmbeddingDatabase:
|
||||
def __init__(self, embeddings_dir):
|
||||
self.ids_lookup = {}
|
||||
self.word_embeddings = {}
|
||||
self.skipped_embeddings = {}
|
||||
self.dir_mtime = None
|
||||
self.embeddings_dir = embeddings_dir
|
||||
self.expected_shape = -1
|
||||
|
||||
def register_embedding(self, embedding, model):
|
||||
|
||||
@ -75,20 +79,24 @@ class EmbeddingDatabase:
|
||||
|
||||
return embedding
|
||||
|
||||
def load_textual_inversion_embeddings(self):
|
||||
def get_expected_shape(self):
|
||||
vec = shared.sd_model.cond_stage_model.encode_embedding_init_text(",", 1)
|
||||
return vec.shape[1]
|
||||
|
||||
def load_textual_inversion_embeddings(self, force_reload = False):
|
||||
mt = os.path.getmtime(self.embeddings_dir)
|
||||
if self.dir_mtime is not None and mt <= self.dir_mtime:
|
||||
if not force_reload and self.dir_mtime is not None and mt <= self.dir_mtime:
|
||||
return
|
||||
|
||||
self.dir_mtime = mt
|
||||
self.ids_lookup.clear()
|
||||
self.word_embeddings.clear()
|
||||
self.skipped_embeddings.clear()
|
||||
self.expected_shape = self.get_expected_shape()
|
||||
|
||||
def process_file(path, filename):
|
||||
name = os.path.splitext(filename)[0]
|
||||
|
||||
data = []
|
||||
|
||||
if os.path.splitext(filename.upper())[-1] in ['.PNG', '.WEBP', '.JXL', '.AVIF']:
|
||||
embed_image = Image.open(path)
|
||||
if hasattr(embed_image, 'text') and 'sd-ti-embedding' in embed_image.text:
|
||||
@ -122,7 +130,13 @@ class EmbeddingDatabase:
|
||||
embedding.step = data.get('step', None)
|
||||
embedding.sd_checkpoint = data.get('sd_checkpoint', None)
|
||||
embedding.sd_checkpoint_name = data.get('sd_checkpoint_name', None)
|
||||
embedding.vectors = vec.shape[0]
|
||||
embedding.shape = vec.shape[-1]
|
||||
|
||||
if self.expected_shape == -1 or self.expected_shape == embedding.shape:
|
||||
self.register_embedding(embedding, shared.sd_model)
|
||||
else:
|
||||
self.skipped_embeddings[name] = embedding
|
||||
|
||||
for fn in os.listdir(self.embeddings_dir):
|
||||
try:
|
||||
@ -137,8 +151,9 @@ class EmbeddingDatabase:
|
||||
print(traceback.format_exc(), file=sys.stderr)
|
||||
continue
|
||||
|
||||
print(f"Loaded a total of {len(self.word_embeddings)} textual inversion embeddings.")
|
||||
print("Embeddings:", ', '.join(self.word_embeddings.keys()))
|
||||
print(f"Textual inversion embeddings loaded({len(self.word_embeddings)}): {', '.join(self.word_embeddings.keys())}")
|
||||
if len(self.skipped_embeddings) > 0:
|
||||
print(f"Textual inversion embeddings skipped({len(self.skipped_embeddings)}): {', '.join(self.skipped_embeddings.keys())}")
|
||||
|
||||
def find_embedding_at_position(self, tokens, offset):
|
||||
token = tokens[offset]
|
||||
@ -295,7 +310,6 @@ def train_embedding(embedding_name, learn_rate, batch_size, gradient_step, data_
|
||||
loss_step = 0
|
||||
_loss_step = 0 #internal
|
||||
|
||||
|
||||
last_saved_file = "<none>"
|
||||
last_saved_image = "<none>"
|
||||
forced_filename = "<none>"
|
||||
|
@ -8,7 +8,7 @@ import modules.processing as processing
|
||||
from modules.ui import plaintext_to_html
|
||||
|
||||
|
||||
def txt2img(prompt: str, negative_prompt: str, prompt_style: str, prompt_style2: str, steps: int, sampler_index: int, restore_faces: bool, tiling: bool, n_iter: int, batch_size: int, cfg_scale: float, seed: int, subseed: int, subseed_strength: float, seed_resize_from_h: int, seed_resize_from_w: int, seed_enable_extras: bool, height: int, width: int, enable_hr: bool, denoising_strength: float, firstphase_width: int, firstphase_height: int, *args):
|
||||
def txt2img(prompt: str, negative_prompt: str, prompt_style: str, prompt_style2: str, steps: int, sampler_index: int, restore_faces: bool, tiling: bool, n_iter: int, batch_size: int, cfg_scale: float, seed: int, subseed: int, subseed_strength: float, seed_resize_from_h: int, seed_resize_from_w: int, seed_enable_extras: bool, height: int, width: int, enable_hr: bool, denoising_strength: float, hr_scale: float, hr_upscaler: str, *args):
|
||||
p = StableDiffusionProcessingTxt2Img(
|
||||
sd_model=shared.sd_model,
|
||||
outpath_samples=opts.outdir_samples or opts.outdir_txt2img_samples,
|
||||
@ -33,8 +33,8 @@ def txt2img(prompt: str, negative_prompt: str, prompt_style: str, prompt_style2:
|
||||
tiling=tiling,
|
||||
enable_hr=enable_hr,
|
||||
denoising_strength=denoising_strength if enable_hr else None,
|
||||
firstphase_width=firstphase_width if enable_hr else None,
|
||||
firstphase_height=firstphase_height if enable_hr else None,
|
||||
hr_scale=hr_scale,
|
||||
hr_upscaler=hr_upscaler,
|
||||
)
|
||||
|
||||
p.scripts = modules.scripts.scripts_txt2img
|
||||
@ -59,4 +59,4 @@ def txt2img(prompt: str, negative_prompt: str, prompt_style: str, prompt_style2:
|
||||
if opts.do_not_show_images:
|
||||
processed.images = []
|
||||
|
||||
return processed.images, generation_info_js, plaintext_to_html(processed.info)
|
||||
return processed.images, generation_info_js, plaintext_to_html(processed.info), plaintext_to_html(processed.comments)
|
||||
|
528
modules/ui.py
528
modules/ui.py
@ -20,6 +20,7 @@ from PIL import Image, PngImagePlugin
|
||||
from modules.call_queue import wrap_gradio_gpu_call, wrap_queued_call, wrap_gradio_call
|
||||
|
||||
from modules import sd_hijack, sd_models, localization, script_callbacks, ui_extensions, deepbooru
|
||||
from modules.ui_components import FormRow, FormGroup, ToolButton
|
||||
from modules.paths import script_path
|
||||
|
||||
from modules.shared import opts, cmd_opts, restricted_opts
|
||||
@ -80,7 +81,6 @@ css_hide_progressbar = """
|
||||
# Important that they exactly match script.js for tooltip to work.
|
||||
random_symbol = '\U0001f3b2\ufe0f' # 🎲️
|
||||
reuse_symbol = '\u267b\ufe0f' # ♻️
|
||||
art_symbol = '\U0001f3a8' # 🎨
|
||||
paste_symbol = '\u2199\ufe0f' # ↙
|
||||
folder_symbol = '\U0001f4c2' # 📂
|
||||
refresh_symbol = '\U0001f504' # 🔄
|
||||
@ -159,7 +159,7 @@ def save_files(js_data, images, do_make_zip, index):
|
||||
zip_file.writestr(filenames[i], f.read())
|
||||
fullfns.insert(0, zip_filepath)
|
||||
|
||||
return gr.File.update(value=fullfns, visible=True), '', '', plaintext_to_html(f"Saved: {filenames[0]}")
|
||||
return gr.File.update(value=fullfns, visible=True), plaintext_to_html(f"Saved: {filenames[0]}")
|
||||
|
||||
|
||||
|
||||
@ -234,13 +234,6 @@ def check_progress_call_initial(id_part):
|
||||
return check_progress_call(id_part)
|
||||
|
||||
|
||||
def roll_artist(prompt):
|
||||
allowed_cats = set([x for x in shared.artist_db.categories() if len(opts.random_artist_categories)==0 or x in opts.random_artist_categories])
|
||||
artist = random.choice([x for x in shared.artist_db.artists if x.category in allowed_cats])
|
||||
|
||||
return prompt + ", " + artist.name if prompt != '' else artist.name
|
||||
|
||||
|
||||
def visit(x, func, path=""):
|
||||
if hasattr(x, 'children'):
|
||||
for c in x.children:
|
||||
@ -280,35 +273,31 @@ def interrogate_deepbooru(image):
|
||||
return gr_show(True) if prompt is None else prompt
|
||||
|
||||
|
||||
def create_seed_inputs():
|
||||
with gr.Row():
|
||||
with gr.Box():
|
||||
with gr.Row(elem_id='seed_row'):
|
||||
seed = (gr.Textbox if cmd_opts.use_textbox_seed else gr.Number)(label='Seed', value=-1)
|
||||
def create_seed_inputs(target_interface):
|
||||
with FormRow(elem_id=target_interface + '_seed_row'):
|
||||
seed = (gr.Textbox if cmd_opts.use_textbox_seed else gr.Number)(label='Seed', value=-1, elem_id=target_interface + '_seed')
|
||||
seed.style(container=False)
|
||||
random_seed = gr.Button(random_symbol, elem_id='random_seed')
|
||||
reuse_seed = gr.Button(reuse_symbol, elem_id='reuse_seed')
|
||||
random_seed = gr.Button(random_symbol, elem_id=target_interface + '_random_seed')
|
||||
reuse_seed = gr.Button(reuse_symbol, elem_id=target_interface + '_reuse_seed')
|
||||
|
||||
with gr.Box(elem_id='subseed_show_box'):
|
||||
seed_checkbox = gr.Checkbox(label='Extra', elem_id='subseed_show', value=False)
|
||||
with gr.Group(elem_id=target_interface + '_subseed_show_box'):
|
||||
seed_checkbox = gr.Checkbox(label='Extra', elem_id=target_interface + '_subseed_show', value=False)
|
||||
|
||||
# Components to show/hide based on the 'Extra' checkbox
|
||||
seed_extras = []
|
||||
|
||||
with gr.Row(visible=False) as seed_extra_row_1:
|
||||
with FormRow(visible=False, elem_id=target_interface + '_subseed_row') as seed_extra_row_1:
|
||||
seed_extras.append(seed_extra_row_1)
|
||||
with gr.Box():
|
||||
with gr.Row(elem_id='subseed_row'):
|
||||
subseed = gr.Number(label='Variation seed', value=-1)
|
||||
subseed = gr.Number(label='Variation seed', value=-1, elem_id=target_interface + '_subseed')
|
||||
subseed.style(container=False)
|
||||
random_subseed = gr.Button(random_symbol, elem_id='random_subseed')
|
||||
reuse_subseed = gr.Button(reuse_symbol, elem_id='reuse_subseed')
|
||||
subseed_strength = gr.Slider(label='Variation strength', value=0.0, minimum=0, maximum=1, step=0.01)
|
||||
random_subseed = gr.Button(random_symbol, elem_id=target_interface + '_random_subseed')
|
||||
reuse_subseed = gr.Button(reuse_symbol, elem_id=target_interface + '_reuse_subseed')
|
||||
subseed_strength = gr.Slider(label='Variation strength', value=0.0, minimum=0, maximum=1, step=0.01, elem_id=target_interface + '_subseed_strength')
|
||||
|
||||
with gr.Row(visible=False) as seed_extra_row_2:
|
||||
with FormRow(visible=False) as seed_extra_row_2:
|
||||
seed_extras.append(seed_extra_row_2)
|
||||
seed_resize_from_w = gr.Slider(minimum=0, maximum=2048, step=8, label="Resize seed from width", value=0)
|
||||
seed_resize_from_h = gr.Slider(minimum=0, maximum=2048, step=8, label="Resize seed from height", value=0)
|
||||
seed_resize_from_w = gr.Slider(minimum=0, maximum=2048, step=8, label="Resize seed from width", value=0, elem_id=target_interface + '_seed_resize_from_w')
|
||||
seed_resize_from_h = gr.Slider(minimum=0, maximum=2048, step=8, label="Resize seed from height", value=0, elem_id=target_interface + '_seed_resize_from_h')
|
||||
|
||||
random_seed.click(fn=lambda: -1, show_progress=False, inputs=[], outputs=[seed])
|
||||
random_subseed.click(fn=lambda: -1, show_progress=False, inputs=[], outputs=[subseed])
|
||||
@ -403,7 +392,6 @@ def create_toprow(is_img2img):
|
||||
)
|
||||
|
||||
with gr.Column(scale=1, elem_id="roll_col"):
|
||||
roll = gr.Button(value=art_symbol, elem_id="roll", visible=len(shared.artist_db.artists) > 0)
|
||||
paste = gr.Button(value=paste_symbol, elem_id="paste")
|
||||
save_style = gr.Button(value=save_style_symbol, elem_id="style_create")
|
||||
prompt_style_apply = gr.Button(value=apply_style_symbol, elem_id="style_apply")
|
||||
@ -452,7 +440,7 @@ def create_toprow(is_img2img):
|
||||
prompt_style2 = gr.Dropdown(label="Style 2", elem_id=f"{id_part}_style2_index", choices=[k for k, v in shared.prompt_styles.styles.items()], value=next(iter(shared.prompt_styles.styles.keys())))
|
||||
prompt_style2.save_to_config = True
|
||||
|
||||
return prompt, roll, prompt_style, negative_prompt, prompt_style2, submit, button_interrogate, button_deepbooru, prompt_style_apply, save_style, paste, token_counter, token_button
|
||||
return prompt, prompt_style, negative_prompt, prompt_style2, submit, button_interrogate, button_deepbooru, prompt_style_apply, save_style, paste, token_counter, token_button
|
||||
|
||||
|
||||
def setup_progressbar(progressbar, preview, id_part, textinfo=None):
|
||||
@ -500,7 +488,7 @@ def apply_setting(key, value):
|
||||
return
|
||||
|
||||
valtype = type(opts.data_labels[key].default)
|
||||
oldval = opts.data[key]
|
||||
oldval = opts.data.get(key, None)
|
||||
opts.data[key] = valtype(value) if valtype != type(None) else value
|
||||
if oldval != value and opts.data_labels[key].onchange is not None:
|
||||
opts.data_labels[key].onchange()
|
||||
@ -532,7 +520,7 @@ def create_refresh_button(refresh_component, refresh_method, refreshed_args, ele
|
||||
|
||||
return gr.update(**(args or {}))
|
||||
|
||||
refresh_button = gr.Button(value=refresh_symbol, elem_id=elem_id)
|
||||
refresh_button = ToolButton(value=refresh_symbol, elem_id=elem_id)
|
||||
refresh_button.click(
|
||||
fn=refresh,
|
||||
inputs=[],
|
||||
@ -570,13 +558,14 @@ Requested path was: {f}
|
||||
|
||||
generation_info = None
|
||||
with gr.Column():
|
||||
with gr.Row():
|
||||
with gr.Row(elem_id=f"image_buttons_{tabname}"):
|
||||
open_folder_button = gr.Button(folder_symbol, elem_id="hidden_element" if shared.cmd_opts.hide_ui_dir_config else 'open_folder')
|
||||
|
||||
if tabname != "extras":
|
||||
save = gr.Button('Save', elem_id=f'save_{tabname}')
|
||||
save_zip = gr.Button('Zip', elem_id=f'save_zip_{tabname}')
|
||||
|
||||
buttons = parameters_copypaste.create_buttons(["img2img", "inpaint", "extras"])
|
||||
button_id = "hidden_element" if shared.cmd_opts.hide_ui_dir_config else 'open_folder'
|
||||
open_folder_button = gr.Button(folder_symbol, elem_id=button_id)
|
||||
|
||||
open_folder_button.click(
|
||||
fn=lambda: open_folder(opts.outdir_samples or outdir),
|
||||
@ -585,14 +574,13 @@ Requested path was: {f}
|
||||
)
|
||||
|
||||
if tabname != "extras":
|
||||
with gr.Row():
|
||||
do_make_zip = gr.Checkbox(label="Make Zip when Save?", value=False)
|
||||
|
||||
with gr.Row():
|
||||
download_files = gr.File(None, file_count="multiple", interactive=False, show_label=False, visible=False)
|
||||
|
||||
with gr.Group():
|
||||
html_info = gr.HTML()
|
||||
html_log = gr.HTML()
|
||||
|
||||
generation_info = gr.Textbox(visible=False)
|
||||
if tabname == 'txt2img' or tabname == 'img2img':
|
||||
generation_info_button = gr.Button(visible=False, elem_id=f"{tabname}_generation_info_button")
|
||||
@ -606,25 +594,61 @@ Requested path was: {f}
|
||||
|
||||
save.click(
|
||||
fn=wrap_gradio_call(save_files),
|
||||
_js="(x, y, z, w) => [x, y, z, selected_gallery_index()]",
|
||||
_js="(x, y, z, w) => [x, y, false, selected_gallery_index()]",
|
||||
inputs=[
|
||||
generation_info,
|
||||
result_gallery,
|
||||
do_make_zip,
|
||||
html_info,
|
||||
html_info,
|
||||
],
|
||||
outputs=[
|
||||
download_files,
|
||||
html_info,
|
||||
html_info,
|
||||
html_info,
|
||||
html_log,
|
||||
]
|
||||
)
|
||||
|
||||
save_zip.click(
|
||||
fn=wrap_gradio_call(save_files),
|
||||
_js="(x, y, z, w) => [x, y, true, selected_gallery_index()]",
|
||||
inputs=[
|
||||
generation_info,
|
||||
result_gallery,
|
||||
html_info,
|
||||
html_info,
|
||||
],
|
||||
outputs=[
|
||||
download_files,
|
||||
html_log,
|
||||
]
|
||||
)
|
||||
|
||||
else:
|
||||
html_info_x = gr.HTML()
|
||||
html_info = gr.HTML()
|
||||
html_log = gr.HTML()
|
||||
|
||||
parameters_copypaste.bind_buttons(buttons, result_gallery, "txt2img" if tabname == "txt2img" else None)
|
||||
return result_gallery, generation_info if tabname != "extras" else html_info_x, html_info
|
||||
return result_gallery, generation_info if tabname != "extras" else html_info_x, html_info, html_log
|
||||
|
||||
|
||||
def create_sampler_and_steps_selection(choices, tabname):
|
||||
if opts.samplers_in_dropdown:
|
||||
with FormRow(elem_id=f"sampler_selection_{tabname}"):
|
||||
sampler_index = gr.Dropdown(label='Sampling method', elem_id=f"{tabname}_sampling", choices=[x.name for x in choices], value=choices[0].name, type="index")
|
||||
steps = gr.Slider(minimum=1, maximum=150, step=1, elem_id=f"{tabname}_steps", label="Sampling Steps", value=20)
|
||||
else:
|
||||
with FormGroup(elem_id=f"sampler_selection_{tabname}"):
|
||||
steps = gr.Slider(minimum=1, maximum=150, step=1, elem_id=f"{tabname}_steps", label="Sampling Steps", value=20)
|
||||
sampler_index = gr.Radio(label='Sampling method', elem_id=f"{tabname}_sampling", choices=[x.name for x in choices], value=choices[0].name, type="index")
|
||||
|
||||
return steps, sampler_index
|
||||
|
||||
|
||||
def ordered_ui_categories():
|
||||
user_order = {x.strip(): i for i, x in enumerate(shared.opts.ui_reorder.split(","))}
|
||||
|
||||
for i, category in sorted(enumerate(shared.ui_reorder_categories), key=lambda x: user_order.get(x[1], x[0] + 1000)):
|
||||
yield category
|
||||
|
||||
|
||||
def create_ui():
|
||||
@ -639,14 +663,11 @@ def create_ui():
|
||||
modules.scripts.scripts_txt2img.initialize_scripts(is_img2img=False)
|
||||
|
||||
with gr.Blocks(analytics_enabled=False) as txt2img_interface:
|
||||
txt2img_prompt, roll, txt2img_prompt_style, txt2img_negative_prompt, txt2img_prompt_style2, submit, _, _,txt2img_prompt_style_apply, txt2img_save_style, txt2img_paste, token_counter, token_button = create_toprow(is_img2img=False)
|
||||
txt2img_prompt, txt2img_prompt_style, txt2img_negative_prompt, txt2img_prompt_style2, submit, _, _,txt2img_prompt_style_apply, txt2img_save_style, txt2img_paste, token_counter, token_button = create_toprow(is_img2img=False)
|
||||
|
||||
dummy_component = gr.Label(visible=False)
|
||||
txt_prompt_img = gr.File(label="", elem_id="txt2img_prompt_image", file_count="single", type="bytes", visible=False)
|
||||
|
||||
|
||||
|
||||
|
||||
with gr.Row(elem_id='txt2img_progress_row'):
|
||||
with gr.Column(scale=1):
|
||||
pass
|
||||
@ -658,42 +679,57 @@ def create_ui():
|
||||
|
||||
with gr.Row().style(equal_height=False):
|
||||
with gr.Column(variant='panel', elem_id="txt2img_settings"):
|
||||
steps = gr.Slider(minimum=1, maximum=150, step=1, label="Sampling Steps", value=20)
|
||||
sampler_index = gr.Radio(label='Sampling method', elem_id="txt2img_sampling", choices=[x.name for x in samplers], value=samplers[0].name, type="index")
|
||||
for category in ordered_ui_categories():
|
||||
if category == "sampler":
|
||||
steps, sampler_index = create_sampler_and_steps_selection(samplers, "txt2img")
|
||||
|
||||
with gr.Group():
|
||||
width = gr.Slider(minimum=64, maximum=2048, step=8, label="Width", value=512)
|
||||
height = gr.Slider(minimum=64, maximum=2048, step=8, label="Height", value=512)
|
||||
elif category == "dimensions":
|
||||
with FormRow():
|
||||
with gr.Column(elem_id="txt2img_column_size", scale=4):
|
||||
width = gr.Slider(minimum=64, maximum=2048, step=8, label="Width", value=512, elem_id="txt2img_width")
|
||||
height = gr.Slider(minimum=64, maximum=2048, step=8, label="Height", value=512, elem_id="txt2img_height")
|
||||
|
||||
with gr.Row():
|
||||
restore_faces = gr.Checkbox(label='Restore faces', value=False, visible=len(shared.face_restorers) > 1)
|
||||
tiling = gr.Checkbox(label='Tiling', value=False)
|
||||
enable_hr = gr.Checkbox(label='Highres. fix', value=False)
|
||||
if opts.dimensions_and_batch_together:
|
||||
with gr.Column(elem_id="txt2img_column_batch"):
|
||||
batch_count = gr.Slider(minimum=1, step=1, label='Batch count', value=1, elem_id="txt2img_batch_count")
|
||||
batch_size = gr.Slider(minimum=1, maximum=8, step=1, label='Batch size', value=1, elem_id="txt2img_batch_size")
|
||||
|
||||
with gr.Row(visible=False) as hr_options:
|
||||
firstphase_width = gr.Slider(minimum=0, maximum=1024, step=8, label="Firstpass width", value=0)
|
||||
firstphase_height = gr.Slider(minimum=0, maximum=1024, step=8, label="Firstpass height", value=0)
|
||||
denoising_strength = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label='Denoising strength', value=0.7)
|
||||
elif category == "cfg":
|
||||
cfg_scale = gr.Slider(minimum=1.0, maximum=30.0, step=0.5, label='CFG Scale', value=7.0, elem_id="txt2img_cfg_scale")
|
||||
|
||||
with gr.Row(equal_height=True):
|
||||
batch_count = gr.Slider(minimum=1, step=1, label='Batch count', value=1)
|
||||
batch_size = gr.Slider(minimum=1, maximum=8, step=1, label='Batch size', value=1)
|
||||
elif category == "seed":
|
||||
seed, reuse_seed, subseed, reuse_subseed, subseed_strength, seed_resize_from_h, seed_resize_from_w, seed_checkbox = create_seed_inputs('txt2img')
|
||||
|
||||
cfg_scale = gr.Slider(minimum=1.0, maximum=30.0, step=0.5, label='CFG Scale', value=7.0)
|
||||
elif category == "checkboxes":
|
||||
with FormRow(elem_id="txt2img_checkboxes"):
|
||||
restore_faces = gr.Checkbox(label='Restore faces', value=False, visible=len(shared.face_restorers) > 1, elem_id="txt2img_restore_faces")
|
||||
tiling = gr.Checkbox(label='Tiling', value=False, elem_id="txt2img_tiling")
|
||||
enable_hr = gr.Checkbox(label='Hires. fix', value=False, elem_id="txt2img_enable_hr")
|
||||
|
||||
seed, reuse_seed, subseed, reuse_subseed, subseed_strength, seed_resize_from_h, seed_resize_from_w, seed_checkbox = create_seed_inputs()
|
||||
elif category == "hires_fix":
|
||||
with FormRow(visible=False, elem_id="txt2img_hires_fix") as hr_options:
|
||||
hr_upscaler = gr.Dropdown(label="Upscaler", elem_id="txt2img_hr_upscaler", choices=[*shared.latent_upscale_modes, *[x.name for x in shared.sd_upscalers]], value=shared.latent_upscale_default_mode)
|
||||
hr_scale = gr.Slider(minimum=1.0, maximum=4.0, step=0.05, label="Upscale by", value=2.0, elem_id="txt2img_hr_scale")
|
||||
denoising_strength = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label='Denoising strength', value=0.7, elem_id="txt2img_denoising_strength")
|
||||
|
||||
with gr.Group():
|
||||
elif category == "batch":
|
||||
if not opts.dimensions_and_batch_together:
|
||||
with FormRow(elem_id="txt2img_column_batch"):
|
||||
batch_count = gr.Slider(minimum=1, step=1, label='Batch count', value=1, elem_id="txt2img_batch_count")
|
||||
batch_size = gr.Slider(minimum=1, maximum=8, step=1, label='Batch size', value=1, elem_id="txt2img_batch_size")
|
||||
|
||||
elif category == "scripts":
|
||||
with FormGroup(elem_id="txt2img_script_container"):
|
||||
custom_inputs = modules.scripts.scripts_txt2img.setup_ui()
|
||||
|
||||
txt2img_gallery, generation_info, html_info = create_output_panel("txt2img", opts.outdir_txt2img_samples)
|
||||
txt2img_gallery, generation_info, html_info, html_log = create_output_panel("txt2img", opts.outdir_txt2img_samples)
|
||||
parameters_copypaste.bind_buttons({"txt2img": txt2img_paste}, None, txt2img_prompt)
|
||||
|
||||
connect_reuse_seed(seed, reuse_seed, generation_info, dummy_component, is_subseed=False)
|
||||
connect_reuse_seed(subseed, reuse_subseed, generation_info, dummy_component, is_subseed=True)
|
||||
|
||||
txt2img_args = dict(
|
||||
fn=wrap_gradio_gpu_call(modules.txt2img.txt2img),
|
||||
fn=wrap_gradio_gpu_call(modules.txt2img.txt2img, extra_outputs=[None, '', '']),
|
||||
_js="submit",
|
||||
inputs=[
|
||||
txt2img_prompt,
|
||||
@ -713,14 +749,15 @@ def create_ui():
|
||||
width,
|
||||
enable_hr,
|
||||
denoising_strength,
|
||||
firstphase_width,
|
||||
firstphase_height,
|
||||
hr_scale,
|
||||
hr_upscaler,
|
||||
] + custom_inputs,
|
||||
|
||||
outputs=[
|
||||
txt2img_gallery,
|
||||
generation_info,
|
||||
html_info
|
||||
html_info,
|
||||
html_log,
|
||||
],
|
||||
show_progress=False,
|
||||
)
|
||||
@ -745,17 +782,6 @@ def create_ui():
|
||||
outputs=[hr_options],
|
||||
)
|
||||
|
||||
roll.click(
|
||||
fn=roll_artist,
|
||||
_js="update_txt2img_tokens",
|
||||
inputs=[
|
||||
txt2img_prompt,
|
||||
],
|
||||
outputs=[
|
||||
txt2img_prompt,
|
||||
]
|
||||
)
|
||||
|
||||
txt2img_paste_fields = [
|
||||
(txt2img_prompt, "Prompt"),
|
||||
(txt2img_negative_prompt, "Negative prompt"),
|
||||
@ -774,8 +800,8 @@ def create_ui():
|
||||
(denoising_strength, "Denoising strength"),
|
||||
(enable_hr, lambda d: "Denoising strength" in d),
|
||||
(hr_options, lambda d: gr.Row.update(visible="Denoising strength" in d)),
|
||||
(firstphase_width, "First pass size-1"),
|
||||
(firstphase_height, "First pass size-2"),
|
||||
(hr_scale, "Hires upscale"),
|
||||
(hr_upscaler, "Hires upscaler"),
|
||||
*modules.scripts.scripts_txt2img.infotext_fields
|
||||
]
|
||||
parameters_copypaste.add_paste_fields("txt2img", None, txt2img_paste_fields)
|
||||
@ -797,8 +823,7 @@ def create_ui():
|
||||
modules.scripts.scripts_img2img.initialize_scripts(is_img2img=True)
|
||||
|
||||
with gr.Blocks(analytics_enabled=False) as img2img_interface:
|
||||
img2img_prompt, roll, img2img_prompt_style, img2img_negative_prompt, img2img_prompt_style2, submit, img2img_interrogate, img2img_deepbooru, img2img_prompt_style_apply, img2img_save_style, img2img_paste,token_counter, token_button = create_toprow(is_img2img=True)
|
||||
|
||||
img2img_prompt, img2img_prompt_style, img2img_negative_prompt, img2img_prompt_style2, submit, img2img_interrogate, img2img_deepbooru, img2img_prompt_style_apply, img2img_save_style, img2img_paste,token_counter, token_button = create_toprow(is_img2img=True)
|
||||
|
||||
with gr.Row(elem_id='img2img_progress_row'):
|
||||
img2img_prompt_img = gr.File(label="", elem_id="img2img_prompt_image", file_count="single", type="bytes", visible=False)
|
||||
@ -811,14 +836,14 @@ def create_ui():
|
||||
img2img_preview = gr.Image(elem_id='img2img_preview', visible=False)
|
||||
setup_progressbar(progressbar, img2img_preview, 'img2img')
|
||||
|
||||
with gr.Row().style(equal_height=False):
|
||||
with FormRow().style(equal_height=False):
|
||||
with gr.Column(variant='panel', elem_id="img2img_settings"):
|
||||
|
||||
with gr.Tabs(elem_id="mode_img2img") as tabs_img2img_mode:
|
||||
with gr.TabItem('img2img', id='img2img'):
|
||||
with gr.TabItem('img2img', id='img2img', elem_id="img2img_img2img_tab"):
|
||||
init_img = gr.Image(label="Image for img2img", elem_id="img2img_image", show_label=False, source="upload", interactive=True, type="pil", tool=cmd_opts.gradio_img2img_tool, image_mode="RGBA").style(height=480)
|
||||
|
||||
with gr.TabItem('Inpaint', id='inpaint'):
|
||||
with gr.TabItem('Inpaint', id='inpaint', elem_id="img2img_inpaint_tab"):
|
||||
init_img_with_mask = gr.Image(label="Image for inpainting with mask", show_label=False, elem_id="img2maskimg", source="upload", interactive=True, type="pil", tool=cmd_opts.gradio_inpaint_tool, image_mode="RGBA").style(height=480)
|
||||
init_img_with_mask_orig = gr.State(None)
|
||||
|
||||
@ -836,54 +861,72 @@ def create_ui():
|
||||
init_img_inpaint = gr.Image(label="Image for img2img", show_label=False, source="upload", interactive=True, type="pil", visible=False, elem_id="img_inpaint_base")
|
||||
init_mask_inpaint = gr.Image(label="Mask", source="upload", interactive=True, type="pil", visible=False, elem_id="img_inpaint_mask")
|
||||
|
||||
with gr.Row():
|
||||
mask_blur = gr.Slider(label='Mask blur', minimum=0, maximum=64, step=1, value=4)
|
||||
mask_alpha = gr.Slider(label="Mask transparency", interactive=use_color_sketch, visible=use_color_sketch)
|
||||
with FormRow():
|
||||
mask_blur = gr.Slider(label='Mask blur', minimum=0, maximum=64, step=1, value=4, elem_id="img2img_mask_blur")
|
||||
mask_alpha = gr.Slider(label="Mask transparency", interactive=use_color_sketch, visible=use_color_sketch, elem_id="img2img_mask_alpha")
|
||||
|
||||
with gr.Row():
|
||||
mask_mode = gr.Radio(label="Mask mode", show_label=False, choices=["Draw mask", "Upload mask"], type="index", value="Draw mask", elem_id="mask_mode")
|
||||
inpainting_mask_invert = gr.Radio(label='Masking mode', show_label=False, choices=['Inpaint masked', 'Inpaint not masked'], value='Inpaint masked', type="index")
|
||||
with FormRow():
|
||||
mask_mode = gr.Radio(label="Mask source", choices=["Draw mask", "Upload mask"], type="index", value="Draw mask", elem_id="mask_mode")
|
||||
inpainting_mask_invert = gr.Radio(label='Mask mode', choices=['Inpaint masked', 'Inpaint not masked'], value='Inpaint masked', type="index", elem_id="img2img_mask_mode")
|
||||
|
||||
inpainting_fill = gr.Radio(label='Masked content', choices=['fill', 'original', 'latent noise', 'latent nothing'], value='original', type="index")
|
||||
with FormRow():
|
||||
inpainting_fill = gr.Radio(label='Masked content', choices=['fill', 'original', 'latent noise', 'latent nothing'], value='original', type="index", elem_id="img2img_inpainting_fill")
|
||||
|
||||
with gr.Row():
|
||||
inpaint_full_res = gr.Checkbox(label='Inpaint at full resolution', value=False)
|
||||
inpaint_full_res_padding = gr.Slider(label='Inpaint at full resolution padding, pixels', minimum=0, maximum=256, step=4, value=32)
|
||||
with FormRow():
|
||||
with gr.Column():
|
||||
inpaint_full_res = gr.Radio(label="Inpaint area", choices=["Whole picture", "Only masked"], type="index", value="Whole picture", elem_id="img2img_inpaint_full_res")
|
||||
|
||||
with gr.TabItem('Batch img2img', id='batch'):
|
||||
with gr.Column(scale=4):
|
||||
inpaint_full_res_padding = gr.Slider(label='Only masked padding, pixels', minimum=0, maximum=256, step=4, value=32, elem_id="img2img_inpaint_full_res_padding")
|
||||
|
||||
with gr.TabItem('Batch img2img', id='batch', elem_id="img2img_batch_tab"):
|
||||
hidden = '<br>Disabled when launched with --hide-ui-dir-config.' if shared.cmd_opts.hide_ui_dir_config else ''
|
||||
gr.HTML(f"<p class=\"text-gray-500\">Process images in a directory on the same machine where the server is running.<br>Use an empty output directory to save pictures normally instead of writing to the output directory.{hidden}</p>")
|
||||
img2img_batch_input_dir = gr.Textbox(label="Input directory", **shared.hide_dirs)
|
||||
img2img_batch_output_dir = gr.Textbox(label="Output directory", **shared.hide_dirs)
|
||||
img2img_batch_input_dir = gr.Textbox(label="Input directory", **shared.hide_dirs, elem_id="img2img_batch_input_dir")
|
||||
img2img_batch_output_dir = gr.Textbox(label="Output directory", **shared.hide_dirs, elem_id="img2img_batch_output_dir")
|
||||
|
||||
with gr.Row():
|
||||
resize_mode = gr.Radio(label="Resize mode", elem_id="resize_mode", show_label=False, choices=["Just resize", "Crop and resize", "Resize and fill", "Just resize (latent upscale)"], type="index", value="Just resize")
|
||||
with FormRow():
|
||||
resize_mode = gr.Radio(label="Resize mode", elem_id="resize_mode", choices=["Just resize", "Crop and resize", "Resize and fill", "Just resize (latent upscale)"], type="index", value="Just resize")
|
||||
|
||||
steps = gr.Slider(minimum=1, maximum=150, step=1, label="Sampling Steps", value=20)
|
||||
sampler_index = gr.Radio(label='Sampling method', choices=[x.name for x in samplers_for_img2img], value=samplers_for_img2img[0].name, type="index")
|
||||
for category in ordered_ui_categories():
|
||||
if category == "sampler":
|
||||
steps, sampler_index = create_sampler_and_steps_selection(samplers_for_img2img, "img2img")
|
||||
|
||||
with gr.Group():
|
||||
elif category == "dimensions":
|
||||
with FormRow():
|
||||
with gr.Column(elem_id="img2img_column_size", scale=4):
|
||||
width = gr.Slider(minimum=64, maximum=2048, step=8, label="Width", value=512, elem_id="img2img_width")
|
||||
height = gr.Slider(minimum=64, maximum=2048, step=8, label="Height", value=512, elem_id="img2img_height")
|
||||
|
||||
with gr.Row():
|
||||
restore_faces = gr.Checkbox(label='Restore faces', value=False, visible=len(shared.face_restorers) > 1)
|
||||
tiling = gr.Checkbox(label='Tiling', value=False)
|
||||
if opts.dimensions_and_batch_together:
|
||||
with gr.Column(elem_id="img2img_column_batch"):
|
||||
batch_count = gr.Slider(minimum=1, step=1, label='Batch count', value=1, elem_id="img2img_batch_count")
|
||||
batch_size = gr.Slider(minimum=1, maximum=8, step=1, label='Batch size', value=1, elem_id="img2img_batch_size")
|
||||
|
||||
with gr.Row():
|
||||
batch_count = gr.Slider(minimum=1, step=1, label='Batch count', value=1)
|
||||
batch_size = gr.Slider(minimum=1, maximum=8, step=1, label='Batch size', value=1)
|
||||
elif category == "cfg":
|
||||
with FormGroup():
|
||||
cfg_scale = gr.Slider(minimum=1.0, maximum=30.0, step=0.5, label='CFG Scale', value=7.0, elem_id="img2img_cfg_scale")
|
||||
denoising_strength = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label='Denoising strength', value=0.75, elem_id="img2img_denoising_strength")
|
||||
|
||||
with gr.Group():
|
||||
cfg_scale = gr.Slider(minimum=1.0, maximum=30.0, step=0.5, label='CFG Scale', value=7.0)
|
||||
denoising_strength = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label='Denoising strength', value=0.75)
|
||||
elif category == "seed":
|
||||
seed, reuse_seed, subseed, reuse_subseed, subseed_strength, seed_resize_from_h, seed_resize_from_w, seed_checkbox = create_seed_inputs('img2img')
|
||||
|
||||
seed, reuse_seed, subseed, reuse_subseed, subseed_strength, seed_resize_from_h, seed_resize_from_w, seed_checkbox = create_seed_inputs()
|
||||
elif category == "checkboxes":
|
||||
with FormRow(elem_id="img2img_checkboxes"):
|
||||
restore_faces = gr.Checkbox(label='Restore faces', value=False, visible=len(shared.face_restorers) > 1, elem_id="img2img_restore_faces")
|
||||
tiling = gr.Checkbox(label='Tiling', value=False, elem_id="img2img_tiling")
|
||||
|
||||
with gr.Group():
|
||||
elif category == "batch":
|
||||
if not opts.dimensions_and_batch_together:
|
||||
with FormRow(elem_id="img2img_column_batch"):
|
||||
batch_count = gr.Slider(minimum=1, step=1, label='Batch count', value=1, elem_id="img2img_batch_count")
|
||||
batch_size = gr.Slider(minimum=1, maximum=8, step=1, label='Batch size', value=1, elem_id="img2img_batch_size")
|
||||
|
||||
elif category == "scripts":
|
||||
with FormGroup(elem_id="img2img_script_container"):
|
||||
custom_inputs = modules.scripts.scripts_img2img.setup_ui()
|
||||
|
||||
img2img_gallery, generation_info, html_info = create_output_panel("img2img", opts.outdir_img2img_samples)
|
||||
img2img_gallery, generation_info, html_info, html_log = create_output_panel("img2img", opts.outdir_img2img_samples)
|
||||
parameters_copypaste.bind_buttons({"img2img": img2img_paste}, None, img2img_prompt)
|
||||
|
||||
connect_reuse_seed(seed, reuse_seed, generation_info, dummy_component, is_subseed=False)
|
||||
@ -915,7 +958,7 @@ def create_ui():
|
||||
)
|
||||
|
||||
img2img_args = dict(
|
||||
fn=wrap_gradio_gpu_call(modules.img2img.img2img),
|
||||
fn=wrap_gradio_gpu_call(modules.img2img.img2img, extra_outputs=[None, '', '']),
|
||||
_js="submit_img2img",
|
||||
inputs=[
|
||||
dummy_component,
|
||||
@ -954,7 +997,8 @@ def create_ui():
|
||||
outputs=[
|
||||
img2img_gallery,
|
||||
generation_info,
|
||||
html_info
|
||||
html_info,
|
||||
html_log,
|
||||
],
|
||||
show_progress=False,
|
||||
)
|
||||
@ -974,18 +1018,6 @@ def create_ui():
|
||||
outputs=[img2img_prompt],
|
||||
)
|
||||
|
||||
|
||||
roll.click(
|
||||
fn=roll_artist,
|
||||
_js="update_img2img_tokens",
|
||||
inputs=[
|
||||
img2img_prompt,
|
||||
],
|
||||
outputs=[
|
||||
img2img_prompt,
|
||||
]
|
||||
)
|
||||
|
||||
prompts = [(txt2img_prompt, txt2img_negative_prompt), (img2img_prompt, img2img_negative_prompt)]
|
||||
style_dropdowns = [(txt2img_prompt_style, txt2img_prompt_style2), (img2img_prompt_style, img2img_prompt_style2)]
|
||||
style_js_funcs = ["update_txt2img_tokens", "update_img2img_tokens"]
|
||||
@ -1038,50 +1070,50 @@ def create_ui():
|
||||
with gr.Row().style(equal_height=False):
|
||||
with gr.Column(variant='panel'):
|
||||
with gr.Tabs(elem_id="mode_extras"):
|
||||
with gr.TabItem('Single Image'):
|
||||
extras_image = gr.Image(label="Source", source="upload", interactive=True, type="pil")
|
||||
with gr.TabItem('Single Image', elem_id="extras_single_tab"):
|
||||
extras_image = gr.Image(label="Source", source="upload", interactive=True, type="pil", elem_id="extras_image")
|
||||
|
||||
with gr.TabItem('Batch Process'):
|
||||
image_batch = gr.File(label="Batch Process", file_count="multiple", interactive=True, type="file")
|
||||
with gr.TabItem('Batch Process', elem_id="extras_batch_process_tab"):
|
||||
image_batch = gr.File(label="Batch Process", file_count="multiple", interactive=True, type="file", elem_id="extras_image_batch")
|
||||
|
||||
with gr.TabItem('Batch from Directory'):
|
||||
extras_batch_input_dir = gr.Textbox(label="Input directory", **shared.hide_dirs, placeholder="A directory on the same machine where the server is running.")
|
||||
extras_batch_output_dir = gr.Textbox(label="Output directory", **shared.hide_dirs, placeholder="Leave blank to save images to the default path.")
|
||||
show_extras_results = gr.Checkbox(label='Show result images', value=True)
|
||||
with gr.TabItem('Batch from Directory', elem_id="extras_batch_directory_tab"):
|
||||
extras_batch_input_dir = gr.Textbox(label="Input directory", **shared.hide_dirs, placeholder="A directory on the same machine where the server is running.", elem_id="extras_batch_input_dir")
|
||||
extras_batch_output_dir = gr.Textbox(label="Output directory", **shared.hide_dirs, placeholder="Leave blank to save images to the default path.", elem_id="extras_batch_output_dir")
|
||||
show_extras_results = gr.Checkbox(label='Show result images', value=True, elem_id="extras_show_extras_results")
|
||||
|
||||
submit = gr.Button('Generate', elem_id="extras_generate", variant='primary')
|
||||
|
||||
with gr.Tabs(elem_id="extras_resize_mode"):
|
||||
with gr.TabItem('Scale by'):
|
||||
upscaling_resize = gr.Slider(minimum=1.0, maximum=8.0, step=0.05, label="Resize", value=4)
|
||||
with gr.TabItem('Scale to'):
|
||||
with gr.TabItem('Scale by', elem_id="extras_scale_by_tab"):
|
||||
upscaling_resize = gr.Slider(minimum=1.0, maximum=8.0, step=0.05, label="Resize", value=4, elem_id="extras_upscaling_resize")
|
||||
with gr.TabItem('Scale to', elem_id="extras_scale_to_tab"):
|
||||
with gr.Group():
|
||||
with gr.Row():
|
||||
upscaling_resize_w = gr.Number(label="Width", value=512, precision=0)
|
||||
upscaling_resize_h = gr.Number(label="Height", value=512, precision=0)
|
||||
upscaling_crop = gr.Checkbox(label='Crop to fit', value=True)
|
||||
upscaling_resize_w = gr.Number(label="Width", value=512, precision=0, elem_id="extras_upscaling_resize_w")
|
||||
upscaling_resize_h = gr.Number(label="Height", value=512, precision=0, elem_id="extras_upscaling_resize_h")
|
||||
upscaling_crop = gr.Checkbox(label='Crop to fit', value=True, elem_id="extras_upscaling_crop")
|
||||
|
||||
with gr.Group():
|
||||
extras_upscaler_1 = gr.Radio(label='Upscaler 1', elem_id="extras_upscaler_1", choices=[x.name for x in shared.sd_upscalers], value=shared.sd_upscalers[0].name, type="index")
|
||||
|
||||
with gr.Group():
|
||||
extras_upscaler_2 = gr.Radio(label='Upscaler 2', elem_id="extras_upscaler_2", choices=[x.name for x in shared.sd_upscalers], value=shared.sd_upscalers[0].name, type="index")
|
||||
extras_upscaler_2_visibility = gr.Slider(minimum=0.0, maximum=1.0, step=0.001, label="Upscaler 2 visibility", value=1)
|
||||
extras_upscaler_2_visibility = gr.Slider(minimum=0.0, maximum=1.0, step=0.001, label="Upscaler 2 visibility", value=1, elem_id="extras_upscaler_2_visibility")
|
||||
|
||||
with gr.Group():
|
||||
gfpgan_visibility = gr.Slider(minimum=0.0, maximum=1.0, step=0.001, label="GFPGAN visibility", value=0, interactive=modules.gfpgan_model.have_gfpgan)
|
||||
gfpgan_visibility = gr.Slider(minimum=0.0, maximum=1.0, step=0.001, label="GFPGAN visibility", value=0, interactive=modules.gfpgan_model.have_gfpgan, elem_id="extras_gfpgan_visibility")
|
||||
|
||||
with gr.Group():
|
||||
codeformer_visibility = gr.Slider(minimum=0.0, maximum=1.0, step=0.001, label="CodeFormer visibility", value=0, interactive=modules.codeformer_model.have_codeformer)
|
||||
codeformer_weight = gr.Slider(minimum=0.0, maximum=1.0, step=0.001, label="CodeFormer weight (0 = maximum effect, 1 = minimum effect)", value=0, interactive=modules.codeformer_model.have_codeformer)
|
||||
codeformer_visibility = gr.Slider(minimum=0.0, maximum=1.0, step=0.001, label="CodeFormer visibility", value=0, interactive=modules.codeformer_model.have_codeformer, elem_id="extras_codeformer_visibility")
|
||||
codeformer_weight = gr.Slider(minimum=0.0, maximum=1.0, step=0.001, label="CodeFormer weight (0 = maximum effect, 1 = minimum effect)", value=0, interactive=modules.codeformer_model.have_codeformer, elem_id="extras_codeformer_weight")
|
||||
|
||||
with gr.Group():
|
||||
upscale_before_face_fix = gr.Checkbox(label='Upscale Before Restoring Faces', value=False)
|
||||
upscale_before_face_fix = gr.Checkbox(label='Upscale Before Restoring Faces', value=False, elem_id="extras_upscale_before_face_fix")
|
||||
|
||||
result_images, html_info_x, html_info = create_output_panel("extras", opts.outdir_extras_samples)
|
||||
result_images, html_info_x, html_info, html_log = create_output_panel("extras", opts.outdir_extras_samples)
|
||||
|
||||
submit.click(
|
||||
fn=wrap_gradio_gpu_call(modules.extras.run_extras),
|
||||
fn=wrap_gradio_gpu_call(modules.extras.run_extras, extra_outputs=[None, '']),
|
||||
_js="get_extras_tab_index",
|
||||
inputs=[
|
||||
dummy_component,
|
||||
@ -1123,7 +1155,7 @@ def create_ui():
|
||||
|
||||
with gr.Column(variant='panel'):
|
||||
html = gr.HTML()
|
||||
generation_info = gr.Textbox(visible=False)
|
||||
generation_info = gr.Textbox(visible=False, elem_id="pnginfo_generation_info")
|
||||
html2 = gr.HTML()
|
||||
with gr.Row():
|
||||
buttons = parameters_copypaste.create_buttons(["txt2img", "img2img", "inpaint", "extras"])
|
||||
@ -1142,23 +1174,27 @@ def create_ui():
|
||||
|
||||
with gr.Row():
|
||||
primary_model_name = gr.Dropdown(modules.sd_models.checkpoint_tiles(), elem_id="modelmerger_primary_model_name", label="Primary model (A)")
|
||||
create_refresh_button(primary_model_name, modules.sd_models.list_models, lambda: {"choices": modules.sd_models.checkpoint_tiles()}, "refresh_checkpoint_A")
|
||||
|
||||
secondary_model_name = gr.Dropdown(modules.sd_models.checkpoint_tiles(), elem_id="modelmerger_secondary_model_name", label="Secondary model (B)")
|
||||
create_refresh_button(secondary_model_name, modules.sd_models.list_models, lambda: {"choices": modules.sd_models.checkpoint_tiles()}, "refresh_checkpoint_B")
|
||||
|
||||
tertiary_model_name = gr.Dropdown(modules.sd_models.checkpoint_tiles(), elem_id="modelmerger_tertiary_model_name", label="Tertiary model (C)")
|
||||
custom_name = gr.Textbox(label="Custom Name (Optional)")
|
||||
interp_amount = gr.Slider(minimum=0.0, maximum=1.0, step=0.05, label='Multiplier (M) - set to 0 to get model A', value=0.3)
|
||||
interp_method = gr.Radio(choices=["Weighted sum", "Add difference"], value="Weighted sum", label="Interpolation Method")
|
||||
create_refresh_button(tertiary_model_name, modules.sd_models.list_models, lambda: {"choices": modules.sd_models.checkpoint_tiles()}, "refresh_checkpoint_C")
|
||||
|
||||
custom_name = gr.Textbox(label="Custom Name (Optional)", elem_id="modelmerger_custom_name")
|
||||
interp_amount = gr.Slider(minimum=0.0, maximum=1.0, step=0.05, label='Multiplier (M) - set to 0 to get model A', value=0.3, elem_id="modelmerger_interp_amount")
|
||||
interp_method = gr.Radio(choices=["Weighted sum", "Add difference"], value="Weighted sum", label="Interpolation Method", elem_id="modelmerger_interp_method")
|
||||
|
||||
with gr.Row():
|
||||
checkpoint_format = gr.Radio(choices=["ckpt", "safetensors"], value="ckpt", label="Checkpoint format")
|
||||
save_as_half = gr.Checkbox(value=False, label="Save as float16")
|
||||
checkpoint_format = gr.Radio(choices=["ckpt", "safetensors"], value="ckpt", label="Checkpoint format", elem_id="modelmerger_checkpoint_format")
|
||||
save_as_half = gr.Checkbox(value=False, label="Save as float16", elem_id="modelmerger_save_as_half")
|
||||
|
||||
modelmerger_merge = gr.Button(elem_id="modelmerger_merge", label="Merge", variant='primary')
|
||||
|
||||
with gr.Column(variant='panel'):
|
||||
submit_result = gr.Textbox(elem_id="modelmerger_result", show_label=False)
|
||||
|
||||
sd_hijack.model_hijack.embedding_db.load_textual_inversion_embeddings()
|
||||
|
||||
with gr.Blocks(analytics_enabled=False) as train_interface:
|
||||
with gr.Row().style(equal_height=False):
|
||||
gr.HTML(value="<p style='margin-bottom: 0.7em'>See <b><a href=\"https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Textual-Inversion\">wiki</a></b> for detailed explanation.</p>")
|
||||
@ -1167,58 +1203,58 @@ def create_ui():
|
||||
with gr.Tabs(elem_id="train_tabs"):
|
||||
|
||||
with gr.Tab(label="Create embedding"):
|
||||
new_embedding_name = gr.Textbox(label="Name")
|
||||
initialization_text = gr.Textbox(label="Initialization text", value="*")
|
||||
nvpt = gr.Slider(label="Number of vectors per token", minimum=1, maximum=75, step=1, value=1)
|
||||
overwrite_old_embedding = gr.Checkbox(value=False, label="Overwrite Old Embedding")
|
||||
new_embedding_name = gr.Textbox(label="Name", elem_id="train_new_embedding_name")
|
||||
initialization_text = gr.Textbox(label="Initialization text", value="*", elem_id="train_initialization_text")
|
||||
nvpt = gr.Slider(label="Number of vectors per token", minimum=1, maximum=75, step=1, value=1, elem_id="train_nvpt")
|
||||
overwrite_old_embedding = gr.Checkbox(value=False, label="Overwrite Old Embedding", elem_id="train_overwrite_old_embedding")
|
||||
|
||||
with gr.Row():
|
||||
with gr.Column(scale=3):
|
||||
gr.HTML(value="")
|
||||
|
||||
with gr.Column():
|
||||
create_embedding = gr.Button(value="Create embedding", variant='primary')
|
||||
create_embedding = gr.Button(value="Create embedding", variant='primary', elem_id="train_create_embedding")
|
||||
|
||||
with gr.Tab(label="Create hypernetwork"):
|
||||
new_hypernetwork_name = gr.Textbox(label="Name")
|
||||
new_hypernetwork_sizes = gr.CheckboxGroup(label="Modules", value=["768", "320", "640", "1280"], choices=["768", "1024", "320", "640", "1280"])
|
||||
new_hypernetwork_layer_structure = gr.Textbox("1, 2, 1", label="Enter hypernetwork layer structure", placeholder="1st and last digit must be 1. ex:'1, 2, 1'")
|
||||
new_hypernetwork_activation_func = gr.Dropdown(value="linear", label="Select activation function of hypernetwork. Recommended : Swish / Linear(none)", choices=modules.hypernetworks.ui.keys)
|
||||
new_hypernetwork_initialization_option = gr.Dropdown(value = "Normal", label="Select Layer weights initialization. Recommended: Kaiming for relu-like, Xavier for sigmoid-like, Normal otherwise", choices=["Normal", "KaimingUniform", "KaimingNormal", "XavierUniform", "XavierNormal"])
|
||||
new_hypernetwork_add_layer_norm = gr.Checkbox(label="Add layer normalization")
|
||||
new_hypernetwork_use_dropout = gr.Checkbox(label="Use dropout")
|
||||
overwrite_old_hypernetwork = gr.Checkbox(value=False, label="Overwrite Old Hypernetwork")
|
||||
new_hypernetwork_name = gr.Textbox(label="Name", elem_id="train_new_hypernetwork_name")
|
||||
new_hypernetwork_sizes = gr.CheckboxGroup(label="Modules", value=["768", "320", "640", "1280"], choices=["768", "1024", "320", "640", "1280"], elem_id="train_new_hypernetwork_sizes")
|
||||
new_hypernetwork_layer_structure = gr.Textbox("1, 2, 1", label="Enter hypernetwork layer structure", placeholder="1st and last digit must be 1. ex:'1, 2, 1'", elem_id="train_new_hypernetwork_layer_structure")
|
||||
new_hypernetwork_activation_func = gr.Dropdown(value="linear", label="Select activation function of hypernetwork. Recommended : Swish / Linear(none)", choices=modules.hypernetworks.ui.keys, elem_id="train_new_hypernetwork_activation_func")
|
||||
new_hypernetwork_initialization_option = gr.Dropdown(value = "Normal", label="Select Layer weights initialization. Recommended: Kaiming for relu-like, Xavier for sigmoid-like, Normal otherwise", choices=["Normal", "KaimingUniform", "KaimingNormal", "XavierUniform", "XavierNormal"], elem_id="train_new_hypernetwork_initialization_option")
|
||||
new_hypernetwork_add_layer_norm = gr.Checkbox(label="Add layer normalization", elem_id="train_new_hypernetwork_add_layer_norm")
|
||||
new_hypernetwork_use_dropout = gr.Checkbox(label="Use dropout", elem_id="train_new_hypernetwork_use_dropout")
|
||||
overwrite_old_hypernetwork = gr.Checkbox(value=False, label="Overwrite Old Hypernetwork", elem_id="train_overwrite_old_hypernetwork")
|
||||
|
||||
with gr.Row():
|
||||
with gr.Column(scale=3):
|
||||
gr.HTML(value="")
|
||||
|
||||
with gr.Column():
|
||||
create_hypernetwork = gr.Button(value="Create hypernetwork", variant='primary')
|
||||
create_hypernetwork = gr.Button(value="Create hypernetwork", variant='primary', elem_id="train_create_hypernetwork")
|
||||
|
||||
with gr.Tab(label="Preprocess images"):
|
||||
process_src = gr.Textbox(label='Source directory')
|
||||
process_dst = gr.Textbox(label='Destination directory')
|
||||
process_width = gr.Slider(minimum=64, maximum=2048, step=8, label="Width", value=512)
|
||||
process_height = gr.Slider(minimum=64, maximum=2048, step=8, label="Height", value=512)
|
||||
preprocess_txt_action = gr.Dropdown(label='Existing Caption txt Action', value="ignore", choices=["ignore", "copy", "prepend", "append"])
|
||||
process_src = gr.Textbox(label='Source directory', elem_id="train_process_src")
|
||||
process_dst = gr.Textbox(label='Destination directory', elem_id="train_process_dst")
|
||||
process_width = gr.Slider(minimum=64, maximum=2048, step=8, label="Width", value=512, elem_id="train_process_width")
|
||||
process_height = gr.Slider(minimum=64, maximum=2048, step=8, label="Height", value=512, elem_id="train_process_height")
|
||||
preprocess_txt_action = gr.Dropdown(label='Existing Caption txt Action', value="ignore", choices=["ignore", "copy", "prepend", "append"], elem_id="train_preprocess_txt_action")
|
||||
|
||||
with gr.Row():
|
||||
process_flip = gr.Checkbox(label='Create flipped copies')
|
||||
process_split = gr.Checkbox(label='Split oversized images')
|
||||
process_focal_crop = gr.Checkbox(label='Auto focal point crop')
|
||||
process_caption = gr.Checkbox(label='Use BLIP for caption')
|
||||
process_caption_deepbooru = gr.Checkbox(label='Use deepbooru for caption', visible=True)
|
||||
process_flip = gr.Checkbox(label='Create flipped copies', elem_id="train_process_flip")
|
||||
process_split = gr.Checkbox(label='Split oversized images', elem_id="train_process_split")
|
||||
process_focal_crop = gr.Checkbox(label='Auto focal point crop', elem_id="train_process_focal_crop")
|
||||
process_caption = gr.Checkbox(label='Use BLIP for caption', elem_id="train_process_caption")
|
||||
process_caption_deepbooru = gr.Checkbox(label='Use deepbooru for caption', visible=True, elem_id="train_process_caption_deepbooru")
|
||||
|
||||
with gr.Row(visible=False) as process_split_extra_row:
|
||||
process_split_threshold = gr.Slider(label='Split image threshold', value=0.5, minimum=0.0, maximum=1.0, step=0.05)
|
||||
process_overlap_ratio = gr.Slider(label='Split image overlap ratio', value=0.2, minimum=0.0, maximum=0.9, step=0.05)
|
||||
process_split_threshold = gr.Slider(label='Split image threshold', value=0.5, minimum=0.0, maximum=1.0, step=0.05, elem_id="train_process_split_threshold")
|
||||
process_overlap_ratio = gr.Slider(label='Split image overlap ratio', value=0.2, minimum=0.0, maximum=0.9, step=0.05, elem_id="train_process_overlap_ratio")
|
||||
|
||||
with gr.Row(visible=False) as process_focal_crop_row:
|
||||
process_focal_crop_face_weight = gr.Slider(label='Focal point face weight', value=0.9, minimum=0.0, maximum=1.0, step=0.05)
|
||||
process_focal_crop_entropy_weight = gr.Slider(label='Focal point entropy weight', value=0.15, minimum=0.0, maximum=1.0, step=0.05)
|
||||
process_focal_crop_edges_weight = gr.Slider(label='Focal point edges weight', value=0.5, minimum=0.0, maximum=1.0, step=0.05)
|
||||
process_focal_crop_debug = gr.Checkbox(label='Create debug image')
|
||||
process_focal_crop_face_weight = gr.Slider(label='Focal point face weight', value=0.9, minimum=0.0, maximum=1.0, step=0.05, elem_id="train_process_focal_crop_face_weight")
|
||||
process_focal_crop_entropy_weight = gr.Slider(label='Focal point entropy weight', value=0.15, minimum=0.0, maximum=1.0, step=0.05, elem_id="train_process_focal_crop_entropy_weight")
|
||||
process_focal_crop_edges_weight = gr.Slider(label='Focal point edges weight', value=0.5, minimum=0.0, maximum=1.0, step=0.05, elem_id="train_process_focal_crop_edges_weight")
|
||||
process_focal_crop_debug = gr.Checkbox(label='Create debug image', elem_id="train_process_focal_crop_debug")
|
||||
|
||||
with gr.Row():
|
||||
with gr.Column(scale=3):
|
||||
@ -1226,8 +1262,8 @@ def create_ui():
|
||||
|
||||
with gr.Column():
|
||||
with gr.Row():
|
||||
interrupt_preprocessing = gr.Button("Interrupt")
|
||||
run_preprocess = gr.Button(value="Preprocess", variant='primary')
|
||||
interrupt_preprocessing = gr.Button("Interrupt", elem_id="train_interrupt_preprocessing")
|
||||
run_preprocess = gr.Button(value="Preprocess", variant='primary', elem_id="train_run_preprocess")
|
||||
|
||||
process_split.change(
|
||||
fn=lambda show: gr_show(show),
|
||||
@ -1250,31 +1286,31 @@ def create_ui():
|
||||
train_hypernetwork_name = gr.Dropdown(label='Hypernetwork', elem_id="train_hypernetwork", choices=[x for x in shared.hypernetworks.keys()])
|
||||
create_refresh_button(train_hypernetwork_name, shared.reload_hypernetworks, lambda: {"choices": sorted([x for x in shared.hypernetworks.keys()])}, "refresh_train_hypernetwork_name")
|
||||
with gr.Row():
|
||||
embedding_learn_rate = gr.Textbox(label='Embedding Learning rate', placeholder="Embedding Learning rate", value="0.005")
|
||||
hypernetwork_learn_rate = gr.Textbox(label='Hypernetwork Learning rate', placeholder="Hypernetwork Learning rate", value="0.00001")
|
||||
embedding_learn_rate = gr.Textbox(label='Embedding Learning rate', placeholder="Embedding Learning rate", value="0.005", elem_id="train_embedding_learn_rate")
|
||||
hypernetwork_learn_rate = gr.Textbox(label='Hypernetwork Learning rate', placeholder="Hypernetwork Learning rate", value="0.00001", elem_id="train_hypernetwork_learn_rate")
|
||||
|
||||
batch_size = gr.Number(label='Batch size', value=1, precision=0)
|
||||
gradient_step = gr.Number(label='Gradient accumulation steps', value=1, precision=0)
|
||||
dataset_directory = gr.Textbox(label='Dataset directory', placeholder="Path to directory with input images")
|
||||
log_directory = gr.Textbox(label='Log directory', placeholder="Path to directory where to write outputs", value="textual_inversion")
|
||||
template_file = gr.Textbox(label='Prompt template file', value=os.path.join(script_path, "textual_inversion_templates", "style_filewords.txt"))
|
||||
training_width = gr.Slider(minimum=64, maximum=2048, step=8, label="Width", value=512)
|
||||
training_height = gr.Slider(minimum=64, maximum=2048, step=8, label="Height", value=512)
|
||||
steps = gr.Number(label='Max steps', value=100000, precision=0)
|
||||
create_image_every = gr.Number(label='Save an image to log directory every N steps, 0 to disable', value=500, precision=0)
|
||||
save_embedding_every = gr.Number(label='Save a copy of embedding to log directory every N steps, 0 to disable', value=500, precision=0)
|
||||
save_image_with_stored_embedding = gr.Checkbox(label='Save images with embedding in PNG chunks', value=True)
|
||||
preview_from_txt2img = gr.Checkbox(label='Read parameters (prompt, etc...) from txt2img tab when making previews', value=False)
|
||||
batch_size = gr.Number(label='Batch size', value=1, precision=0, elem_id="train_batch_size")
|
||||
gradient_step = gr.Number(label='Gradient accumulation steps', value=1, precision=0, elem_id="train_gradient_step")
|
||||
dataset_directory = gr.Textbox(label='Dataset directory', placeholder="Path to directory with input images", elem_id="train_dataset_directory")
|
||||
log_directory = gr.Textbox(label='Log directory', placeholder="Path to directory where to write outputs", value="textual_inversion", elem_id="train_log_directory")
|
||||
template_file = gr.Textbox(label='Prompt template file', value=os.path.join(script_path, "textual_inversion_templates", "style_filewords.txt"), elem_id="train_template_file")
|
||||
training_width = gr.Slider(minimum=64, maximum=2048, step=8, label="Width", value=512, elem_id="train_training_width")
|
||||
training_height = gr.Slider(minimum=64, maximum=2048, step=8, label="Height", value=512, elem_id="train_training_height")
|
||||
steps = gr.Number(label='Max steps', value=100000, precision=0, elem_id="train_steps")
|
||||
create_image_every = gr.Number(label='Save an image to log directory every N steps, 0 to disable', value=500, precision=0, elem_id="train_create_image_every")
|
||||
save_embedding_every = gr.Number(label='Save a copy of embedding to log directory every N steps, 0 to disable', value=500, precision=0, elem_id="train_save_embedding_every")
|
||||
save_image_with_stored_embedding = gr.Checkbox(label='Save images with embedding in PNG chunks', value=True, elem_id="train_save_image_with_stored_embedding")
|
||||
preview_from_txt2img = gr.Checkbox(label='Read parameters (prompt, etc...) from txt2img tab when making previews', value=False, elem_id="train_preview_from_txt2img")
|
||||
with gr.Row():
|
||||
shuffle_tags = gr.Checkbox(label="Shuffle tags by ',' when creating prompts.", value=False)
|
||||
tag_drop_out = gr.Slider(minimum=0, maximum=1, step=0.1, label="Drop out tags when creating prompts.", value=0)
|
||||
shuffle_tags = gr.Checkbox(label="Shuffle tags by ',' when creating prompts.", value=False, elem_id="train_shuffle_tags")
|
||||
tag_drop_out = gr.Slider(minimum=0, maximum=1, step=0.1, label="Drop out tags when creating prompts.", value=0, elem_id="train_tag_drop_out")
|
||||
with gr.Row():
|
||||
latent_sampling_method = gr.Radio(label='Choose latent sampling method', value="once", choices=['once', 'deterministic', 'random'])
|
||||
latent_sampling_method = gr.Radio(label='Choose latent sampling method', value="once", choices=['once', 'deterministic', 'random'], elem_id="train_latent_sampling_method")
|
||||
|
||||
with gr.Row():
|
||||
interrupt_training = gr.Button(value="Interrupt")
|
||||
train_hypernetwork = gr.Button(value="Train Hypernetwork", variant='primary')
|
||||
train_embedding = gr.Button(value="Train Embedding", variant='primary')
|
||||
interrupt_training = gr.Button(value="Interrupt", elem_id="train_interrupt_training")
|
||||
train_hypernetwork = gr.Button(value="Train Hypernetwork", variant='primary', elem_id="train_train_hypernetwork")
|
||||
train_embedding = gr.Button(value="Train Embedding", variant='primary', elem_id="train_train_embedding")
|
||||
|
||||
params = script_callbacks.UiTrainTabParams(txt2img_preview_params)
|
||||
|
||||
@ -1447,7 +1483,7 @@ def create_ui():
|
||||
res = comp(label=info.label, value=fun(), elem_id=elem_id, **(args or {}))
|
||||
create_refresh_button(res, info.refresh, info.component_args, "refresh_" + key)
|
||||
else:
|
||||
with gr.Row(variant="compact"):
|
||||
with FormRow():
|
||||
res = comp(label=info.label, value=fun(), elem_id=elem_id, **(args or {}))
|
||||
create_refresh_button(res, info.refresh, info.component_args, "refresh_" + key)
|
||||
else:
|
||||
@ -1492,41 +1528,36 @@ def create_ui():
|
||||
return gr.update(value=value), opts.dumpjson()
|
||||
|
||||
with gr.Blocks(analytics_enabled=False) as settings_interface:
|
||||
settings_submit = gr.Button(value="Apply settings", variant='primary')
|
||||
result = gr.HTML()
|
||||
with gr.Row():
|
||||
with gr.Column(scale=6):
|
||||
settings_submit = gr.Button(value="Apply settings", variant='primary', elem_id="settings_submit")
|
||||
with gr.Column():
|
||||
restart_gradio = gr.Button(value='Reload UI', variant='primary', elem_id="settings_restart_gradio")
|
||||
|
||||
settings_cols = 3
|
||||
items_per_col = int(len(opts.data_labels) * 0.9 / settings_cols)
|
||||
result = gr.HTML(elem_id="settings_result")
|
||||
|
||||
quicksettings_names = [x.strip() for x in opts.quicksettings.split(",")]
|
||||
quicksettings_names = set(x for x in quicksettings_names if x != 'quicksettings')
|
||||
quicksettings_names = {x: i for i, x in enumerate(quicksettings_names) if x != 'quicksettings'}
|
||||
|
||||
quicksettings_list = []
|
||||
|
||||
cols_displayed = 0
|
||||
items_displayed = 0
|
||||
previous_section = None
|
||||
column = None
|
||||
with gr.Row(elem_id="settings").style(equal_height=False):
|
||||
current_tab = None
|
||||
with gr.Tabs(elem_id="settings"):
|
||||
for i, (k, item) in enumerate(opts.data_labels.items()):
|
||||
section_must_be_skipped = item.section[0] is None
|
||||
|
||||
if previous_section != item.section and not section_must_be_skipped:
|
||||
if cols_displayed < settings_cols and (items_displayed >= items_per_col or previous_section is None):
|
||||
if column is not None:
|
||||
column.__exit__()
|
||||
elem_id, text = item.section
|
||||
|
||||
column = gr.Column(variant='panel')
|
||||
column.__enter__()
|
||||
if current_tab is not None:
|
||||
current_tab.__exit__()
|
||||
|
||||
items_displayed = 0
|
||||
cols_displayed += 1
|
||||
current_tab = gr.TabItem(elem_id="settings_{}".format(elem_id), label=text)
|
||||
current_tab.__enter__()
|
||||
|
||||
previous_section = item.section
|
||||
|
||||
elem_id, text = item.section
|
||||
gr.HTML(elem_id="settings_header_text_{}".format(elem_id), value='<h1 class="gr-button-lg">{}</h1>'.format(text))
|
||||
|
||||
if k in quicksettings_names and not shared.cmd_opts.freeze_settings:
|
||||
quicksettings_list.append((i, k, item))
|
||||
components.append(dummy_component)
|
||||
@ -1536,15 +1567,21 @@ def create_ui():
|
||||
component = create_setting_component(k)
|
||||
component_dict[k] = component
|
||||
components.append(component)
|
||||
items_displayed += 1
|
||||
|
||||
with gr.Row():
|
||||
if current_tab is not None:
|
||||
current_tab.__exit__()
|
||||
|
||||
with gr.TabItem("Actions"):
|
||||
request_notifications = gr.Button(value='Request browser notifications', elem_id="request_notifications")
|
||||
download_localization = gr.Button(value='Download localization template', elem_id="download_localization")
|
||||
reload_script_bodies = gr.Button(value='Reload custom script bodies (No ui updates, No restart)', variant='secondary', elem_id="settings_reload_script_bodies")
|
||||
|
||||
with gr.Row():
|
||||
reload_script_bodies = gr.Button(value='Reload custom script bodies (No ui updates, No restart)', variant='secondary')
|
||||
restart_gradio = gr.Button(value='Restart Gradio and Refresh components (Custom Scripts, ui.py, js and css only)', variant='primary')
|
||||
if os.path.exists("html/licenses.html"):
|
||||
with open("html/licenses.html", encoding="utf8") as file:
|
||||
with gr.TabItem("Licenses"):
|
||||
gr.HTML(file.read(), elem_id="licenses")
|
||||
|
||||
gr.Button(value="Show all pages", elem_id="settings_show_all_pages")
|
||||
|
||||
request_notifications.click(
|
||||
fn=lambda: None,
|
||||
@ -1581,9 +1618,6 @@ def create_ui():
|
||||
outputs=[],
|
||||
)
|
||||
|
||||
if column is not None:
|
||||
column.__exit__()
|
||||
|
||||
interfaces = [
|
||||
(txt2img_interface, "txt2img", "txt2img"),
|
||||
(img2img_interface, "img2img", "img2img"),
|
||||
@ -1617,7 +1651,7 @@ def create_ui():
|
||||
|
||||
with gr.Blocks(css=css, analytics_enabled=False, title="Stable Diffusion") as demo:
|
||||
with gr.Row(elem_id="quicksettings"):
|
||||
for i, k, item in quicksettings_list:
|
||||
for i, k, item in sorted(quicksettings_list, key=lambda x: quicksettings_names.get(x[1], x[0])):
|
||||
component = create_setting_component(k, is_quicksettings=True)
|
||||
component_dict[k] = component
|
||||
|
||||
@ -1632,6 +1666,10 @@ def create_ui():
|
||||
if os.path.exists(os.path.join(script_path, "notification.mp3")):
|
||||
audio_notification = gr.Audio(interactive=False, value=os.path.join(script_path, "notification.mp3"), elem_id="audio_notification", visible=False)
|
||||
|
||||
if os.path.exists("html/footer.html"):
|
||||
with open("html/footer.html", encoding="utf8") as file:
|
||||
gr.HTML(file.read(), elem_id="footer")
|
||||
|
||||
text_settings = gr.Textbox(elem_id="settings_json", value=lambda: opts.dumpjson(), visible=False)
|
||||
settings_submit.click(
|
||||
fn=wrap_gradio_call(run_settings, extra_outputs=[gr.update()]),
|
||||
@ -1666,7 +1704,7 @@ def create_ui():
|
||||
print("Error loading/saving model file:", file=sys.stderr)
|
||||
print(traceback.format_exc(), file=sys.stderr)
|
||||
modules.sd_models.list_models() # to remove the potentially missing models from the list
|
||||
return ["Error loading/saving model file. It doesn't exist or the name contains illegal characters"] + [gr.Dropdown.update(choices=modules.sd_models.checkpoint_tiles()) for _ in range(3)]
|
||||
return [f"Error merging checkpoints: {e}"] + [gr.Dropdown.update(choices=modules.sd_models.checkpoint_tiles()) for _ in range(4)]
|
||||
return results
|
||||
|
||||
modelmerger_merge.click(
|
||||
|
25
modules/ui_components.py
Normal file
25
modules/ui_components.py
Normal file
@ -0,0 +1,25 @@
|
||||
import gradio as gr
|
||||
|
||||
|
||||
class ToolButton(gr.Button, gr.components.FormComponent):
|
||||
"""Small button with single emoji as text, fits inside gradio forms"""
|
||||
|
||||
def __init__(self, **kwargs):
|
||||
super().__init__(variant="tool", **kwargs)
|
||||
|
||||
def get_block_name(self):
|
||||
return "button"
|
||||
|
||||
|
||||
class FormRow(gr.Row, gr.components.FormComponent):
|
||||
"""Same as gr.Row but fits inside gradio forms"""
|
||||
|
||||
def get_block_name(self):
|
||||
return "row"
|
||||
|
||||
|
||||
class FormGroup(gr.Group, gr.components.FormComponent):
|
||||
"""Same as gr.Row but fits inside gradio forms"""
|
||||
|
||||
def get_block_name(self):
|
||||
return "group"
|
@ -1,6 +1,7 @@
|
||||
import os
|
||||
import tempfile
|
||||
from collections import namedtuple
|
||||
from pathlib import Path
|
||||
|
||||
import gradio as gr
|
||||
|
||||
@ -12,10 +13,29 @@ from modules import shared
|
||||
Savedfile = namedtuple("Savedfile", ["name"])
|
||||
|
||||
|
||||
def register_tmp_file(gradio, filename):
|
||||
if hasattr(gradio, 'temp_file_sets'): # gradio 3.15
|
||||
gradio.temp_file_sets[0] = gradio.temp_file_sets[0] | {os.path.abspath(filename)}
|
||||
|
||||
if hasattr(gradio, 'temp_dirs'): # gradio 3.9
|
||||
gradio.temp_dirs = gradio.temp_dirs | {os.path.abspath(os.path.dirname(filename))}
|
||||
|
||||
|
||||
def check_tmp_file(gradio, filename):
|
||||
if hasattr(gradio, 'temp_file_sets'):
|
||||
return any([filename in fileset for fileset in gradio.temp_file_sets])
|
||||
|
||||
if hasattr(gradio, 'temp_dirs'):
|
||||
return any(Path(temp_dir).resolve() in Path(filename).resolve().parents for temp_dir in gradio.temp_dirs)
|
||||
|
||||
return False
|
||||
|
||||
|
||||
def save_pil_to_file(pil_image, dir=None):
|
||||
already_saved_as = getattr(pil_image, 'already_saved_as', None)
|
||||
if already_saved_as and os.path.isfile(already_saved_as):
|
||||
shared.demo.temp_dirs = shared.demo.temp_dirs | {os.path.abspath(os.path.dirname(already_saved_as))}
|
||||
register_tmp_file(shared.demo, already_saved_as)
|
||||
|
||||
file_obj = Savedfile(already_saved_as)
|
||||
return file_obj
|
||||
|
||||
@ -44,7 +64,7 @@ def on_tmpdir_changed():
|
||||
|
||||
os.makedirs(shared.opts.temp_dir, exist_ok=True)
|
||||
|
||||
shared.demo.temp_dirs = shared.demo.temp_dirs | {os.path.abspath(shared.opts.temp_dir)}
|
||||
register_tmp_file(shared.demo, os.path.join(shared.opts.temp_dir, "x"))
|
||||
|
||||
|
||||
def cleanup_tmpdr():
|
||||
|
@ -53,10 +53,10 @@ class Upscaler:
|
||||
def do_upscale(self, img: PIL.Image, selected_model: str):
|
||||
return img
|
||||
|
||||
def upscale(self, img: PIL.Image, scale: int, selected_model: str = None):
|
||||
def upscale(self, img: PIL.Image, scale, selected_model: str = None):
|
||||
self.scale = scale
|
||||
dest_w = img.width * scale
|
||||
dest_h = img.height * scale
|
||||
dest_w = int(img.width * scale)
|
||||
dest_h = int(img.height * scale)
|
||||
|
||||
for i in range(3):
|
||||
shape = (img.width, img.height)
|
||||
|
137
modules/xlmr.py
Normal file
137
modules/xlmr.py
Normal file
@ -0,0 +1,137 @@
|
||||
from transformers import BertPreTrainedModel,BertModel,BertConfig
|
||||
import torch.nn as nn
|
||||
import torch
|
||||
from transformers.models.xlm_roberta.configuration_xlm_roberta import XLMRobertaConfig
|
||||
from transformers import XLMRobertaModel,XLMRobertaTokenizer
|
||||
from typing import Optional
|
||||
|
||||
class BertSeriesConfig(BertConfig):
|
||||
def __init__(self, vocab_size=30522, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=2, initializer_range=0.02, layer_norm_eps=1e-12, pad_token_id=0, position_embedding_type="absolute", use_cache=True, classifier_dropout=None,project_dim=512, pooler_fn="average",learn_encoder=False,model_type='bert',**kwargs):
|
||||
|
||||
super().__init__(vocab_size, hidden_size, num_hidden_layers, num_attention_heads, intermediate_size, hidden_act, hidden_dropout_prob, attention_probs_dropout_prob, max_position_embeddings, type_vocab_size, initializer_range, layer_norm_eps, pad_token_id, position_embedding_type, use_cache, classifier_dropout, **kwargs)
|
||||
self.project_dim = project_dim
|
||||
self.pooler_fn = pooler_fn
|
||||
self.learn_encoder = learn_encoder
|
||||
|
||||
class RobertaSeriesConfig(XLMRobertaConfig):
|
||||
def __init__(self, pad_token_id=1, bos_token_id=0, eos_token_id=2,project_dim=512,pooler_fn='cls',learn_encoder=False, **kwargs):
|
||||
super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
|
||||
self.project_dim = project_dim
|
||||
self.pooler_fn = pooler_fn
|
||||
self.learn_encoder = learn_encoder
|
||||
|
||||
|
||||
class BertSeriesModelWithTransformation(BertPreTrainedModel):
|
||||
|
||||
_keys_to_ignore_on_load_unexpected = [r"pooler"]
|
||||
_keys_to_ignore_on_load_missing = [r"position_ids", r"predictions.decoder.bias"]
|
||||
config_class = BertSeriesConfig
|
||||
|
||||
def __init__(self, config=None, **kargs):
|
||||
# modify initialization for autoloading
|
||||
if config is None:
|
||||
config = XLMRobertaConfig()
|
||||
config.attention_probs_dropout_prob= 0.1
|
||||
config.bos_token_id=0
|
||||
config.eos_token_id=2
|
||||
config.hidden_act='gelu'
|
||||
config.hidden_dropout_prob=0.1
|
||||
config.hidden_size=1024
|
||||
config.initializer_range=0.02
|
||||
config.intermediate_size=4096
|
||||
config.layer_norm_eps=1e-05
|
||||
config.max_position_embeddings=514
|
||||
|
||||
config.num_attention_heads=16
|
||||
config.num_hidden_layers=24
|
||||
config.output_past=True
|
||||
config.pad_token_id=1
|
||||
config.position_embedding_type= "absolute"
|
||||
|
||||
config.type_vocab_size= 1
|
||||
config.use_cache=True
|
||||
config.vocab_size= 250002
|
||||
config.project_dim = 768
|
||||
config.learn_encoder = False
|
||||
super().__init__(config)
|
||||
self.roberta = XLMRobertaModel(config)
|
||||
self.transformation = nn.Linear(config.hidden_size,config.project_dim)
|
||||
self.pre_LN=nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
||||
self.tokenizer = XLMRobertaTokenizer.from_pretrained('xlm-roberta-large')
|
||||
self.pooler = lambda x: x[:,0]
|
||||
self.post_init()
|
||||
|
||||
def encode(self,c):
|
||||
device = next(self.parameters()).device
|
||||
text = self.tokenizer(c,
|
||||
truncation=True,
|
||||
max_length=77,
|
||||
return_length=False,
|
||||
return_overflowing_tokens=False,
|
||||
padding="max_length",
|
||||
return_tensors="pt")
|
||||
text["input_ids"] = torch.tensor(text["input_ids"]).to(device)
|
||||
text["attention_mask"] = torch.tensor(
|
||||
text['attention_mask']).to(device)
|
||||
features = self(**text)
|
||||
return features['projection_state']
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: Optional[torch.Tensor] = None,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
token_type_ids: Optional[torch.Tensor] = None,
|
||||
position_ids: Optional[torch.Tensor] = None,
|
||||
head_mask: Optional[torch.Tensor] = None,
|
||||
inputs_embeds: Optional[torch.Tensor] = None,
|
||||
encoder_hidden_states: Optional[torch.Tensor] = None,
|
||||
encoder_attention_mask: Optional[torch.Tensor] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
) :
|
||||
r"""
|
||||
"""
|
||||
|
||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||
|
||||
|
||||
outputs = self.roberta(
|
||||
input_ids=input_ids,
|
||||
attention_mask=attention_mask,
|
||||
token_type_ids=token_type_ids,
|
||||
position_ids=position_ids,
|
||||
head_mask=head_mask,
|
||||
inputs_embeds=inputs_embeds,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
output_attentions=output_attentions,
|
||||
output_hidden_states=True,
|
||||
return_dict=return_dict,
|
||||
)
|
||||
|
||||
# last module outputs
|
||||
sequence_output = outputs[0]
|
||||
|
||||
|
||||
# project every module
|
||||
sequence_output_ln = self.pre_LN(sequence_output)
|
||||
|
||||
# pooler
|
||||
pooler_output = self.pooler(sequence_output_ln)
|
||||
pooler_output = self.transformation(pooler_output)
|
||||
projection_state = self.transformation(outputs.last_hidden_state)
|
||||
|
||||
return {
|
||||
'pooler_output':pooler_output,
|
||||
'last_hidden_state':outputs.last_hidden_state,
|
||||
'hidden_states':outputs.hidden_states,
|
||||
'attentions':outputs.attentions,
|
||||
'projection_state':projection_state,
|
||||
'sequence_out': sequence_output
|
||||
}
|
||||
|
||||
|
||||
class RobertaSeriesModelWithTransformation(BertSeriesModelWithTransformation):
|
||||
base_model_prefix = 'roberta'
|
||||
config_class= RobertaSeriesConfig
|
@ -5,7 +5,7 @@ fairscale==0.4.4
|
||||
fonts
|
||||
font-roboto
|
||||
gfpgan
|
||||
gradio==3.9
|
||||
gradio==3.15.0
|
||||
invisible-watermark
|
||||
numpy
|
||||
omegaconf
|
||||
|
@ -3,7 +3,7 @@ transformers==4.19.2
|
||||
accelerate==0.12.0
|
||||
basicsr==1.4.2
|
||||
gfpgan==1.3.8
|
||||
gradio==3.9
|
||||
gradio==3.15.0
|
||||
numpy==1.23.3
|
||||
Pillow==9.2.0
|
||||
realesrgan==0.3.0
|
||||
|
@ -19,7 +19,7 @@ class Script(scripts.Script):
|
||||
def ui(self, is_img2img):
|
||||
info = gr.HTML("<p style=\"margin-bottom:0.75em\">Will upscale the image by the selected scale factor; use width and height sliders to set tile size</p>")
|
||||
overlap = gr.Slider(minimum=0, maximum=256, step=16, label='Tile overlap', value=64)
|
||||
scale_factor = gr.Slider(minimum=1, maximum=4, step=1, label='Scale Factor', value=2)
|
||||
scale_factor = gr.Slider(minimum=1.0, maximum=4.0, step=0.05, label='Scale Factor', value=2.0)
|
||||
upscaler_index = gr.Radio(label='Upscaler', choices=[x.name for x in shared.sd_upscalers], value=shared.sd_upscalers[0].name, type="index")
|
||||
|
||||
return [info, overlap, upscaler_index, scale_factor]
|
||||
|
@ -202,7 +202,7 @@ axis_options = [
|
||||
AxisOption("Eta", float, apply_field("eta"), format_value_add_label, None),
|
||||
AxisOption("Clip skip", int, apply_clip_skip, format_value_add_label, None),
|
||||
AxisOption("Denoising", float, apply_field("denoising_strength"), format_value_add_label, None),
|
||||
AxisOption("Upscale latent space for hires.", str, apply_upscale_latent_space, format_value_add_label, None),
|
||||
AxisOption("Hires upscaler", str, apply_field("hr_upscaler"), format_value_add_label, None),
|
||||
AxisOption("Cond. Image Mask Weight", float, apply_field("inpainting_mask_weight"), format_value_add_label, None),
|
||||
AxisOption("VAE", str, apply_vae, format_value_add_label, None),
|
||||
AxisOption("Styles", str, apply_styles, format_value_add_label, None),
|
||||
@ -267,7 +267,6 @@ class SharedSettingsStackHelper(object):
|
||||
self.CLIP_stop_at_last_layers = opts.CLIP_stop_at_last_layers
|
||||
self.hypernetwork = opts.sd_hypernetwork
|
||||
self.model = shared.sd_model
|
||||
self.use_scale_latent_for_hires_fix = opts.use_scale_latent_for_hires_fix
|
||||
self.vae = opts.sd_vae
|
||||
|
||||
def __exit__(self, exc_type, exc_value, tb):
|
||||
@ -278,7 +277,6 @@ class SharedSettingsStackHelper(object):
|
||||
hypernetwork.apply_strength()
|
||||
|
||||
opts.data["CLIP_stop_at_last_layers"] = self.CLIP_stop_at_last_layers
|
||||
opts.data["use_scale_latent_for_hires_fix"] = self.use_scale_latent_for_hires_fix
|
||||
|
||||
|
||||
re_range = re.compile(r"\s*([+-]?\s*\d+)\s*-\s*([+-]?\s*\d+)(?:\s*\(([+-]\d+)\s*\))?\s*")
|
||||
|
126
style.css
126
style.css
@ -73,8 +73,9 @@
|
||||
margin-right: auto;
|
||||
}
|
||||
|
||||
#random_seed, #random_subseed, #reuse_seed, #reuse_subseed, #open_folder{
|
||||
min-width: auto;
|
||||
[id$=_random_seed], [id$=_random_subseed], [id$=_reuse_seed], [id$=_reuse_subseed], #open_folder{
|
||||
min-width: 2.3em;
|
||||
height: 2.5em;
|
||||
flex-grow: 0;
|
||||
padding-left: 0.25em;
|
||||
padding-right: 0.25em;
|
||||
@ -84,27 +85,28 @@
|
||||
display: none;
|
||||
}
|
||||
|
||||
#seed_row, #subseed_row{
|
||||
[id$=_seed_row], [id$=_subseed_row]{
|
||||
gap: 0.5rem;
|
||||
padding: 0.6em;
|
||||
}
|
||||
|
||||
#subseed_show_box{
|
||||
[id$=_subseed_show_box]{
|
||||
min-width: auto;
|
||||
flex-grow: 0;
|
||||
}
|
||||
|
||||
#subseed_show_box > div{
|
||||
[id$=_subseed_show_box] > div{
|
||||
border: 0;
|
||||
height: 100%;
|
||||
}
|
||||
|
||||
#subseed_show{
|
||||
[id$=_subseed_show]{
|
||||
min-width: auto;
|
||||
flex-grow: 0;
|
||||
padding: 0;
|
||||
}
|
||||
|
||||
#subseed_show label{
|
||||
[id$=_subseed_show] label{
|
||||
height: 100%;
|
||||
}
|
||||
|
||||
@ -206,24 +208,24 @@ button{
|
||||
|
||||
fieldset span.text-gray-500, .gr-block.gr-box span.text-gray-500, label.block span{
|
||||
position: absolute;
|
||||
top: -0.6em;
|
||||
top: -0.7em;
|
||||
line-height: 1.2em;
|
||||
padding: 0 0.5em;
|
||||
margin: 0;
|
||||
padding: 0;
|
||||
margin: 0 0.5em;
|
||||
|
||||
background-color: white;
|
||||
border-top: 1px solid #eee;
|
||||
border-left: 1px solid #eee;
|
||||
border-right: 1px solid #eee;
|
||||
box-shadow: 6px 0 6px 0px white, -6px 0 6px 0px white;
|
||||
|
||||
z-index: 300;
|
||||
}
|
||||
|
||||
.dark fieldset span.text-gray-500, .dark .gr-block.gr-box span.text-gray-500, .dark label.block span{
|
||||
background-color: rgb(31, 41, 55);
|
||||
border-top: 1px solid rgb(55 65 81);
|
||||
border-left: 1px solid rgb(55 65 81);
|
||||
border-right: 1px solid rgb(55 65 81);
|
||||
box-shadow: 6px 0 6px 0px rgb(31, 41, 55), -6px 0 6px 0px rgb(31, 41, 55);
|
||||
}
|
||||
|
||||
#txt2img_column_batch, #img2img_column_batch{
|
||||
min-width: min(13.5em, 100%) !important;
|
||||
}
|
||||
|
||||
#settings fieldset span.text-gray-500, #settings .gr-block.gr-box span.text-gray-500, #settings label.block span{
|
||||
@ -232,22 +234,40 @@ fieldset span.text-gray-500, .gr-block.gr-box span.text-gray-500, label.block s
|
||||
margin-right: 8em;
|
||||
}
|
||||
|
||||
.gr-panel div.flex-col div.justify-between label span{
|
||||
margin: 0;
|
||||
}
|
||||
|
||||
#settings .gr-panel div.flex-col div.justify-between div{
|
||||
position: relative;
|
||||
z-index: 200;
|
||||
}
|
||||
|
||||
input[type="range"]{
|
||||
margin: 0.5em 0 -0.3em 0;
|
||||
#settings{
|
||||
display: block;
|
||||
}
|
||||
|
||||
#txt2img_sampling label{
|
||||
padding-left: 0.6em;
|
||||
padding-right: 0.6em;
|
||||
#settings > div{
|
||||
border: none;
|
||||
margin-left: 10em;
|
||||
}
|
||||
|
||||
#settings > div.flex-wrap{
|
||||
float: left;
|
||||
display: block;
|
||||
margin-left: 0;
|
||||
width: 10em;
|
||||
}
|
||||
|
||||
#settings > div.flex-wrap button{
|
||||
display: block;
|
||||
border: none;
|
||||
text-align: left;
|
||||
}
|
||||
|
||||
#settings_result{
|
||||
height: 1.4em;
|
||||
margin: 0 1.2em;
|
||||
}
|
||||
|
||||
input[type="range"]{
|
||||
margin: 0.5em 0 -0.3em 0;
|
||||
}
|
||||
|
||||
#mask_bug_info {
|
||||
@ -501,13 +521,6 @@ input[type="range"]{
|
||||
padding: 0;
|
||||
}
|
||||
|
||||
#refresh_sd_model_checkpoint, #refresh_sd_vae, #refresh_sd_hypernetwork, #refresh_train_hypernetwork_name, #refresh_train_embedding_name, #refresh_localization{
|
||||
max-width: 2.5em;
|
||||
min-width: 2.5em;
|
||||
height: 2.4em;
|
||||
}
|
||||
|
||||
|
||||
canvas[key="mask"] {
|
||||
z-index: 12 !important;
|
||||
filter: invert();
|
||||
@ -521,7 +534,7 @@ canvas[key="mask"] {
|
||||
position: absolute;
|
||||
right: 0.5em;
|
||||
top: -0.6em;
|
||||
z-index: 200;
|
||||
z-index: 400;
|
||||
width: 8em;
|
||||
}
|
||||
#quicksettings .gr-box > div > div > input.gr-text-input {
|
||||
@ -568,6 +581,53 @@ img2maskimg, #img2maskimg > .h-60, #img2maskimg > .h-60 > div, #img2maskimg > .h
|
||||
font-size: 95%;
|
||||
}
|
||||
|
||||
#image_buttons_txt2img button, #image_buttons_img2img button, #image_buttons_extras button{
|
||||
min-width: auto;
|
||||
padding-left: 0.5em;
|
||||
padding-right: 0.5em;
|
||||
}
|
||||
|
||||
.gr-form{
|
||||
background-color: white;
|
||||
}
|
||||
|
||||
.dark .gr-form{
|
||||
background-color: rgb(31 41 55 / var(--tw-bg-opacity));
|
||||
}
|
||||
|
||||
.gr-button-tool{
|
||||
max-width: 2.5em;
|
||||
min-width: 2.5em !important;
|
||||
height: 2.4em;
|
||||
margin: 0.55em 0;
|
||||
}
|
||||
|
||||
#quicksettings .gr-button-tool{
|
||||
margin: 0;
|
||||
}
|
||||
|
||||
|
||||
#img2img_settings > div.gr-form, #txt2img_settings > div.gr-form {
|
||||
padding-top: 0.9em;
|
||||
}
|
||||
|
||||
#img2img_settings div.gr-form .gr-form, #txt2img_settings div.gr-form .gr-form{
|
||||
border: none;
|
||||
padding-bottom: 0.5em;
|
||||
}
|
||||
|
||||
footer {
|
||||
display: none !important;
|
||||
}
|
||||
|
||||
#footer{
|
||||
text-align: center;
|
||||
}
|
||||
|
||||
#footer div{
|
||||
display: inline-block;
|
||||
}
|
||||
|
||||
/* The following handles localization for right-to-left (RTL) languages like Arabic.
|
||||
The rtl media type will only be activated by the logic in javascript/localization.js.
|
||||
If you change anything above, you need to make sure it is RTL compliant by just running
|
||||
|
68
v2-inference-v.yaml
Normal file
68
v2-inference-v.yaml
Normal file
@ -0,0 +1,68 @@
|
||||
model:
|
||||
base_learning_rate: 1.0e-4
|
||||
target: ldm.models.diffusion.ddpm.LatentDiffusion
|
||||
params:
|
||||
parameterization: "v"
|
||||
linear_start: 0.00085
|
||||
linear_end: 0.0120
|
||||
num_timesteps_cond: 1
|
||||
log_every_t: 200
|
||||
timesteps: 1000
|
||||
first_stage_key: "jpg"
|
||||
cond_stage_key: "txt"
|
||||
image_size: 64
|
||||
channels: 4
|
||||
cond_stage_trainable: false
|
||||
conditioning_key: crossattn
|
||||
monitor: val/loss_simple_ema
|
||||
scale_factor: 0.18215
|
||||
use_ema: False # we set this to false because this is an inference only config
|
||||
|
||||
unet_config:
|
||||
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
|
||||
params:
|
||||
use_checkpoint: True
|
||||
use_fp16: True
|
||||
image_size: 32 # unused
|
||||
in_channels: 4
|
||||
out_channels: 4
|
||||
model_channels: 320
|
||||
attention_resolutions: [ 4, 2, 1 ]
|
||||
num_res_blocks: 2
|
||||
channel_mult: [ 1, 2, 4, 4 ]
|
||||
num_head_channels: 64 # need to fix for flash-attn
|
||||
use_spatial_transformer: True
|
||||
use_linear_in_transformer: True
|
||||
transformer_depth: 1
|
||||
context_dim: 1024
|
||||
legacy: False
|
||||
|
||||
first_stage_config:
|
||||
target: ldm.models.autoencoder.AutoencoderKL
|
||||
params:
|
||||
embed_dim: 4
|
||||
monitor: val/rec_loss
|
||||
ddconfig:
|
||||
#attn_type: "vanilla-xformers"
|
||||
double_z: true
|
||||
z_channels: 4
|
||||
resolution: 256
|
||||
in_channels: 3
|
||||
out_ch: 3
|
||||
ch: 128
|
||||
ch_mult:
|
||||
- 1
|
||||
- 2
|
||||
- 4
|
||||
- 4
|
||||
num_res_blocks: 2
|
||||
attn_resolutions: []
|
||||
dropout: 0.0
|
||||
lossconfig:
|
||||
target: torch.nn.Identity
|
||||
|
||||
cond_stage_config:
|
||||
target: ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder
|
||||
params:
|
||||
freeze: True
|
||||
layer: "penultimate"
|
14
webui.py
14
webui.py
@ -1,4 +1,5 @@
|
||||
import os
|
||||
import sys
|
||||
import threading
|
||||
import time
|
||||
import importlib
|
||||
@ -55,8 +56,8 @@ def initialize():
|
||||
gfpgan.setup_model(cmd_opts.gfpgan_models_path)
|
||||
shared.face_restorers.append(modules.face_restoration.FaceRestoration())
|
||||
|
||||
modelloader.list_builtin_upscalers()
|
||||
modules.scripts.load_scripts()
|
||||
|
||||
modelloader.load_upscalers()
|
||||
|
||||
modules.sd_vae.refresh_vae_list()
|
||||
@ -169,23 +170,22 @@ def webui():
|
||||
modules.script_callbacks.app_started_callback(shared.demo, app)
|
||||
|
||||
wait_on_server(shared.demo)
|
||||
print('Restarting UI...')
|
||||
|
||||
sd_samplers.set_samplers()
|
||||
|
||||
print('Reloading extensions')
|
||||
extensions.list_extensions()
|
||||
|
||||
localization.list_localizations(cmd_opts.localizations_dir)
|
||||
|
||||
print('Reloading custom scripts')
|
||||
modelloader.forbid_loaded_nonbuiltin_upscalers()
|
||||
modules.scripts.reload_scripts()
|
||||
modelloader.load_upscalers()
|
||||
|
||||
print('Reloading modules: modules.ui')
|
||||
importlib.reload(modules.ui)
|
||||
print('Refreshing Model List')
|
||||
for module in [module for name, module in sys.modules.items() if name.startswith("modules.ui")]:
|
||||
importlib.reload(module)
|
||||
|
||||
modules.sd_models.list_models()
|
||||
print('Restarting Gradio')
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
Loading…
Reference in New Issue
Block a user