import os import safetensors import torch import typing from transformers import CLIPTokenizer, T5TokenizerFast from modules import shared, devices, modelloader, sd_hijack_clip, prompt_parser from modules.models.sd3.other_impls import SDClipModel, SDXLClipG, T5XXLModel, SD3Tokenizer class SafetensorsMapping(typing.Mapping): def __init__(self, file): self.file = file def __len__(self): return len(self.file.keys()) def __iter__(self): for key in self.file.keys(): yield key def __getitem__(self, key): return self.file.get_tensor(key) CLIPL_URL = "https://huggingface.co/AUTOMATIC/stable-diffusion-3-medium-text-encoders/resolve/main/clip_l.safetensors" CLIPL_CONFIG = { "hidden_act": "quick_gelu", "hidden_size": 768, "intermediate_size": 3072, "num_attention_heads": 12, "num_hidden_layers": 12, } CLIPG_URL = "https://huggingface.co/AUTOMATIC/stable-diffusion-3-medium-text-encoders/resolve/main/clip_g.safetensors" CLIPG_CONFIG = { "hidden_act": "gelu", "hidden_size": 1280, "intermediate_size": 5120, "num_attention_heads": 20, "num_hidden_layers": 32, } T5_URL = "https://huggingface.co/AUTOMATIC/stable-diffusion-3-medium-text-encoders/resolve/main/t5xxl_fp16.safetensors" T5_CONFIG = { "d_ff": 10240, "d_model": 4096, "num_heads": 64, "num_layers": 24, "vocab_size": 32128, } class Sd3ClipLG(sd_hijack_clip.TextConditionalModel): def __init__(self, clip_l, clip_g): super().__init__() self.clip_l = clip_l self.clip_g = clip_g self.tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14") empty = self.tokenizer('')["input_ids"] self.id_start = empty[0] self.id_end = empty[1] self.id_pad = empty[1] self.return_pooled = True def tokenize(self, texts): return self.tokenizer(texts, truncation=False, add_special_tokens=False)["input_ids"] def encode_with_transformers(self, tokens): tokens_g = tokens.clone() for batch_pos in range(tokens_g.shape[0]): index = tokens_g[batch_pos].cpu().tolist().index(self.id_end) tokens_g[batch_pos, index+1:tokens_g.shape[1]] = 0 l_out, l_pooled = self.clip_l(tokens) g_out, g_pooled = self.clip_g(tokens_g) lg_out = torch.cat([l_out, g_out], dim=-1) lg_out = torch.nn.functional.pad(lg_out, (0, 4096 - lg_out.shape[-1])) vector_out = torch.cat((l_pooled, g_pooled), dim=-1) lg_out.pooled = vector_out return lg_out def encode_embedding_init_text(self, init_text, nvpt): return torch.zeros((nvpt, 768+1280), device=devices.device) # XXX class Sd3T5(torch.nn.Module): def __init__(self, t5xxl): super().__init__() self.t5xxl = t5xxl self.tokenizer = T5TokenizerFast.from_pretrained("google/t5-v1_1-xxl") empty = self.tokenizer('', padding='max_length', max_length=2)["input_ids"] self.id_end = empty[0] self.id_pad = empty[1] def tokenize(self, texts): return self.tokenizer(texts, truncation=False, add_special_tokens=False)["input_ids"] def tokenize_line(self, line, *, target_token_count=None): if shared.opts.emphasis != "None": parsed = prompt_parser.parse_prompt_attention(line) else: parsed = [[line, 1.0]] tokenized = self.tokenize([text for text, _ in parsed]) tokens = [] multipliers = [] for text_tokens, (text, weight) in zip(tokenized, parsed): if text == 'BREAK' and weight == -1: continue tokens += text_tokens multipliers += [weight] * len(text_tokens) tokens += [self.id_end] multipliers += [1.0] if target_token_count is not None: if len(tokens) < target_token_count: tokens += [self.id_pad] * (target_token_count - len(tokens)) multipliers += [1.0] * (target_token_count - len(tokens)) else: tokens = tokens[0:target_token_count] multipliers = multipliers[0:target_token_count] return tokens, multipliers def forward(self, texts, *, token_count): if not self.t5xxl or not shared.opts.sd3_enable_t5: return torch.zeros((len(texts), token_count, 4096), device=devices.device, dtype=devices.dtype) tokens_batch = [] for text in texts: tokens, multipliers = self.tokenize_line(text, target_token_count=token_count) tokens_batch.append(tokens) t5_out, t5_pooled = self.t5xxl(tokens_batch) return t5_out def encode_embedding_init_text(self, init_text, nvpt): return torch.zeros((nvpt, 4096), device=devices.device) # XXX class SD3Cond(torch.nn.Module): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.tokenizer = SD3Tokenizer() with torch.no_grad(): self.clip_g = SDXLClipG(CLIPG_CONFIG, device="cpu", dtype=devices.dtype) self.clip_l = SDClipModel(layer="hidden", layer_idx=-2, device="cpu", dtype=devices.dtype, layer_norm_hidden_state=False, return_projected_pooled=False, textmodel_json_config=CLIPL_CONFIG) if shared.opts.sd3_enable_t5: self.t5xxl = T5XXLModel(T5_CONFIG, device="cpu", dtype=devices.dtype) else: self.t5xxl = None self.model_lg = Sd3ClipLG(self.clip_l, self.clip_g) self.model_t5 = Sd3T5(self.t5xxl) def forward(self, prompts: list[str]): with devices.without_autocast(): lg_out, vector_out = self.model_lg(prompts) t5_out = self.model_t5(prompts, token_count=lg_out.shape[1]) lgt_out = torch.cat([lg_out, t5_out], dim=-2) return { 'crossattn': lgt_out, 'vector': vector_out, } def before_load_weights(self, state_dict): clip_path = os.path.join(shared.models_path, "CLIP") if 'text_encoders.clip_g.transformer.text_model.embeddings.position_embedding.weight' not in state_dict: clip_g_file = modelloader.load_file_from_url(CLIPG_URL, model_dir=clip_path, file_name="clip_g.safetensors") with safetensors.safe_open(clip_g_file, framework="pt") as file: self.clip_g.transformer.load_state_dict(SafetensorsMapping(file)) if 'text_encoders.clip_l.transformer.text_model.embeddings.position_embedding.weight' not in state_dict: clip_l_file = modelloader.load_file_from_url(CLIPL_URL, model_dir=clip_path, file_name="clip_l.safetensors") with safetensors.safe_open(clip_l_file, framework="pt") as file: self.clip_l.transformer.load_state_dict(SafetensorsMapping(file), strict=False) if self.t5xxl and 'text_encoders.t5xxl.transformer.encoder.embed_tokens.weight' not in state_dict: t5_file = modelloader.load_file_from_url(T5_URL, model_dir=clip_path, file_name="t5xxl_fp16.safetensors") with safetensors.safe_open(t5_file, framework="pt") as file: self.t5xxl.transformer.load_state_dict(SafetensorsMapping(file), strict=False) def encode_embedding_init_text(self, init_text, nvpt): return torch.tensor([[0]], device=devices.device) # XXX def medvram_modules(self): return [self.clip_g, self.clip_l, self.t5xxl] def get_token_count(self, text): _, token_count = self.model_lg.process_texts([text]) return token_count def get_target_prompt_token_count(self, token_count): return self.model_lg.get_target_prompt_token_count(token_count)