Kohaku-Blueleaf
a5436a3ac0
Update network_oft.py
2024-02-20 17:20:14 +08:00
Kohaku-Blueleaf
4eb949625c
prevent undefined variable
2024-02-19 14:43:07 +08:00
Kohaku-Blueleaf
5a8dd0c549
Fix rescale
2024-02-18 14:58:41 +08:00
Kohaku-Blueleaf
90441294db
Add rescale mechanism
...
LyCORIS will support save oft_blocks instead of oft_diag in the near future (for both OFT and BOFT)
But this means we need to store the rescale if user enable it.
2024-02-12 14:25:09 +08:00
v0xie
613b0d9548
doc: add boft comment
2024-02-08 21:58:59 -08:00
v0xie
325eaeb584
fix: get boft params from weight shape
2024-02-08 11:55:05 -08:00
v0xie
2f1073dc6e
style: fix lint
2024-02-07 04:55:11 -08:00
v0xie
a4668a16b6
fix: calculate butterfly factor
2024-02-07 04:51:22 -08:00
v0xie
9588721197
feat: support LyCORIS BOFT
2024-02-07 04:49:17 -08:00
v0xie
fd383140cf
fix: wrong devices for eye and constraint
2024-01-22 02:52:34 -08:00
Kohaku-Blueleaf
f8f38c7c28
Fix dtype casting for OFT module
2024-01-05 16:31:48 +08:00
Kohaku-Blueleaf
3772a82a70
better naming and correct order for device.
2023-12-14 01:47:13 +08:00
Kohaku-Blueleaf
8fc67f3851
remove debug print
2023-12-14 01:44:49 +08:00
Kohaku-Blueleaf
265bc26c21
Use self.scale instead of custom finalize
2023-12-14 01:43:24 +08:00
Kohaku-Blueleaf
735c9e8059
Fix network_oft
2023-12-14 01:38:32 +08:00
v0xie
eb667e715a
feat: LyCORIS/kohya OFT network support
2023-11-15 18:28:48 -08:00
v0xie
d6d0b22e66
fix: ignore calc_scale() for COFT which has very small alpha
2023-11-15 03:08:50 -08:00
v0xie
bbf00a96af
refactor: remove unused function
2023-11-04 14:56:47 -07:00
v0xie
329c8bacce
refactor: use same updown for both kohya OFT and LyCORIS diag-oft
2023-11-04 14:54:36 -07:00
v0xie
f6c8201e56
refactor: move factorization to lyco_helpers, separate calc_updown for kohya and kb
2023-11-03 19:35:15 -07:00
v0xie
fe1967a4c4
skip multihead attn for now
2023-11-03 17:52:55 -07:00
v0xie
d727ddfccd
no idea what i'm doing, trying to support both type of OFT, kblueleaf diag_oft has MultiheadAttn which kohya's doesn't?, attempt create new module based off network_lora.py, errors about tensor dim mismatch
2023-11-02 00:13:11 -07:00
v0xie
a2fad6ee05
test implementation based on kohaku diag-oft implementation
2023-11-01 22:34:27 -07:00
v0xie
6523edb8a4
style: conform style
2023-10-22 09:31:15 -07:00
v0xie
3b8515d2c9
fix: multiplier applied twice in finalize_updown
2023-10-22 09:27:48 -07:00
v0xie
4a50c9638c
refactor: remove used OFT functions
2023-10-22 08:54:24 -07:00
v0xie
de8ee92ed8
fix: use merge_weight to cache value
2023-10-21 17:37:17 -07:00
v0xie
76f5abdbdb
style: cleanup oft
2023-10-21 16:07:45 -07:00
v0xie
fce86ab7d7
fix: support multiplier, no forward pass hook
2023-10-21 16:03:54 -07:00
v0xie
7683547728
fix: return orig weights during updown, merge weights before forward
2023-10-21 14:42:24 -07:00
v0xie
2d8c894b27
refactor: use forward hook instead of custom forward
2023-10-21 13:43:31 -07:00
v0xie
0550659ce6
style: fix ambiguous variable name
2023-10-19 13:13:02 -07:00
v0xie
d10c4db57e
style: formatting
2023-10-19 12:52:14 -07:00
v0xie
321680ccd0
refactor: fix constraint, re-use get_weight
2023-10-19 12:41:17 -07:00
v0xie
eb01d7f0e0
faster by calculating R in updown and using cached R in forward
2023-10-18 04:56:53 -07:00
v0xie
853e21d98e
faster by using cached R in forward
2023-10-18 04:27:44 -07:00
v0xie
1c6efdbba7
inference working but SLOW
2023-10-18 04:16:01 -07:00
v0xie
ec718f76b5
wip incorrect OFT implementation
2023-10-17 23:35:50 -07:00