mirror of
https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
synced 2025-01-04 13:55:06 +08:00
Merge remote-tracking branch 'upstream/master' into interrogate_include_ranks_in_output
This commit is contained in:
commit
fb3cefb348
@ -1045,7 +1045,6 @@ Bakemono Zukushi,0.67051035,anime
|
||||
Lucy Madox Brown,0.67032814,fineart
|
||||
Paul Wonner,0.6700563,scribbles
|
||||
Guido Borelli Da Caluso,0.66966087,digipa-high-impact
|
||||
Guido Borelli da Caluso,0.66966087,digipa-high-impact
|
||||
Emil Alzamora,0.5844039,nudity
|
||||
Heinrich Brocksieper,0.64469147,fineart
|
||||
Dan Smith,0.669563,digipa-high-impact
|
||||
|
|
@ -3,9 +3,9 @@ channels:
|
||||
- pytorch
|
||||
- defaults
|
||||
dependencies:
|
||||
- python=3.8.5
|
||||
- pip=20.3
|
||||
- python=3.10
|
||||
- pip=22.2.2
|
||||
- cudatoolkit=11.3
|
||||
- pytorch=1.11.0
|
||||
- torchvision=0.12.0
|
||||
- numpy=1.19.2
|
||||
- pytorch=1.12.1
|
||||
- torchvision=0.13.1
|
||||
- numpy=1.23.1
|
@ -25,6 +25,7 @@ addEventListener('keydown', (event) => {
|
||||
} else {
|
||||
end = target.value.slice(selectionEnd + 1).indexOf(")") + 1;
|
||||
weight = parseFloat(target.value.slice(selectionEnd + 1, selectionEnd + 1 + end));
|
||||
if (isNaN(weight)) return;
|
||||
if (event.key == minus) weight -= 0.1;
|
||||
if (event.key == plus) weight += 0.1;
|
||||
|
||||
|
@ -80,7 +80,10 @@ titles = {
|
||||
"Scale latent": "Uscale the image in latent space. Alternative is to produce the full image from latent representation, upscale that, and then move it back to latent space.",
|
||||
|
||||
"Eta noise seed delta": "If this values is non-zero, it will be added to seed and used to initialize RNG for noises when using samplers with Eta. You can use this to produce even more variation of images, or you can use this to match images of other software if you know what you are doing.",
|
||||
"Do not add watermark to images": "If this option is enabled, watermark will not be added to created images. Warning: if you do not add watermark, you may be bevaing in an unethical manner.",
|
||||
"Do not add watermark to images": "If this option is enabled, watermark will not be added to created images. Warning: if you do not add watermark, you may be behaving in an unethical manner.",
|
||||
|
||||
"Filename word regex": "This regular expression will be used extract words from filename, and they will be joined using the option below into label text used for training. Leave empty to keep filename text as it is.",
|
||||
"Filename join string": "This string will be used to hoin split words into a single line if the option above is enabled.",
|
||||
}
|
||||
|
||||
|
||||
|
@ -101,7 +101,8 @@ function create_tab_index_args(tabId, args){
|
||||
}
|
||||
|
||||
function get_extras_tab_index(){
|
||||
return create_tab_index_args('mode_extras', arguments)
|
||||
const [,,...args] = [...arguments]
|
||||
return [get_tab_index('mode_extras'), get_tab_index('extras_resize_mode'), ...args]
|
||||
}
|
||||
|
||||
function create_submit_args(args){
|
||||
|
@ -1,21 +1,99 @@
|
||||
import os.path
|
||||
from concurrent.futures import ProcessPoolExecutor
|
||||
from multiprocessing import get_context
|
||||
import multiprocessing
|
||||
import time
|
||||
import re
|
||||
|
||||
re_special = re.compile(r'([\\()])')
|
||||
|
||||
def get_deepbooru_tags(pil_image):
|
||||
"""
|
||||
This method is for running only one image at a time for simple use. Used to the img2img interrogate.
|
||||
"""
|
||||
from modules import shared # prevents circular reference
|
||||
|
||||
try:
|
||||
create_deepbooru_process(shared.opts.interrogate_deepbooru_score_threshold, create_deepbooru_opts())
|
||||
return get_tags_from_process(pil_image)
|
||||
finally:
|
||||
release_process()
|
||||
|
||||
|
||||
def _load_tf_and_return_tags(pil_image, threshold, include_ranks):
|
||||
def create_deepbooru_opts():
|
||||
from modules import shared
|
||||
|
||||
return {
|
||||
"use_spaces": shared.opts.deepbooru_use_spaces,
|
||||
"use_escape": shared.opts.deepbooru_escape,
|
||||
"alpha_sort": shared.opts.deepbooru_sort_alpha,
|
||||
}
|
||||
|
||||
|
||||
def deepbooru_process(queue, deepbooru_process_return, threshold, deepbooru_opts):
|
||||
model, tags = get_deepbooru_tags_model()
|
||||
while True: # while process is running, keep monitoring queue for new image
|
||||
pil_image = queue.get()
|
||||
if pil_image == "QUIT":
|
||||
break
|
||||
else:
|
||||
deepbooru_process_return["value"] = get_deepbooru_tags_from_model(model, tags, pil_image, threshold, deepbooru_opts)
|
||||
|
||||
|
||||
def create_deepbooru_process(threshold, deepbooru_opts):
|
||||
"""
|
||||
Creates deepbooru process. A queue is created to send images into the process. This enables multiple images
|
||||
to be processed in a row without reloading the model or creating a new process. To return the data, a shared
|
||||
dictionary is created to hold the tags created. To wait for tags to be returned, a value of -1 is assigned
|
||||
to the dictionary and the method adding the image to the queue should wait for this value to be updated with
|
||||
the tags.
|
||||
"""
|
||||
from modules import shared # prevents circular reference
|
||||
shared.deepbooru_process_manager = multiprocessing.Manager()
|
||||
shared.deepbooru_process_queue = shared.deepbooru_process_manager.Queue()
|
||||
shared.deepbooru_process_return = shared.deepbooru_process_manager.dict()
|
||||
shared.deepbooru_process_return["value"] = -1
|
||||
shared.deepbooru_process = multiprocessing.Process(target=deepbooru_process, args=(shared.deepbooru_process_queue, shared.deepbooru_process_return, threshold, deepbooru_opts))
|
||||
shared.deepbooru_process.start()
|
||||
|
||||
|
||||
def get_tags_from_process(image):
|
||||
from modules import shared
|
||||
|
||||
shared.deepbooru_process_return["value"] = -1
|
||||
shared.deepbooru_process_queue.put(image)
|
||||
while shared.deepbooru_process_return["value"] == -1:
|
||||
time.sleep(0.2)
|
||||
caption = shared.deepbooru_process_return["value"]
|
||||
shared.deepbooru_process_return["value"] = -1
|
||||
|
||||
return caption
|
||||
|
||||
|
||||
def release_process():
|
||||
"""
|
||||
Stops the deepbooru process to return used memory
|
||||
"""
|
||||
from modules import shared # prevents circular reference
|
||||
shared.deepbooru_process_queue.put("QUIT")
|
||||
shared.deepbooru_process.join()
|
||||
shared.deepbooru_process_queue = None
|
||||
shared.deepbooru_process = None
|
||||
shared.deepbooru_process_return = None
|
||||
shared.deepbooru_process_manager = None
|
||||
|
||||
def get_deepbooru_tags_model():
|
||||
import deepdanbooru as dd
|
||||
import tensorflow as tf
|
||||
import numpy as np
|
||||
|
||||
this_folder = os.path.dirname(__file__)
|
||||
model_path = os.path.abspath(os.path.join(this_folder, '..', 'models', 'deepbooru'))
|
||||
if not os.path.exists(os.path.join(model_path, 'project.json')):
|
||||
# there is no point importing these every time
|
||||
import zipfile
|
||||
from basicsr.utils.download_util import load_file_from_url
|
||||
load_file_from_url(r"https://github.com/KichangKim/DeepDanbooru/releases/download/v3-20211112-sgd-e28/deepdanbooru-v3-20211112-sgd-e28.zip",
|
||||
model_path)
|
||||
load_file_from_url(
|
||||
r"https://github.com/KichangKim/DeepDanbooru/releases/download/v3-20211112-sgd-e28/deepdanbooru-v3-20211112-sgd-e28.zip",
|
||||
model_path)
|
||||
with zipfile.ZipFile(os.path.join(model_path, "deepdanbooru-v3-20211112-sgd-e28.zip"), "r") as zip_ref:
|
||||
zip_ref.extractall(model_path)
|
||||
os.remove(os.path.join(model_path, "deepdanbooru-v3-20211112-sgd-e28.zip"))
|
||||
@ -24,6 +102,17 @@ def _load_tf_and_return_tags(pil_image, threshold, include_ranks):
|
||||
model = dd.project.load_model_from_project(
|
||||
model_path, compile_model=True
|
||||
)
|
||||
return model, tags
|
||||
|
||||
|
||||
def get_deepbooru_tags_from_model(model, tags, pil_image, threshold, deepbooru_opts):
|
||||
import deepdanbooru as dd
|
||||
import tensorflow as tf
|
||||
import numpy as np
|
||||
|
||||
alpha_sort = deepbooru_opts['alpha_sort']
|
||||
use_spaces = deepbooru_opts['use_spaces']
|
||||
use_escape = deepbooru_opts['use_escape']
|
||||
|
||||
width = model.input_shape[2]
|
||||
height = model.input_shape[1]
|
||||
@ -46,32 +135,35 @@ def _load_tf_and_return_tags(pil_image, threshold, include_ranks):
|
||||
|
||||
for i, tag in enumerate(tags):
|
||||
result_dict[tag] = y[i]
|
||||
result_tags_out = []
|
||||
|
||||
unsorted_tags_in_theshold = []
|
||||
result_tags_print = []
|
||||
for tag in tags:
|
||||
if result_dict[tag] >= threshold:
|
||||
if tag.startswith("rating:"):
|
||||
continue
|
||||
tag_formatted = tag.replace('_', ' ').replace(':', ' ')
|
||||
if include_ranks:
|
||||
result_tags_out.append(f'({tag_formatted}:{result_dict[tag]})')
|
||||
else:
|
||||
result_tags_out.append(tag_formatted)
|
||||
unsorted_tags_in_theshold.append((result_dict[tag], tag))
|
||||
result_tags_print.append(f'{result_dict[tag]} {tag}')
|
||||
|
||||
# sort tags
|
||||
result_tags_out = []
|
||||
sort_ndx = 0
|
||||
if alpha_sort:
|
||||
sort_ndx = 1
|
||||
|
||||
# sort by reverse by likelihood and normal for alpha
|
||||
unsorted_tags_in_theshold.sort(key=lambda y: y[sort_ndx], reverse=(not alpha_sort))
|
||||
for weight, tag in unsorted_tags_in_theshold:
|
||||
result_tags_out.append(tag)
|
||||
|
||||
print('\n'.join(sorted(result_tags_print, reverse=True)))
|
||||
|
||||
return ', '.join(result_tags_out)
|
||||
tags_text = ', '.join(result_tags_out)
|
||||
|
||||
if use_spaces:
|
||||
tags_text = tags_text.replace('_', ' ')
|
||||
|
||||
def subprocess_init_no_cuda():
|
||||
import os
|
||||
os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
|
||||
if use_escape:
|
||||
tags_text = re.sub(re_special, r'\\\1', tags_text)
|
||||
|
||||
|
||||
def get_deepbooru_tags(pil_image, threshold=0.5, include_ranks=False):
|
||||
context = get_context('spawn')
|
||||
with ProcessPoolExecutor(initializer=subprocess_init_no_cuda, mp_context=context) as executor:
|
||||
f = executor.submit(_load_tf_and_return_tags, pil_image, threshold, include_ranks)
|
||||
ret = f.result() # will rethrow any exceptions
|
||||
return ret
|
||||
return tags_text.replace(':', ' ')
|
||||
|
@ -1,3 +1,4 @@
|
||||
import math
|
||||
import os
|
||||
|
||||
import numpy as np
|
||||
@ -19,7 +20,7 @@ import gradio as gr
|
||||
cached_images = {}
|
||||
|
||||
|
||||
def run_extras(extras_mode, image, image_folder, gfpgan_visibility, codeformer_visibility, codeformer_weight, upscaling_resize, extras_upscaler_1, extras_upscaler_2, extras_upscaler_2_visibility):
|
||||
def run_extras(extras_mode, resize_mode, image, image_folder, gfpgan_visibility, codeformer_visibility, codeformer_weight, upscaling_resize, upscaling_resize_w, upscaling_resize_h, upscaling_crop, extras_upscaler_1, extras_upscaler_2, extras_upscaler_2_visibility):
|
||||
devices.torch_gc()
|
||||
|
||||
imageArr = []
|
||||
@ -67,8 +68,13 @@ def run_extras(extras_mode, image, image_folder, gfpgan_visibility, codeformer_v
|
||||
info += f"CodeFormer w: {round(codeformer_weight, 2)}, CodeFormer visibility:{round(codeformer_visibility, 2)}\n"
|
||||
image = res
|
||||
|
||||
if resize_mode == 1:
|
||||
upscaling_resize = max(upscaling_resize_w/image.width, upscaling_resize_h/image.height)
|
||||
crop_info = " (crop)" if upscaling_crop else ""
|
||||
info += f"Resize to: {upscaling_resize_w:g}x{upscaling_resize_h:g}{crop_info}\n"
|
||||
|
||||
if upscaling_resize != 1.0:
|
||||
def upscale(image, scaler_index, resize):
|
||||
def upscale(image, scaler_index, resize, mode, resize_w, resize_h, crop):
|
||||
small = image.crop((image.width // 2, image.height // 2, image.width // 2 + 10, image.height // 2 + 10))
|
||||
pixels = tuple(np.array(small).flatten().tolist())
|
||||
key = (resize, scaler_index, image.width, image.height, gfpgan_visibility, codeformer_visibility, codeformer_weight) + pixels
|
||||
@ -77,15 +83,19 @@ def run_extras(extras_mode, image, image_folder, gfpgan_visibility, codeformer_v
|
||||
if c is None:
|
||||
upscaler = shared.sd_upscalers[scaler_index]
|
||||
c = upscaler.scaler.upscale(image, resize, upscaler.data_path)
|
||||
if mode == 1 and crop:
|
||||
cropped = Image.new("RGB", (resize_w, resize_h))
|
||||
cropped.paste(c, box=(resize_w // 2 - c.width // 2, resize_h // 2 - c.height // 2))
|
||||
c = cropped
|
||||
cached_images[key] = c
|
||||
|
||||
return c
|
||||
|
||||
info += f"Upscale: {round(upscaling_resize, 3)}, model:{shared.sd_upscalers[extras_upscaler_1].name}\n"
|
||||
res = upscale(image, extras_upscaler_1, upscaling_resize)
|
||||
res = upscale(image, extras_upscaler_1, upscaling_resize, resize_mode, upscaling_resize_w, upscaling_resize_h, upscaling_crop)
|
||||
|
||||
if extras_upscaler_2 != 0 and extras_upscaler_2_visibility > 0:
|
||||
res2 = upscale(image, extras_upscaler_2, upscaling_resize)
|
||||
res2 = upscale(image, extras_upscaler_2, upscaling_resize, resize_mode, upscaling_resize_w, upscaling_resize_h, upscaling_crop)
|
||||
info += f"Upscale: {round(upscaling_resize, 3)}, visibility: {round(extras_upscaler_2_visibility, 3)}, model:{shared.sd_upscalers[extras_upscaler_2].name}\n"
|
||||
res = Image.blend(res, res2, extras_upscaler_2_visibility)
|
||||
|
||||
|
@ -14,7 +14,7 @@ import torch
|
||||
from torch import einsum
|
||||
from einops import rearrange, repeat
|
||||
import modules.textual_inversion.dataset
|
||||
from modules.textual_inversion.learn_schedule import LearnSchedule
|
||||
from modules.textual_inversion.learn_schedule import LearnRateScheduler
|
||||
|
||||
|
||||
class HypernetworkModule(torch.nn.Module):
|
||||
@ -120,6 +120,17 @@ def load_hypernetwork(filename):
|
||||
shared.loaded_hypernetwork = None
|
||||
|
||||
|
||||
def find_closest_hypernetwork_name(search: str):
|
||||
if not search:
|
||||
return None
|
||||
search = search.lower()
|
||||
applicable = [name for name in shared.hypernetworks if search in name.lower()]
|
||||
if not applicable:
|
||||
return None
|
||||
applicable = sorted(applicable, key=lambda name: len(name))
|
||||
return applicable[0]
|
||||
|
||||
|
||||
def apply_hypernetwork(hypernetwork, context, layer=None):
|
||||
hypernetwork_layers = (hypernetwork.layers if hypernetwork is not None else {}).get(context.shape[2], None)
|
||||
|
||||
@ -164,7 +175,7 @@ def attention_CrossAttention_forward(self, x, context=None, mask=None):
|
||||
|
||||
|
||||
def train_hypernetwork(hypernetwork_name, learn_rate, data_root, log_directory, steps, create_image_every, save_hypernetwork_every, template_file, preview_image_prompt):
|
||||
assert hypernetwork_name, 'embedding not selected'
|
||||
assert hypernetwork_name, 'hypernetwork not selected'
|
||||
|
||||
path = shared.hypernetworks.get(hypernetwork_name, None)
|
||||
shared.loaded_hypernetwork = Hypernetwork()
|
||||
@ -212,31 +223,23 @@ def train_hypernetwork(hypernetwork_name, learn_rate, data_root, log_directory,
|
||||
if ititial_step > steps:
|
||||
return hypernetwork, filename
|
||||
|
||||
schedules = iter(LearnSchedule(learn_rate, steps, ititial_step))
|
||||
(learn_rate, end_step) = next(schedules)
|
||||
print(f'Training at rate of {learn_rate} until step {end_step}')
|
||||
|
||||
optimizer = torch.optim.AdamW(weights, lr=learn_rate)
|
||||
scheduler = LearnRateScheduler(learn_rate, steps, ititial_step)
|
||||
optimizer = torch.optim.AdamW(weights, lr=scheduler.learn_rate)
|
||||
|
||||
pbar = tqdm.tqdm(enumerate(ds), total=steps - ititial_step)
|
||||
for i, (x, text, cond) in pbar:
|
||||
for i, entry in pbar:
|
||||
hypernetwork.step = i + ititial_step
|
||||
|
||||
if hypernetwork.step > end_step:
|
||||
try:
|
||||
(learn_rate, end_step) = next(schedules)
|
||||
except Exception:
|
||||
break
|
||||
tqdm.tqdm.write(f'Training at rate of {learn_rate} until step {end_step}')
|
||||
for pg in optimizer.param_groups:
|
||||
pg['lr'] = learn_rate
|
||||
scheduler.apply(optimizer, hypernetwork.step)
|
||||
if scheduler.finished:
|
||||
break
|
||||
|
||||
if shared.state.interrupted:
|
||||
break
|
||||
|
||||
with torch.autocast("cuda"):
|
||||
cond = cond.to(devices.device)
|
||||
x = x.to(devices.device)
|
||||
cond = entry.cond.to(devices.device)
|
||||
x = entry.latent.to(devices.device)
|
||||
loss = shared.sd_model(x.unsqueeze(0), cond)[0]
|
||||
del x
|
||||
del cond
|
||||
@ -256,7 +259,7 @@ def train_hypernetwork(hypernetwork_name, learn_rate, data_root, log_directory,
|
||||
if hypernetwork.step > 0 and images_dir is not None and hypernetwork.step % create_image_every == 0:
|
||||
last_saved_image = os.path.join(images_dir, f'{hypernetwork_name}-{hypernetwork.step}.png')
|
||||
|
||||
preview_text = text if preview_image_prompt == "" else preview_image_prompt
|
||||
preview_text = entry.cond_text if preview_image_prompt == "" else preview_image_prompt
|
||||
|
||||
optimizer.zero_grad()
|
||||
shared.sd_model.cond_stage_model.to(devices.device)
|
||||
@ -271,16 +274,16 @@ def train_hypernetwork(hypernetwork_name, learn_rate, data_root, log_directory,
|
||||
)
|
||||
|
||||
processed = processing.process_images(p)
|
||||
image = processed.images[0]
|
||||
image = processed.images[0] if len(processed.images)>0 else None
|
||||
|
||||
if unload:
|
||||
shared.sd_model.cond_stage_model.to(devices.cpu)
|
||||
shared.sd_model.first_stage_model.to(devices.cpu)
|
||||
|
||||
shared.state.current_image = image
|
||||
image.save(last_saved_image)
|
||||
|
||||
last_saved_image += f", prompt: {preview_text}"
|
||||
if image is not None:
|
||||
shared.state.current_image = image
|
||||
image.save(last_saved_image)
|
||||
last_saved_image += f", prompt: {preview_text}"
|
||||
|
||||
shared.state.job_no = hypernetwork.step
|
||||
|
||||
@ -288,7 +291,7 @@ def train_hypernetwork(hypernetwork_name, learn_rate, data_root, log_directory,
|
||||
<p>
|
||||
Loss: {losses.mean():.7f}<br/>
|
||||
Step: {hypernetwork.step}<br/>
|
||||
Last prompt: {html.escape(text)}<br/>
|
||||
Last prompt: {html.escape(entry.cond_text)}<br/>
|
||||
Last saved embedding: {html.escape(last_saved_file)}<br/>
|
||||
Last saved image: {html.escape(last_saved_image)}<br/>
|
||||
</p>
|
||||
|
@ -321,7 +321,17 @@ class FrozenCLIPEmbedderWithCustomWords(torch.nn.Module):
|
||||
fixes.append(fix[1])
|
||||
self.hijack.fixes.append(fixes)
|
||||
|
||||
z1 = self.process_tokens([x[:75] for x in remade_batch_tokens], [x[:75] for x in batch_multipliers])
|
||||
tokens = []
|
||||
multipliers = []
|
||||
for j in range(len(remade_batch_tokens)):
|
||||
if len(remade_batch_tokens[j]) > 0:
|
||||
tokens.append(remade_batch_tokens[j][:75])
|
||||
multipliers.append(batch_multipliers[j][:75])
|
||||
else:
|
||||
tokens.append([self.wrapped.tokenizer.eos_token_id] * 75)
|
||||
multipliers.append([1.0] * 75)
|
||||
|
||||
z1 = self.process_tokens(tokens, multipliers)
|
||||
z = z1 if z is None else torch.cat((z, z1), axis=-2)
|
||||
|
||||
remade_batch_tokens = rem_tokens
|
||||
|
@ -86,6 +86,7 @@ parallel_processing_allowed = not cmd_opts.lowvram and not cmd_opts.medvram
|
||||
xformers_available = False
|
||||
config_filename = cmd_opts.ui_settings_file
|
||||
|
||||
os.makedirs(cmd_opts.hypernetwork_dir, exist_ok=True)
|
||||
hypernetworks = hypernetwork.list_hypernetworks(cmd_opts.hypernetwork_dir)
|
||||
loaded_hypernetwork = None
|
||||
|
||||
@ -229,7 +230,10 @@ options_templates.update(options_section(('system', "System"), {
|
||||
}))
|
||||
|
||||
options_templates.update(options_section(('training', "Training"), {
|
||||
"unload_models_when_training": OptionInfo(False, "Unload VAE and CLIP form VRAM when training"),
|
||||
"unload_models_when_training": OptionInfo(False, "Unload VAE and CLIP from VRAM when training"),
|
||||
"dataset_filename_word_regex": OptionInfo("", "Filename word regex"),
|
||||
"dataset_filename_join_string": OptionInfo(" ", "Filename join string"),
|
||||
"training_image_repeats_per_epoch": OptionInfo(100, "Number of repeats for a single input image per epoch; used only for displaying epoch number", gr.Number, {"precision": 0}),
|
||||
}))
|
||||
|
||||
options_templates.update(options_section(('sd', "Stable Diffusion"), {
|
||||
@ -255,8 +259,10 @@ options_templates.update(options_section(('interrogate', "Interrogate Options"),
|
||||
"interrogate_clip_num_beams": OptionInfo(1, "Interrogate: num_beams for BLIP", gr.Slider, {"minimum": 1, "maximum": 16, "step": 1}),
|
||||
"interrogate_clip_min_length": OptionInfo(24, "Interrogate: minimum description length (excluding artists, etc..)", gr.Slider, {"minimum": 1, "maximum": 128, "step": 1}),
|
||||
"interrogate_clip_max_length": OptionInfo(48, "Interrogate: maximum description length", gr.Slider, {"minimum": 1, "maximum": 256, "step": 1}),
|
||||
"interrogate_clip_dict_limit": OptionInfo(1500, "Interrogate: maximum number of lines in text file (0 = No limit)"),
|
||||
"interrogate_deepbooru_score_threshold": OptionInfo(0.5, "Interrogate: deepbooru score threshold", gr.Slider, {"minimum": 0, "maximum": 1, "step": 0.01}),
|
||||
"deepbooru_sort_alpha": OptionInfo(True, "Interrogate: deepbooru sort alphabetically"),
|
||||
"deepbooru_use_spaces": OptionInfo(False, "use spaces for tags in deepbooru"),
|
||||
"deepbooru_escape": OptionInfo(True, "escape (\\) brackets in deepbooru (so they are used as literal brackets and not for emphasis)"),
|
||||
}))
|
||||
|
||||
options_templates.update(options_section(('ui', "User interface"), {
|
||||
|
@ -11,11 +11,21 @@ import tqdm
|
||||
from modules import devices, shared
|
||||
import re
|
||||
|
||||
re_tag = re.compile(r"[a-zA-Z][_\w\d()]+")
|
||||
re_numbers_at_start = re.compile(r"^[-\d]+\s*")
|
||||
|
||||
|
||||
class DatasetEntry:
|
||||
def __init__(self, filename=None, latent=None, filename_text=None):
|
||||
self.filename = filename
|
||||
self.latent = latent
|
||||
self.filename_text = filename_text
|
||||
self.cond = None
|
||||
self.cond_text = None
|
||||
|
||||
|
||||
class PersonalizedBase(Dataset):
|
||||
def __init__(self, data_root, width, height, repeats, flip_p=0.5, placeholder_token="*", model=None, device=None, template_file=None, include_cond=False):
|
||||
re_word = re.compile(shared.opts.dataset_filename_word_regex) if len(shared.opts.dataset_filename_word_regex)>0 else None
|
||||
|
||||
self.placeholder_token = placeholder_token
|
||||
|
||||
@ -42,9 +52,18 @@ class PersonalizedBase(Dataset):
|
||||
except Exception:
|
||||
continue
|
||||
|
||||
text_filename = os.path.splitext(path)[0] + ".txt"
|
||||
filename = os.path.basename(path)
|
||||
filename_tokens = os.path.splitext(filename)[0]
|
||||
filename_tokens = re_tag.findall(filename_tokens)
|
||||
|
||||
if os.path.exists(text_filename):
|
||||
with open(text_filename, "r", encoding="utf8") as file:
|
||||
filename_text = file.read()
|
||||
else:
|
||||
filename_text = os.path.splitext(filename)[0]
|
||||
filename_text = re.sub(re_numbers_at_start, '', filename_text)
|
||||
if re_word:
|
||||
tokens = re_word.findall(filename_text)
|
||||
filename_text = (shared.opts.dataset_filename_join_string or "").join(tokens)
|
||||
|
||||
npimage = np.array(image).astype(np.uint8)
|
||||
npimage = (npimage / 127.5 - 1.0).astype(np.float32)
|
||||
@ -55,13 +74,13 @@ class PersonalizedBase(Dataset):
|
||||
init_latent = model.get_first_stage_encoding(model.encode_first_stage(torchdata.unsqueeze(dim=0))).squeeze()
|
||||
init_latent = init_latent.to(devices.cpu)
|
||||
|
||||
if include_cond:
|
||||
text = self.create_text(filename_tokens)
|
||||
cond = cond_model([text]).to(devices.cpu)
|
||||
else:
|
||||
cond = None
|
||||
entry = DatasetEntry(filename=path, filename_text=filename_text, latent=init_latent)
|
||||
|
||||
self.dataset.append((init_latent, filename_tokens, cond))
|
||||
if include_cond:
|
||||
entry.cond_text = self.create_text(filename_text)
|
||||
entry.cond = cond_model([entry.cond_text]).to(devices.cpu)
|
||||
|
||||
self.dataset.append(entry)
|
||||
|
||||
self.length = len(self.dataset) * repeats
|
||||
|
||||
@ -72,10 +91,10 @@ class PersonalizedBase(Dataset):
|
||||
def shuffle(self):
|
||||
self.indexes = self.initial_indexes[torch.randperm(self.initial_indexes.shape[0])]
|
||||
|
||||
def create_text(self, filename_tokens):
|
||||
def create_text(self, filename_text):
|
||||
text = random.choice(self.lines)
|
||||
text = text.replace("[name]", self.placeholder_token)
|
||||
text = text.replace("[filewords]", ' '.join(filename_tokens))
|
||||
text = text.replace("[filewords]", filename_text)
|
||||
return text
|
||||
|
||||
def __len__(self):
|
||||
@ -86,7 +105,9 @@ class PersonalizedBase(Dataset):
|
||||
self.shuffle()
|
||||
|
||||
index = self.indexes[i % len(self.indexes)]
|
||||
x, filename_tokens, cond = self.dataset[index]
|
||||
entry = self.dataset[index]
|
||||
|
||||
text = self.create_text(filename_tokens)
|
||||
return x, text, cond
|
||||
if entry.cond is None:
|
||||
entry.cond_text = self.create_text(entry.filename_text)
|
||||
|
||||
return entry
|
||||
|
219
modules/textual_inversion/image_embedding.py
Normal file
219
modules/textual_inversion/image_embedding.py
Normal file
@ -0,0 +1,219 @@
|
||||
import base64
|
||||
import json
|
||||
import numpy as np
|
||||
import zlib
|
||||
from PIL import Image, PngImagePlugin, ImageDraw, ImageFont
|
||||
from fonts.ttf import Roboto
|
||||
import torch
|
||||
|
||||
|
||||
class EmbeddingEncoder(json.JSONEncoder):
|
||||
def default(self, obj):
|
||||
if isinstance(obj, torch.Tensor):
|
||||
return {'TORCHTENSOR': obj.cpu().detach().numpy().tolist()}
|
||||
return json.JSONEncoder.default(self, obj)
|
||||
|
||||
|
||||
class EmbeddingDecoder(json.JSONDecoder):
|
||||
def __init__(self, *args, **kwargs):
|
||||
json.JSONDecoder.__init__(self, object_hook=self.object_hook, *args, **kwargs)
|
||||
|
||||
def object_hook(self, d):
|
||||
if 'TORCHTENSOR' in d:
|
||||
return torch.from_numpy(np.array(d['TORCHTENSOR']))
|
||||
return d
|
||||
|
||||
|
||||
def embedding_to_b64(data):
|
||||
d = json.dumps(data, cls=EmbeddingEncoder)
|
||||
return base64.b64encode(d.encode())
|
||||
|
||||
|
||||
def embedding_from_b64(data):
|
||||
d = base64.b64decode(data)
|
||||
return json.loads(d, cls=EmbeddingDecoder)
|
||||
|
||||
|
||||
def lcg(m=2**32, a=1664525, c=1013904223, seed=0):
|
||||
while True:
|
||||
seed = (a * seed + c) % m
|
||||
yield seed % 255
|
||||
|
||||
|
||||
def xor_block(block):
|
||||
g = lcg()
|
||||
randblock = np.array([next(g) for _ in range(np.product(block.shape))]).astype(np.uint8).reshape(block.shape)
|
||||
return np.bitwise_xor(block.astype(np.uint8), randblock & 0x0F)
|
||||
|
||||
|
||||
def style_block(block, sequence):
|
||||
im = Image.new('RGB', (block.shape[1], block.shape[0]))
|
||||
draw = ImageDraw.Draw(im)
|
||||
i = 0
|
||||
for x in range(-6, im.size[0], 8):
|
||||
for yi, y in enumerate(range(-6, im.size[1], 8)):
|
||||
offset = 0
|
||||
if yi % 2 == 0:
|
||||
offset = 4
|
||||
shade = sequence[i % len(sequence)]
|
||||
i += 1
|
||||
draw.ellipse((x+offset, y, x+6+offset, y+6), fill=(shade, shade, shade))
|
||||
|
||||
fg = np.array(im).astype(np.uint8) & 0xF0
|
||||
|
||||
return block ^ fg
|
||||
|
||||
|
||||
def insert_image_data_embed(image, data):
|
||||
d = 3
|
||||
data_compressed = zlib.compress(json.dumps(data, cls=EmbeddingEncoder).encode(), level=9)
|
||||
data_np_ = np.frombuffer(data_compressed, np.uint8).copy()
|
||||
data_np_high = data_np_ >> 4
|
||||
data_np_low = data_np_ & 0x0F
|
||||
|
||||
h = image.size[1]
|
||||
next_size = data_np_low.shape[0] + (h-(data_np_low.shape[0] % h))
|
||||
next_size = next_size + ((h*d)-(next_size % (h*d)))
|
||||
|
||||
data_np_low.resize(next_size)
|
||||
data_np_low = data_np_low.reshape((h, -1, d))
|
||||
|
||||
data_np_high.resize(next_size)
|
||||
data_np_high = data_np_high.reshape((h, -1, d))
|
||||
|
||||
edge_style = list(data['string_to_param'].values())[0].cpu().detach().numpy().tolist()[0][:1024]
|
||||
edge_style = (np.abs(edge_style)/np.max(np.abs(edge_style))*255).astype(np.uint8)
|
||||
|
||||
data_np_low = style_block(data_np_low, sequence=edge_style)
|
||||
data_np_low = xor_block(data_np_low)
|
||||
data_np_high = style_block(data_np_high, sequence=edge_style[::-1])
|
||||
data_np_high = xor_block(data_np_high)
|
||||
|
||||
im_low = Image.fromarray(data_np_low, mode='RGB')
|
||||
im_high = Image.fromarray(data_np_high, mode='RGB')
|
||||
|
||||
background = Image.new('RGB', (image.size[0]+im_low.size[0]+im_high.size[0]+2, image.size[1]), (0, 0, 0))
|
||||
background.paste(im_low, (0, 0))
|
||||
background.paste(image, (im_low.size[0]+1, 0))
|
||||
background.paste(im_high, (im_low.size[0]+1+image.size[0]+1, 0))
|
||||
|
||||
return background
|
||||
|
||||
|
||||
def crop_black(img, tol=0):
|
||||
mask = (img > tol).all(2)
|
||||
mask0, mask1 = mask.any(0), mask.any(1)
|
||||
col_start, col_end = mask0.argmax(), mask.shape[1]-mask0[::-1].argmax()
|
||||
row_start, row_end = mask1.argmax(), mask.shape[0]-mask1[::-1].argmax()
|
||||
return img[row_start:row_end, col_start:col_end]
|
||||
|
||||
|
||||
def extract_image_data_embed(image):
|
||||
d = 3
|
||||
outarr = crop_black(np.array(image.convert('RGB').getdata()).reshape(image.size[1], image.size[0], d).astype(np.uint8)) & 0x0F
|
||||
black_cols = np.where(np.sum(outarr, axis=(0, 2)) == 0)
|
||||
if black_cols[0].shape[0] < 2:
|
||||
print('No Image data blocks found.')
|
||||
return None
|
||||
|
||||
data_block_lower = outarr[:, :black_cols[0].min(), :].astype(np.uint8)
|
||||
data_block_upper = outarr[:, black_cols[0].max()+1:, :].astype(np.uint8)
|
||||
|
||||
data_block_lower = xor_block(data_block_lower)
|
||||
data_block_upper = xor_block(data_block_upper)
|
||||
|
||||
data_block = (data_block_upper << 4) | (data_block_lower)
|
||||
data_block = data_block.flatten().tobytes()
|
||||
|
||||
data = zlib.decompress(data_block)
|
||||
return json.loads(data, cls=EmbeddingDecoder)
|
||||
|
||||
|
||||
def caption_image_overlay(srcimage, title, footerLeft, footerMid, footerRight, textfont=None):
|
||||
from math import cos
|
||||
|
||||
image = srcimage.copy()
|
||||
|
||||
if textfont is None:
|
||||
try:
|
||||
textfont = ImageFont.truetype(opts.font or Roboto, fontsize)
|
||||
textfont = opts.font or Roboto
|
||||
except Exception:
|
||||
textfont = Roboto
|
||||
|
||||
factor = 1.5
|
||||
gradient = Image.new('RGBA', (1, image.size[1]), color=(0, 0, 0, 0))
|
||||
for y in range(image.size[1]):
|
||||
mag = 1-cos(y/image.size[1]*factor)
|
||||
mag = max(mag, 1-cos((image.size[1]-y)/image.size[1]*factor*1.1))
|
||||
gradient.putpixel((0, y), (0, 0, 0, int(mag*255)))
|
||||
image = Image.alpha_composite(image.convert('RGBA'), gradient.resize(image.size))
|
||||
|
||||
draw = ImageDraw.Draw(image)
|
||||
fontsize = 32
|
||||
font = ImageFont.truetype(textfont, fontsize)
|
||||
padding = 10
|
||||
|
||||
_, _, w, h = draw.textbbox((0, 0), title, font=font)
|
||||
fontsize = min(int(fontsize * (((image.size[0]*0.75)-(padding*4))/w)), 72)
|
||||
font = ImageFont.truetype(textfont, fontsize)
|
||||
_, _, w, h = draw.textbbox((0, 0), title, font=font)
|
||||
draw.text((padding, padding), title, anchor='lt', font=font, fill=(255, 255, 255, 230))
|
||||
|
||||
_, _, w, h = draw.textbbox((0, 0), footerLeft, font=font)
|
||||
fontsize_left = min(int(fontsize * (((image.size[0]/3)-(padding))/w)), 72)
|
||||
_, _, w, h = draw.textbbox((0, 0), footerMid, font=font)
|
||||
fontsize_mid = min(int(fontsize * (((image.size[0]/3)-(padding))/w)), 72)
|
||||
_, _, w, h = draw.textbbox((0, 0), footerRight, font=font)
|
||||
fontsize_right = min(int(fontsize * (((image.size[0]/3)-(padding))/w)), 72)
|
||||
|
||||
font = ImageFont.truetype(textfont, min(fontsize_left, fontsize_mid, fontsize_right))
|
||||
|
||||
draw.text((padding, image.size[1]-padding), footerLeft, anchor='ls', font=font, fill=(255, 255, 255, 230))
|
||||
draw.text((image.size[0]/2, image.size[1]-padding), footerMid, anchor='ms', font=font, fill=(255, 255, 255, 230))
|
||||
draw.text((image.size[0]-padding, image.size[1]-padding), footerRight, anchor='rs', font=font, fill=(255, 255, 255, 230))
|
||||
|
||||
return image
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
testEmbed = Image.open('test_embedding.png')
|
||||
data = extract_image_data_embed(testEmbed)
|
||||
assert data is not None
|
||||
|
||||
data = embedding_from_b64(testEmbed.text['sd-ti-embedding'])
|
||||
assert data is not None
|
||||
|
||||
image = Image.new('RGBA', (512, 512), (255, 255, 200, 255))
|
||||
cap_image = caption_image_overlay(image, 'title', 'footerLeft', 'footerMid', 'footerRight')
|
||||
|
||||
test_embed = {'string_to_param': {'*': torch.from_numpy(np.random.random((2, 4096)))}}
|
||||
|
||||
embedded_image = insert_image_data_embed(cap_image, test_embed)
|
||||
|
||||
retrived_embed = extract_image_data_embed(embedded_image)
|
||||
|
||||
assert str(retrived_embed) == str(test_embed)
|
||||
|
||||
embedded_image2 = insert_image_data_embed(cap_image, retrived_embed)
|
||||
|
||||
assert embedded_image == embedded_image2
|
||||
|
||||
g = lcg()
|
||||
shared_random = np.array([next(g) for _ in range(100)]).astype(np.uint8).tolist()
|
||||
|
||||
reference_random = [253, 242, 127, 44, 157, 27, 239, 133, 38, 79, 167, 4, 177,
|
||||
95, 130, 79, 78, 14, 52, 215, 220, 194, 126, 28, 240, 179,
|
||||
160, 153, 149, 50, 105, 14, 21, 218, 199, 18, 54, 198, 193,
|
||||
38, 128, 19, 53, 195, 124, 75, 205, 12, 6, 145, 0, 28,
|
||||
30, 148, 8, 45, 218, 171, 55, 249, 97, 166, 12, 35, 0,
|
||||
41, 221, 122, 215, 170, 31, 113, 186, 97, 119, 31, 23, 185,
|
||||
66, 140, 30, 41, 37, 63, 137, 109, 216, 55, 159, 145, 82,
|
||||
204, 86, 73, 222, 44, 198, 118, 240, 97]
|
||||
|
||||
assert shared_random == reference_random
|
||||
|
||||
hunna_kay_random_sum = sum(np.array([next(g) for _ in range(100000)]).astype(np.uint8).tolist())
|
||||
|
||||
assert 12731374 == hunna_kay_random_sum
|
@ -1,6 +1,12 @@
|
||||
import tqdm
|
||||
|
||||
class LearnSchedule:
|
||||
|
||||
class LearnScheduleIterator:
|
||||
def __init__(self, learn_rate, max_steps, cur_step=0):
|
||||
"""
|
||||
specify learn_rate as "0.001:100, 0.00001:1000, 1e-5:10000" to have lr of 0.001 until step 100, 0.00001 until 1000, 1e-5:10000 until 10000
|
||||
"""
|
||||
|
||||
pairs = learn_rate.split(',')
|
||||
self.rates = []
|
||||
self.it = 0
|
||||
@ -32,3 +38,32 @@ class LearnSchedule:
|
||||
return self.rates[self.it - 1]
|
||||
else:
|
||||
raise StopIteration
|
||||
|
||||
|
||||
class LearnRateScheduler:
|
||||
def __init__(self, learn_rate, max_steps, cur_step=0, verbose=True):
|
||||
self.schedules = LearnScheduleIterator(learn_rate, max_steps, cur_step)
|
||||
(self.learn_rate, self.end_step) = next(self.schedules)
|
||||
self.verbose = verbose
|
||||
|
||||
if self.verbose:
|
||||
print(f'Training at rate of {self.learn_rate} until step {self.end_step}')
|
||||
|
||||
self.finished = False
|
||||
|
||||
def apply(self, optimizer, step_number):
|
||||
if step_number <= self.end_step:
|
||||
return
|
||||
|
||||
try:
|
||||
(self.learn_rate, self.end_step) = next(self.schedules)
|
||||
except Exception:
|
||||
self.finished = True
|
||||
return
|
||||
|
||||
if self.verbose:
|
||||
tqdm.tqdm.write(f'Training at rate of {self.learn_rate} until step {self.end_step}')
|
||||
|
||||
for pg in optimizer.param_groups:
|
||||
pg['lr'] = self.learn_rate
|
||||
|
||||
|
@ -3,11 +3,35 @@ from PIL import Image, ImageOps
|
||||
import platform
|
||||
import sys
|
||||
import tqdm
|
||||
import time
|
||||
|
||||
from modules import shared, images
|
||||
from modules.shared import opts, cmd_opts
|
||||
if cmd_opts.deepdanbooru:
|
||||
import modules.deepbooru as deepbooru
|
||||
|
||||
|
||||
def preprocess(process_src, process_dst, process_width, process_height, process_flip, process_split, process_caption):
|
||||
def preprocess(process_src, process_dst, process_width, process_height, process_flip, process_split, process_caption, process_caption_deepbooru=False):
|
||||
try:
|
||||
if process_caption:
|
||||
shared.interrogator.load()
|
||||
|
||||
if process_caption_deepbooru:
|
||||
deepbooru.create_deepbooru_process(opts.interrogate_deepbooru_score_threshold, deepbooru.create_deepbooru_opts())
|
||||
|
||||
preprocess_work(process_src, process_dst, process_width, process_height, process_flip, process_split, process_caption, process_caption_deepbooru)
|
||||
|
||||
finally:
|
||||
|
||||
if process_caption:
|
||||
shared.interrogator.send_blip_to_ram()
|
||||
|
||||
if process_caption_deepbooru:
|
||||
deepbooru.release_process()
|
||||
|
||||
|
||||
|
||||
def preprocess_work(process_src, process_dst, process_width, process_height, process_flip, process_split, process_caption, process_caption_deepbooru=False):
|
||||
width = process_width
|
||||
height = process_height
|
||||
src = os.path.abspath(process_src)
|
||||
@ -22,19 +46,28 @@ def preprocess(process_src, process_dst, process_width, process_height, process_
|
||||
shared.state.textinfo = "Preprocessing..."
|
||||
shared.state.job_count = len(files)
|
||||
|
||||
if process_caption:
|
||||
shared.interrogator.load()
|
||||
|
||||
def save_pic_with_caption(image, index):
|
||||
if process_caption:
|
||||
caption = "-" + shared.interrogator.generate_caption(image)
|
||||
caption = sanitize_caption(os.path.join(dst, f"{index:05}-{subindex[0]}"), caption, ".png")
|
||||
else:
|
||||
caption = filename
|
||||
caption = os.path.splitext(caption)[0]
|
||||
caption = os.path.basename(caption)
|
||||
caption = ""
|
||||
|
||||
if process_caption:
|
||||
caption += shared.interrogator.generate_caption(image)
|
||||
|
||||
if process_caption_deepbooru:
|
||||
if len(caption) > 0:
|
||||
caption += ", "
|
||||
caption += deepbooru.get_tags_from_process(image)
|
||||
|
||||
filename_part = filename
|
||||
filename_part = os.path.splitext(filename_part)[0]
|
||||
filename_part = os.path.basename(filename_part)
|
||||
|
||||
basename = f"{index:05}-{subindex[0]}-{filename_part}"
|
||||
image.save(os.path.join(dst, f"{basename}.png"))
|
||||
|
||||
if len(caption) > 0:
|
||||
with open(os.path.join(dst, f"{basename}.txt"), "w", encoding="utf8") as file:
|
||||
file.write(caption)
|
||||
|
||||
image.save(os.path.join(dst, f"{index:05}-{subindex[0]}{caption}.png"))
|
||||
subindex[0] += 1
|
||||
|
||||
def save_pic(image, index):
|
||||
@ -79,30 +112,3 @@ def preprocess(process_src, process_dst, process_width, process_height, process_
|
||||
save_pic(img, index)
|
||||
|
||||
shared.state.nextjob()
|
||||
|
||||
if process_caption:
|
||||
shared.interrogator.send_blip_to_ram()
|
||||
|
||||
def sanitize_caption(base_path, original_caption, suffix):
|
||||
operating_system = platform.system().lower()
|
||||
if (operating_system == "windows"):
|
||||
invalid_path_characters = "\\/:*?\"<>|"
|
||||
max_path_length = 259
|
||||
else:
|
||||
invalid_path_characters = "/" #linux/macos
|
||||
max_path_length = 1023
|
||||
caption = original_caption
|
||||
for invalid_character in invalid_path_characters:
|
||||
caption = caption.replace(invalid_character, "")
|
||||
fixed_path_length = len(base_path) + len(suffix)
|
||||
if fixed_path_length + len(caption) <= max_path_length:
|
||||
return caption
|
||||
caption_tokens = caption.split()
|
||||
new_caption = ""
|
||||
for token in caption_tokens:
|
||||
last_caption = new_caption
|
||||
new_caption = new_caption + token + " "
|
||||
if (len(new_caption) + fixed_path_length - 1 > max_path_length):
|
||||
break
|
||||
print(f"\nPath will be too long. Truncated caption: {original_caption}\nto: {last_caption}", file=sys.stderr)
|
||||
return last_caption.strip()
|
||||
|
BIN
modules/textual_inversion/test_embedding.png
Normal file
BIN
modules/textual_inversion/test_embedding.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 478 KiB |
@ -7,11 +7,15 @@ import tqdm
|
||||
import html
|
||||
import datetime
|
||||
|
||||
from PIL import Image, PngImagePlugin
|
||||
|
||||
from modules import shared, devices, sd_hijack, processing, sd_models
|
||||
import modules.textual_inversion.dataset
|
||||
from modules.textual_inversion.learn_schedule import LearnSchedule
|
||||
from modules.textual_inversion.learn_schedule import LearnRateScheduler
|
||||
|
||||
from modules.textual_inversion.image_embedding import (embedding_to_b64, embedding_from_b64,
|
||||
insert_image_data_embed, extract_image_data_embed,
|
||||
caption_image_overlay)
|
||||
|
||||
class Embedding:
|
||||
def __init__(self, vec, name, step=None):
|
||||
@ -81,7 +85,18 @@ class EmbeddingDatabase:
|
||||
def process_file(path, filename):
|
||||
name = os.path.splitext(filename)[0]
|
||||
|
||||
data = torch.load(path, map_location="cpu")
|
||||
data = []
|
||||
|
||||
if filename.upper().endswith('.PNG'):
|
||||
embed_image = Image.open(path)
|
||||
if 'sd-ti-embedding' in embed_image.text:
|
||||
data = embedding_from_b64(embed_image.text['sd-ti-embedding'])
|
||||
name = data.get('name', name)
|
||||
else:
|
||||
data = extract_image_data_embed(embed_image)
|
||||
name = data.get('name', name)
|
||||
else:
|
||||
data = torch.load(path, map_location="cpu")
|
||||
|
||||
# textual inversion embeddings
|
||||
if 'string_to_param' in data:
|
||||
@ -157,7 +172,7 @@ def create_embedding(name, num_vectors_per_token, init_text='*'):
|
||||
return fn
|
||||
|
||||
|
||||
def train_embedding(embedding_name, learn_rate, data_root, log_directory, training_width, training_height, steps, num_repeats, create_image_every, save_embedding_every, template_file, preview_image_prompt):
|
||||
def train_embedding(embedding_name, learn_rate, data_root, log_directory, training_width, training_height, steps, create_image_every, save_embedding_every, template_file, save_image_with_stored_embedding, preview_image_prompt):
|
||||
assert embedding_name, 'embedding not selected'
|
||||
|
||||
shared.state.textinfo = "Initializing textual inversion training..."
|
||||
@ -179,11 +194,17 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini
|
||||
else:
|
||||
images_dir = None
|
||||
|
||||
if create_image_every > 0 and save_image_with_stored_embedding:
|
||||
images_embeds_dir = os.path.join(log_directory, "image_embeddings")
|
||||
os.makedirs(images_embeds_dir, exist_ok=True)
|
||||
else:
|
||||
images_embeds_dir = None
|
||||
|
||||
cond_model = shared.sd_model.cond_stage_model
|
||||
|
||||
shared.state.textinfo = f"Preparing dataset from {html.escape(data_root)}..."
|
||||
with torch.autocast("cuda"):
|
||||
ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=training_width, height=training_height, repeats=num_repeats, placeholder_token=embedding_name, model=shared.sd_model, device=devices.device, template_file=template_file)
|
||||
ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=training_width, height=training_height, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=embedding_name, model=shared.sd_model, device=devices.device, template_file=template_file)
|
||||
|
||||
hijack = sd_hijack.model_hijack
|
||||
|
||||
@ -199,32 +220,24 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini
|
||||
if ititial_step > steps:
|
||||
return embedding, filename
|
||||
|
||||
schedules = iter(LearnSchedule(learn_rate, steps, ititial_step))
|
||||
(learn_rate, end_step) = next(schedules)
|
||||
print(f'Training at rate of {learn_rate} until step {end_step}')
|
||||
|
||||
optimizer = torch.optim.AdamW([embedding.vec], lr=learn_rate)
|
||||
scheduler = LearnRateScheduler(learn_rate, steps, ititial_step)
|
||||
optimizer = torch.optim.AdamW([embedding.vec], lr=scheduler.learn_rate)
|
||||
|
||||
pbar = tqdm.tqdm(enumerate(ds), total=steps-ititial_step)
|
||||
for i, (x, text, _) in pbar:
|
||||
for i, entry in pbar:
|
||||
embedding.step = i + ititial_step
|
||||
|
||||
if embedding.step > end_step:
|
||||
try:
|
||||
(learn_rate, end_step) = next(schedules)
|
||||
except:
|
||||
break
|
||||
tqdm.tqdm.write(f'Training at rate of {learn_rate} until step {end_step}')
|
||||
for pg in optimizer.param_groups:
|
||||
pg['lr'] = learn_rate
|
||||
scheduler.apply(optimizer, embedding.step)
|
||||
if scheduler.finished:
|
||||
break
|
||||
|
||||
if shared.state.interrupted:
|
||||
break
|
||||
|
||||
with torch.autocast("cuda"):
|
||||
c = cond_model([text])
|
||||
c = cond_model([entry.cond_text])
|
||||
|
||||
x = x.to(devices.device)
|
||||
x = entry.latent.to(devices.device)
|
||||
loss = shared.sd_model(x.unsqueeze(0), c)[0]
|
||||
del x
|
||||
|
||||
@ -246,7 +259,7 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini
|
||||
if embedding.step > 0 and images_dir is not None and embedding.step % create_image_every == 0:
|
||||
last_saved_image = os.path.join(images_dir, f'{embedding_name}-{embedding.step}.png')
|
||||
|
||||
preview_text = text if preview_image_prompt == "" else preview_image_prompt
|
||||
preview_text = entry.cond_text if preview_image_prompt == "" else preview_image_prompt
|
||||
|
||||
p = processing.StableDiffusionProcessingTxt2Img(
|
||||
sd_model=shared.sd_model,
|
||||
@ -262,6 +275,26 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini
|
||||
image = processed.images[0]
|
||||
|
||||
shared.state.current_image = image
|
||||
|
||||
if save_image_with_stored_embedding and os.path.exists(last_saved_file):
|
||||
|
||||
last_saved_image_chunks = os.path.join(images_embeds_dir, f'{embedding_name}-{embedding.step}.png')
|
||||
|
||||
info = PngImagePlugin.PngInfo()
|
||||
data = torch.load(last_saved_file)
|
||||
info.add_text("sd-ti-embedding", embedding_to_b64(data))
|
||||
|
||||
title = "<{}>".format(data.get('name', '???'))
|
||||
checkpoint = sd_models.select_checkpoint()
|
||||
footer_left = checkpoint.model_name
|
||||
footer_mid = '[{}]'.format(checkpoint.hash)
|
||||
footer_right = '{}'.format(embedding.step)
|
||||
|
||||
captioned_image = caption_image_overlay(image, title, footer_left, footer_mid, footer_right)
|
||||
captioned_image = insert_image_data_embed(captioned_image, data)
|
||||
|
||||
captioned_image.save(last_saved_image_chunks, "PNG", pnginfo=info)
|
||||
|
||||
image.save(last_saved_image)
|
||||
|
||||
last_saved_image += f", prompt: {preview_text}"
|
||||
@ -272,7 +305,7 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini
|
||||
<p>
|
||||
Loss: {losses.mean():.7f}<br/>
|
||||
Step: {embedding.step}<br/>
|
||||
Last prompt: {html.escape(text)}<br/>
|
||||
Last prompt: {html.escape(entry.cond_text)}<br/>
|
||||
Last saved embedding: {html.escape(last_saved_file)}<br/>
|
||||
Last saved image: {html.escape(last_saved_image)}<br/>
|
||||
</p>
|
||||
|
@ -131,6 +131,8 @@ def save_files(js_data, images, do_make_zip, index):
|
||||
images = [images[index]]
|
||||
start_index = index
|
||||
|
||||
os.makedirs(opts.outdir_save, exist_ok=True)
|
||||
|
||||
with open(os.path.join(opts.outdir_save, "log.csv"), "a", encoding="utf8", newline='') as file:
|
||||
at_start = file.tell() == 0
|
||||
writer = csv.writer(file)
|
||||
@ -181,8 +183,15 @@ def wrap_gradio_call(func, extra_outputs=None):
|
||||
try:
|
||||
res = list(func(*args, **kwargs))
|
||||
except Exception as e:
|
||||
# When printing out our debug argument list, do not print out more than a MB of text
|
||||
max_debug_str_len = 131072 # (1024*1024)/8
|
||||
|
||||
print("Error completing request", file=sys.stderr)
|
||||
print("Arguments:", args, kwargs, file=sys.stderr)
|
||||
argStr = f"Arguments: {str(args)} {str(kwargs)}"
|
||||
print(argStr[:max_debug_str_len], file=sys.stderr)
|
||||
if len(argStr) > max_debug_str_len:
|
||||
print(f"(Argument list truncated at {max_debug_str_len}/{len(argStr)} characters)", file=sys.stderr)
|
||||
|
||||
print(traceback.format_exc(), file=sys.stderr)
|
||||
|
||||
shared.state.job = ""
|
||||
@ -311,12 +320,13 @@ def apply_styles(prompt, prompt_neg, style1_name, style2_name):
|
||||
|
||||
|
||||
def interrogate(image):
|
||||
prompt = shared.interrogator.interrogate(image, include_ranks=opts.interrogate_return_ranks)
|
||||
prompt = shared.interrogator.interrogate(image)
|
||||
|
||||
return gr_show(True) if prompt is None else prompt
|
||||
|
||||
|
||||
def interrogate_deepbooru(image):
|
||||
prompt = get_deepbooru_tags(image, opts.interrogate_deepbooru_score_threshold, opts.interrogate_return_ranks)
|
||||
prompt = get_deepbooru_tags(image)
|
||||
return gr_show(True) if prompt is None else prompt
|
||||
|
||||
|
||||
@ -557,11 +567,11 @@ def create_ui(wrap_gradio_gpu_call):
|
||||
button_id = "hidden_element" if shared.cmd_opts.hide_ui_dir_config else 'open_folder'
|
||||
open_txt2img_folder = gr.Button(folder_symbol, elem_id=button_id)
|
||||
|
||||
with gr.Row():
|
||||
do_make_zip = gr.Checkbox(label="Make Zip when Save?", value=False)
|
||||
with gr.Row():
|
||||
do_make_zip = gr.Checkbox(label="Make Zip when Save?", value=False)
|
||||
|
||||
with gr.Row():
|
||||
download_files = gr.File(None, file_count="multiple", interactive=False, show_label=False, visible=False)
|
||||
with gr.Row():
|
||||
download_files = gr.File(None, file_count="multiple", interactive=False, show_label=False, visible=False)
|
||||
|
||||
with gr.Group():
|
||||
html_info = gr.HTML()
|
||||
@ -745,11 +755,11 @@ def create_ui(wrap_gradio_gpu_call):
|
||||
button_id = "hidden_element" if shared.cmd_opts.hide_ui_dir_config else 'open_folder'
|
||||
open_img2img_folder = gr.Button(folder_symbol, elem_id=button_id)
|
||||
|
||||
with gr.Row():
|
||||
do_make_zip = gr.Checkbox(label="Make Zip when Save?", value=False)
|
||||
with gr.Row():
|
||||
do_make_zip = gr.Checkbox(label="Make Zip when Save?", value=False)
|
||||
|
||||
with gr.Row():
|
||||
download_files = gr.File(None, file_count="multiple", interactive=False, show_label=False, visible=False)
|
||||
with gr.Row():
|
||||
download_files = gr.File(None, file_count="multiple", interactive=False, show_label=False, visible=False)
|
||||
|
||||
with gr.Group():
|
||||
html_info = gr.HTML()
|
||||
@ -911,7 +921,15 @@ def create_ui(wrap_gradio_gpu_call):
|
||||
with gr.TabItem('Batch Process'):
|
||||
image_batch = gr.File(label="Batch Process", file_count="multiple", interactive=True, type="file")
|
||||
|
||||
upscaling_resize = gr.Slider(minimum=1.0, maximum=4.0, step=0.05, label="Resize", value=2)
|
||||
with gr.Tabs(elem_id="extras_resize_mode"):
|
||||
with gr.TabItem('Scale by'):
|
||||
upscaling_resize = gr.Slider(minimum=1.0, maximum=4.0, step=0.05, label="Resize", value=2)
|
||||
with gr.TabItem('Scale to'):
|
||||
with gr.Group():
|
||||
with gr.Row():
|
||||
upscaling_resize_w = gr.Number(label="Width", value=512, precision=0)
|
||||
upscaling_resize_h = gr.Number(label="Height", value=512, precision=0)
|
||||
upscaling_crop = gr.Checkbox(label='Crop to fit', value=True)
|
||||
|
||||
with gr.Group():
|
||||
extras_upscaler_1 = gr.Radio(label='Upscaler 1', choices=[x.name for x in shared.sd_upscalers], value=shared.sd_upscalers[0].name, type="index")
|
||||
@ -942,6 +960,7 @@ def create_ui(wrap_gradio_gpu_call):
|
||||
fn=wrap_gradio_gpu_call(modules.extras.run_extras),
|
||||
_js="get_extras_tab_index",
|
||||
inputs=[
|
||||
dummy_component,
|
||||
dummy_component,
|
||||
extras_image,
|
||||
image_batch,
|
||||
@ -949,6 +968,9 @@ def create_ui(wrap_gradio_gpu_call):
|
||||
codeformer_visibility,
|
||||
codeformer_weight,
|
||||
upscaling_resize,
|
||||
upscaling_resize_w,
|
||||
upscaling_resize_h,
|
||||
upscaling_crop,
|
||||
extras_upscaler_1,
|
||||
extras_upscaler_2,
|
||||
extras_upscaler_2_visibility,
|
||||
@ -1013,14 +1035,14 @@ def create_ui(wrap_gradio_gpu_call):
|
||||
|
||||
sd_hijack.model_hijack.embedding_db.load_textual_inversion_embeddings()
|
||||
|
||||
with gr.Blocks() as textual_inversion_interface:
|
||||
with gr.Blocks() as train_interface:
|
||||
with gr.Row().style(equal_height=False):
|
||||
with gr.Column():
|
||||
with gr.Group():
|
||||
gr.HTML(value="<p style='margin-bottom: 0.7em'>See <b><a href=\"https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Textual-Inversion\">wiki</a></b> for detailed explanation.</p>")
|
||||
gr.HTML(value="<p style='margin-bottom: 0.7em'>See <b><a href=\"https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Textual-Inversion\">wiki</a></b> for detailed explanation.</p>")
|
||||
|
||||
gr.HTML(value="<p style='margin-bottom: 0.7em'>Create a new embedding</p>")
|
||||
with gr.Row().style(equal_height=False):
|
||||
with gr.Tabs(elem_id="train_tabs"):
|
||||
|
||||
with gr.Tab(label="Create embedding"):
|
||||
new_embedding_name = gr.Textbox(label="Name")
|
||||
initialization_text = gr.Textbox(label="Initialization text", value="*")
|
||||
nvpt = gr.Slider(label="Number of vectors per token", minimum=1, maximum=75, step=1, value=1)
|
||||
@ -1032,9 +1054,7 @@ def create_ui(wrap_gradio_gpu_call):
|
||||
with gr.Column():
|
||||
create_embedding = gr.Button(value="Create embedding", variant='primary')
|
||||
|
||||
with gr.Group():
|
||||
gr.HTML(value="<p style='margin-bottom: 0.7em'>Create a new hypernetwork</p>")
|
||||
|
||||
with gr.Tab(label="Create hypernetwork"):
|
||||
new_hypernetwork_name = gr.Textbox(label="Name")
|
||||
new_hypernetwork_sizes = gr.CheckboxGroup(label="Modules", value=["768", "320", "640", "1280"], choices=["768", "320", "640", "1280"])
|
||||
|
||||
@ -1045,9 +1065,7 @@ def create_ui(wrap_gradio_gpu_call):
|
||||
with gr.Column():
|
||||
create_hypernetwork = gr.Button(value="Create hypernetwork", variant='primary')
|
||||
|
||||
with gr.Group():
|
||||
gr.HTML(value="<p style='margin-bottom: 0.7em'>Preprocess images</p>")
|
||||
|
||||
with gr.Tab(label="Preprocess images"):
|
||||
process_src = gr.Textbox(label='Source directory')
|
||||
process_dst = gr.Textbox(label='Destination directory')
|
||||
process_width = gr.Slider(minimum=64, maximum=2048, step=64, label="Width", value=512)
|
||||
@ -1056,7 +1074,8 @@ def create_ui(wrap_gradio_gpu_call):
|
||||
with gr.Row():
|
||||
process_flip = gr.Checkbox(label='Create flipped copies')
|
||||
process_split = gr.Checkbox(label='Split oversized images into two')
|
||||
process_caption = gr.Checkbox(label='Use BLIP caption as filename')
|
||||
process_caption = gr.Checkbox(label='Use BLIP for caption')
|
||||
process_caption_deepbooru = gr.Checkbox(label='Use deepbooru for caption', visible=True if cmd_opts.deepdanbooru else False)
|
||||
|
||||
with gr.Row():
|
||||
with gr.Column(scale=3):
|
||||
@ -1065,7 +1084,7 @@ def create_ui(wrap_gradio_gpu_call):
|
||||
with gr.Column():
|
||||
run_preprocess = gr.Button(value="Preprocess", variant='primary')
|
||||
|
||||
with gr.Group():
|
||||
with gr.Tab(label="Train"):
|
||||
gr.HTML(value="<p style='margin-bottom: 0.7em'>Train an embedding; must specify a directory with a set of 1:1 ratio images</p>")
|
||||
train_embedding_name = gr.Dropdown(label='Embedding', choices=sorted(sd_hijack.model_hijack.embedding_db.word_embeddings.keys()))
|
||||
train_hypernetwork_name = gr.Dropdown(label='Hypernetwork', choices=[x for x in shared.hypernetworks.keys()])
|
||||
@ -1076,9 +1095,9 @@ def create_ui(wrap_gradio_gpu_call):
|
||||
training_width = gr.Slider(minimum=64, maximum=2048, step=64, label="Width", value=512)
|
||||
training_height = gr.Slider(minimum=64, maximum=2048, step=64, label="Height", value=512)
|
||||
steps = gr.Number(label='Max steps', value=100000, precision=0)
|
||||
num_repeats = gr.Number(label='Number of repeats for a single input image per epoch', value=100, precision=0)
|
||||
create_image_every = gr.Number(label='Save an image to log directory every N steps, 0 to disable', value=500, precision=0)
|
||||
save_embedding_every = gr.Number(label='Save a copy of embedding to log directory every N steps, 0 to disable', value=500, precision=0)
|
||||
save_image_with_stored_embedding = gr.Checkbox(label='Save images with embedding in PNG chunks', value=True)
|
||||
preview_image_prompt = gr.Textbox(label='Preview prompt', value="")
|
||||
|
||||
with gr.Row():
|
||||
@ -1134,6 +1153,7 @@ def create_ui(wrap_gradio_gpu_call):
|
||||
process_flip,
|
||||
process_split,
|
||||
process_caption,
|
||||
process_caption_deepbooru
|
||||
],
|
||||
outputs=[
|
||||
ti_output,
|
||||
@ -1152,10 +1172,10 @@ def create_ui(wrap_gradio_gpu_call):
|
||||
training_width,
|
||||
training_height,
|
||||
steps,
|
||||
num_repeats,
|
||||
create_image_every,
|
||||
save_embedding_every,
|
||||
template_file,
|
||||
save_image_with_stored_embedding,
|
||||
preview_image_prompt,
|
||||
],
|
||||
outputs=[
|
||||
@ -1361,7 +1381,7 @@ Requested path was: {f}
|
||||
(extras_interface, "Extras", "extras"),
|
||||
(pnginfo_interface, "PNG Info", "pnginfo"),
|
||||
(modelmerger_interface, "Checkpoint Merger", "modelmerger"),
|
||||
(textual_inversion_interface, "Textual inversion", "ti"),
|
||||
(train_interface, "Train", "ti"),
|
||||
(settings_interface, "Settings", "settings"),
|
||||
]
|
||||
|
||||
|
@ -129,8 +129,6 @@ class Script(scripts.Script):
|
||||
return [original_prompt, original_negative_prompt, cfg, st, randomness, sigma_adjustment]
|
||||
|
||||
def run(self, p, original_prompt, original_negative_prompt, cfg, st, randomness, sigma_adjustment):
|
||||
p.batch_size = 1
|
||||
p.batch_count = 1
|
||||
|
||||
|
||||
def sample_extra(conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength):
|
||||
@ -154,7 +152,7 @@ class Script(scripts.Script):
|
||||
rec_noise = find_noise_for_image(p, cond, uncond, cfg, st)
|
||||
self.cache = Cached(rec_noise, cfg, st, lat, original_prompt, original_negative_prompt, sigma_adjustment)
|
||||
|
||||
rand_noise = processing.create_random_tensors(p.init_latent.shape[1:], [p.seed + x + 1 for x in range(p.init_latent.shape[0])])
|
||||
rand_noise = processing.create_random_tensors(p.init_latent.shape[1:], seeds=seeds, subseeds=subseeds, subseed_strength=p.subseed_strength, seed_resize_from_h=p.seed_resize_from_h, seed_resize_from_w=p.seed_resize_from_w, p=p)
|
||||
|
||||
combined_noise = ((1 - randomness) * rec_noise + randomness * rand_noise) / ((randomness**2 + (1-randomness)**2) ** 0.5)
|
||||
|
||||
|
@ -77,14 +77,42 @@ def apply_sampler(p, x, xs):
|
||||
p.sampler_index = sampler_index
|
||||
|
||||
|
||||
def confirm_samplers(p, xs):
|
||||
samplers_dict = build_samplers_dict(p)
|
||||
for x in xs:
|
||||
if x.lower() not in samplers_dict.keys():
|
||||
raise RuntimeError(f"Unknown sampler: {x}")
|
||||
|
||||
|
||||
def apply_checkpoint(p, x, xs):
|
||||
info = modules.sd_models.get_closet_checkpoint_match(x)
|
||||
assert info is not None, f'Checkpoint for {x} not found'
|
||||
if info is None:
|
||||
raise RuntimeError(f"Unknown checkpoint: {x}")
|
||||
modules.sd_models.reload_model_weights(shared.sd_model, info)
|
||||
|
||||
|
||||
def confirm_checkpoints(p, xs):
|
||||
for x in xs:
|
||||
if modules.sd_models.get_closet_checkpoint_match(x) is None:
|
||||
raise RuntimeError(f"Unknown checkpoint: {x}")
|
||||
|
||||
|
||||
def apply_hypernetwork(p, x, xs):
|
||||
hypernetwork.load_hypernetwork(x)
|
||||
if x.lower() in ["", "none"]:
|
||||
name = None
|
||||
else:
|
||||
name = hypernetwork.find_closest_hypernetwork_name(x)
|
||||
if not name:
|
||||
raise RuntimeError(f"Unknown hypernetwork: {x}")
|
||||
hypernetwork.load_hypernetwork(name)
|
||||
|
||||
|
||||
def confirm_hypernetworks(p, xs):
|
||||
for x in xs:
|
||||
if x.lower() in ["", "none"]:
|
||||
continue
|
||||
if not hypernetwork.find_closest_hypernetwork_name(x):
|
||||
raise RuntimeError(f"Unknown hypernetwork: {x}")
|
||||
|
||||
|
||||
def apply_clip_skip(p, x, xs):
|
||||
@ -121,29 +149,29 @@ def str_permutations(x):
|
||||
return x
|
||||
|
||||
|
||||
AxisOption = namedtuple("AxisOption", ["label", "type", "apply", "format_value"])
|
||||
AxisOptionImg2Img = namedtuple("AxisOptionImg2Img", ["label", "type", "apply", "format_value"])
|
||||
AxisOption = namedtuple("AxisOption", ["label", "type", "apply", "format_value", "confirm"])
|
||||
AxisOptionImg2Img = namedtuple("AxisOptionImg2Img", ["label", "type", "apply", "format_value", "confirm"])
|
||||
|
||||
|
||||
axis_options = [
|
||||
AxisOption("Nothing", str, do_nothing, format_nothing),
|
||||
AxisOption("Seed", int, apply_field("seed"), format_value_add_label),
|
||||
AxisOption("Var. seed", int, apply_field("subseed"), format_value_add_label),
|
||||
AxisOption("Var. strength", float, apply_field("subseed_strength"), format_value_add_label),
|
||||
AxisOption("Steps", int, apply_field("steps"), format_value_add_label),
|
||||
AxisOption("CFG Scale", float, apply_field("cfg_scale"), format_value_add_label),
|
||||
AxisOption("Prompt S/R", str, apply_prompt, format_value),
|
||||
AxisOption("Prompt order", str_permutations, apply_order, format_value_join_list),
|
||||
AxisOption("Sampler", str, apply_sampler, format_value),
|
||||
AxisOption("Checkpoint name", str, apply_checkpoint, format_value),
|
||||
AxisOption("Hypernetwork", str, apply_hypernetwork, format_value),
|
||||
AxisOption("Sigma Churn", float, apply_field("s_churn"), format_value_add_label),
|
||||
AxisOption("Sigma min", float, apply_field("s_tmin"), format_value_add_label),
|
||||
AxisOption("Sigma max", float, apply_field("s_tmax"), format_value_add_label),
|
||||
AxisOption("Sigma noise", float, apply_field("s_noise"), format_value_add_label),
|
||||
AxisOption("Eta", float, apply_field("eta"), format_value_add_label),
|
||||
AxisOption("Clip skip", int, apply_clip_skip, format_value_add_label),
|
||||
AxisOptionImg2Img("Denoising", float, apply_field("denoising_strength"), format_value_add_label), # as it is now all AxisOptionImg2Img items must go after AxisOption ones
|
||||
AxisOption("Nothing", str, do_nothing, format_nothing, None),
|
||||
AxisOption("Seed", int, apply_field("seed"), format_value_add_label, None),
|
||||
AxisOption("Var. seed", int, apply_field("subseed"), format_value_add_label, None),
|
||||
AxisOption("Var. strength", float, apply_field("subseed_strength"), format_value_add_label, None),
|
||||
AxisOption("Steps", int, apply_field("steps"), format_value_add_label, None),
|
||||
AxisOption("CFG Scale", float, apply_field("cfg_scale"), format_value_add_label, None),
|
||||
AxisOption("Prompt S/R", str, apply_prompt, format_value, None),
|
||||
AxisOption("Prompt order", str_permutations, apply_order, format_value_join_list, None),
|
||||
AxisOption("Sampler", str, apply_sampler, format_value, confirm_samplers),
|
||||
AxisOption("Checkpoint name", str, apply_checkpoint, format_value, confirm_checkpoints),
|
||||
AxisOption("Hypernetwork", str, apply_hypernetwork, format_value, confirm_hypernetworks),
|
||||
AxisOption("Sigma Churn", float, apply_field("s_churn"), format_value_add_label, None),
|
||||
AxisOption("Sigma min", float, apply_field("s_tmin"), format_value_add_label, None),
|
||||
AxisOption("Sigma max", float, apply_field("s_tmax"), format_value_add_label, None),
|
||||
AxisOption("Sigma noise", float, apply_field("s_noise"), format_value_add_label, None),
|
||||
AxisOption("Eta", float, apply_field("eta"), format_value_add_label, None),
|
||||
AxisOption("Clip skip", int, apply_clip_skip, format_value_add_label, None),
|
||||
AxisOptionImg2Img("Denoising", float, apply_field("denoising_strength"), format_value_add_label, None), # as it is now all AxisOptionImg2Img items must go after AxisOption ones
|
||||
]
|
||||
|
||||
|
||||
@ -271,15 +299,8 @@ class Script(scripts.Script):
|
||||
valslist = [opt.type(x) for x in valslist]
|
||||
|
||||
# Confirm options are valid before starting
|
||||
if opt.label == "Sampler":
|
||||
samplers_dict = build_samplers_dict(p)
|
||||
for sampler_val in valslist:
|
||||
if sampler_val.lower() not in samplers_dict.keys():
|
||||
raise RuntimeError(f"Unknown sampler: {sampler_val}")
|
||||
elif opt.label == "Checkpoint name":
|
||||
for ckpt_val in valslist:
|
||||
if modules.sd_models.get_closet_checkpoint_match(ckpt_val) is None:
|
||||
raise RuntimeError(f"Checkpoint for {ckpt_val} not found")
|
||||
if opt.confirm:
|
||||
opt.confirm(p, valslist)
|
||||
|
||||
return valslist
|
||||
|
||||
|
27
webui.py
27
webui.py
@ -31,12 +31,7 @@ from modules.paths import script_path
|
||||
from modules.shared import cmd_opts
|
||||
import modules.hypernetworks.hypernetwork
|
||||
|
||||
modelloader.cleanup_models()
|
||||
modules.sd_models.setup_model()
|
||||
codeformer.setup_model(cmd_opts.codeformer_models_path)
|
||||
gfpgan.setup_model(cmd_opts.gfpgan_models_path)
|
||||
shared.face_restorers.append(modules.face_restoration.FaceRestoration())
|
||||
modelloader.load_upscalers()
|
||||
|
||||
queue_lock = threading.Lock()
|
||||
|
||||
|
||||
@ -78,15 +73,24 @@ def wrap_gradio_gpu_call(func, extra_outputs=None):
|
||||
return modules.ui.wrap_gradio_call(f, extra_outputs=extra_outputs)
|
||||
|
||||
|
||||
modules.scripts.load_scripts(os.path.join(script_path, "scripts"))
|
||||
def initialize():
|
||||
modelloader.cleanup_models()
|
||||
modules.sd_models.setup_model()
|
||||
codeformer.setup_model(cmd_opts.codeformer_models_path)
|
||||
gfpgan.setup_model(cmd_opts.gfpgan_models_path)
|
||||
shared.face_restorers.append(modules.face_restoration.FaceRestoration())
|
||||
modelloader.load_upscalers()
|
||||
|
||||
shared.sd_model = modules.sd_models.load_model()
|
||||
shared.opts.onchange("sd_model_checkpoint", wrap_queued_call(lambda: modules.sd_models.reload_model_weights(shared.sd_model)))
|
||||
modules.scripts.load_scripts(os.path.join(script_path, "scripts"))
|
||||
|
||||
shared.opts.onchange("sd_hypernetwork", wrap_queued_call(lambda: modules.hypernetworks.hypernetwork.load_hypernetwork(shared.opts.sd_hypernetwork)))
|
||||
shared.sd_model = modules.sd_models.load_model()
|
||||
shared.opts.onchange("sd_model_checkpoint", wrap_queued_call(lambda: modules.sd_models.reload_model_weights(shared.sd_model)))
|
||||
shared.opts.onchange("sd_hypernetwork", wrap_queued_call(lambda: modules.hypernetworks.hypernetwork.load_hypernetwork(shared.opts.sd_hypernetwork)))
|
||||
|
||||
|
||||
def webui():
|
||||
initialize()
|
||||
|
||||
# make the program just exit at ctrl+c without waiting for anything
|
||||
def sigint_handler(sig, frame):
|
||||
print(f'Interrupted with signal {sig} in {frame}')
|
||||
@ -98,7 +102,7 @@ def webui():
|
||||
|
||||
demo = modules.ui.create_ui(wrap_gradio_gpu_call=wrap_gradio_gpu_call)
|
||||
|
||||
app,local_url,share_url = demo.launch(
|
||||
app, local_url, share_url = demo.launch(
|
||||
share=cmd_opts.share,
|
||||
server_name="0.0.0.0" if cmd_opts.listen else None,
|
||||
server_port=cmd_opts.port,
|
||||
@ -129,6 +133,5 @@ def webui():
|
||||
print('Restarting Gradio')
|
||||
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
webui()
|
||||
|
Loading…
Reference in New Issue
Block a user