import os from modules import modelloader, errors from modules.shared import cmd_opts, opts, hf_endpoint from modules.upscaler import Upscaler, UpscalerData from modules.upscaler_utils import upscale_with_model class UpscalerDAT(Upscaler): def __init__(self, user_path): self.name = "DAT" self.user_path = user_path self.scalers = [] super().__init__() for file in self.find_models(ext_filter=[".pt", ".pth"]): name = modelloader.friendly_name(file) scaler_data = UpscalerData(name, file, upscaler=self, scale=None) self.scalers.append(scaler_data) for model in get_dat_models(self): if model.name in opts.dat_enabled_models: self.scalers.append(model) def do_upscale(self, img, path): try: info = self.load_model(path) except Exception: errors.report(f"Unable to load DAT model {path}", exc_info=True) return img model_descriptor = modelloader.load_spandrel_model( info.local_data_path, device=self.device, prefer_half=(not cmd_opts.no_half and not cmd_opts.upcast_sampling), expected_architecture="DAT", ) return upscale_with_model( model_descriptor, img, tile_size=opts.DAT_tile, tile_overlap=opts.DAT_tile_overlap, ) def load_model(self, path): for scaler in self.scalers: if scaler.data_path == path: if scaler.local_data_path.startswith("http"): scaler.local_data_path = modelloader.load_file_from_url( scaler.data_path, model_dir=self.model_download_path, hash_prefix=scaler.sha256, ) if os.path.getsize(scaler.local_data_path) < 200: # Re-download if the file is too small, probably an LFS pointer scaler.local_data_path = modelloader.load_file_from_url( scaler.data_path, model_dir=self.model_download_path, hash_prefix=scaler.sha256, re_download=True, ) if not os.path.exists(scaler.local_data_path): raise FileNotFoundError(f"DAT data missing: {scaler.local_data_path}") return scaler raise ValueError(f"Unable to find model info: {path}") def get_dat_models(scaler): return [ UpscalerData( name="DAT x2", path=f"{hf_endpoint}/w-e-w/DAT/resolve/main/experiments/pretrained_models/DAT/DAT_x2.pth", scale=2, upscaler=scaler, sha256='7760aa96e4ee77e29d4f89c3a4486200042e019461fdb8aa286f49aa00b89b51', ), UpscalerData( name="DAT x3", path=f"{hf_endpoint}/w-e-w/DAT/resolve/main/experiments/pretrained_models/DAT/DAT_x3.pth", scale=3, upscaler=scaler, sha256='581973e02c06f90d4eb90acf743ec9604f56f3c2c6f9e1e2c2b38ded1f80d197', ), UpscalerData( name="DAT x4", path=f"{hf_endpoint}/w-e-w/DAT/resolve/main/experiments/pretrained_models/DAT/DAT_x4.pth", scale=4, upscaler=scaler, sha256='391a6ce69899dff5ea3214557e9d585608254579217169faf3d4c353caff049e', ), ]