import torch from torch.nn.functional import silu from types import MethodType from modules import devices, sd_hijack_optimizations, shared, script_callbacks, errors, sd_unet, patches from modules.hypernetworks import hypernetwork from modules.shared import cmd_opts from modules import sd_hijack_clip, sd_hijack_open_clip, sd_hijack_unet, sd_hijack_xlmr, xlmr, xlmr_m18 import ldm.modules.attention import ldm.modules.diffusionmodules.model import ldm.modules.diffusionmodules.openaimodel import ldm.models.diffusion.ddpm import ldm.models.diffusion.ddim import ldm.models.diffusion.plms import ldm.modules.encoders.modules import sgm.modules.attention import sgm.modules.diffusionmodules.model import sgm.modules.diffusionmodules.openaimodel import sgm.modules.encoders.modules attention_CrossAttention_forward = ldm.modules.attention.CrossAttention.forward diffusionmodules_model_nonlinearity = ldm.modules.diffusionmodules.model.nonlinearity diffusionmodules_model_AttnBlock_forward = ldm.modules.diffusionmodules.model.AttnBlock.forward # new memory efficient cross attention blocks do not support hypernets and we already # have memory efficient cross attention anyway, so this disables SD2.0's memory efficient cross attention ldm.modules.attention.MemoryEfficientCrossAttention = ldm.modules.attention.CrossAttention ldm.modules.attention.BasicTransformerBlock.ATTENTION_MODES["softmax-xformers"] = ldm.modules.attention.CrossAttention # silence new console spam from SD2 ldm.modules.attention.print = shared.ldm_print ldm.modules.diffusionmodules.model.print = shared.ldm_print ldm.util.print = shared.ldm_print ldm.models.diffusion.ddpm.print = shared.ldm_print optimizers = [] current_optimizer: sd_hijack_optimizations.SdOptimization = None ldm_patched_forward = sd_unet.create_unet_forward(ldm.modules.diffusionmodules.openaimodel.UNetModel.forward) ldm_original_forward = patches.patch(__file__, ldm.modules.diffusionmodules.openaimodel.UNetModel, "forward", ldm_patched_forward) sgm_patched_forward = sd_unet.create_unet_forward(sgm.modules.diffusionmodules.openaimodel.UNetModel.forward) sgm_original_forward = patches.patch(__file__, sgm.modules.diffusionmodules.openaimodel.UNetModel, "forward", sgm_patched_forward) def list_optimizers(): new_optimizers = script_callbacks.list_optimizers_callback() new_optimizers = [x for x in new_optimizers if x.is_available()] new_optimizers = sorted(new_optimizers, key=lambda x: x.priority, reverse=True) optimizers.clear() optimizers.extend(new_optimizers) def apply_optimizations(option=None): global current_optimizer undo_optimizations() if len(optimizers) == 0: # a script can access the model very early, and optimizations would not be filled by then current_optimizer = None return '' ldm.modules.diffusionmodules.model.nonlinearity = silu ldm.modules.diffusionmodules.openaimodel.th = sd_hijack_unet.th sgm.modules.diffusionmodules.model.nonlinearity = silu sgm.modules.diffusionmodules.openaimodel.th = sd_hijack_unet.th if current_optimizer is not None: current_optimizer.undo() current_optimizer = None selection = option or shared.opts.cross_attention_optimization if selection == "Automatic" and len(optimizers) > 0: matching_optimizer = next(iter([x for x in optimizers if x.cmd_opt and getattr(shared.cmd_opts, x.cmd_opt, False)]), optimizers[0]) else: matching_optimizer = next(iter([x for x in optimizers if x.title() == selection]), None) if selection == "None": matching_optimizer = None elif selection == "Automatic" and shared.cmd_opts.disable_opt_split_attention: matching_optimizer = None elif matching_optimizer is None: matching_optimizer = optimizers[0] if matching_optimizer is not None: print(f"Applying attention optimization: {matching_optimizer.name}... ", end='') matching_optimizer.apply() print("done.") current_optimizer = matching_optimizer return current_optimizer.name else: print("Disabling attention optimization") return '' def undo_optimizations(): ldm.modules.diffusionmodules.model.nonlinearity = diffusionmodules_model_nonlinearity ldm.modules.attention.CrossAttention.forward = hypernetwork.attention_CrossAttention_forward ldm.modules.diffusionmodules.model.AttnBlock.forward = diffusionmodules_model_AttnBlock_forward sgm.modules.diffusionmodules.model.nonlinearity = diffusionmodules_model_nonlinearity sgm.modules.attention.CrossAttention.forward = hypernetwork.attention_CrossAttention_forward sgm.modules.diffusionmodules.model.AttnBlock.forward = diffusionmodules_model_AttnBlock_forward def fix_checkpoint(): """checkpoints are now added and removed in embedding/hypernet code, since torch doesn't want checkpoints to be added when not training (there's a warning)""" pass def weighted_loss(sd_model, pred, target, mean=True): #Calculate the weight normally, but ignore the mean loss = sd_model._old_get_loss(pred, target, mean=False) #Check if we have weights available weight = getattr(sd_model, '_custom_loss_weight', None) if weight is not None: loss *= weight #Return the loss, as mean if specified return loss.mean() if mean else loss def weighted_forward(sd_model, x, c, w, *args, **kwargs): try: #Temporarily append weights to a place accessible during loss calc sd_model._custom_loss_weight = w #Replace 'get_loss' with a weight-aware one. Otherwise we need to reimplement 'forward' completely #Keep 'get_loss', but don't overwrite the previous old_get_loss if it's already set if not hasattr(sd_model, '_old_get_loss'): sd_model._old_get_loss = sd_model.get_loss sd_model.get_loss = MethodType(weighted_loss, sd_model) #Run the standard forward function, but with the patched 'get_loss' return sd_model.forward(x, c, *args, **kwargs) finally: try: #Delete temporary weights if appended del sd_model._custom_loss_weight except AttributeError: pass #If we have an old loss function, reset the loss function to the original one if hasattr(sd_model, '_old_get_loss'): sd_model.get_loss = sd_model._old_get_loss del sd_model._old_get_loss def apply_weighted_forward(sd_model): #Add new function 'weighted_forward' that can be called to calc weighted loss sd_model.weighted_forward = MethodType(weighted_forward, sd_model) def undo_weighted_forward(sd_model): try: del sd_model.weighted_forward except AttributeError: pass class StableDiffusionModelHijack: fixes = None layers = None circular_enabled = False clip = None optimization_method = None def __init__(self): import modules.textual_inversion.textual_inversion self.extra_generation_params = {} self.comments = [] self.embedding_db = modules.textual_inversion.textual_inversion.EmbeddingDatabase() self.embedding_db.add_embedding_dir(cmd_opts.embeddings_dir) def apply_optimizations(self, option=None): try: self.optimization_method = apply_optimizations(option) except Exception as e: errors.display(e, "applying cross attention optimization") undo_optimizations() def convert_sdxl_to_ssd(self, m): """Converts an SDXL model to a Segmind Stable Diffusion model (see https://huggingface.co/segmind/SSD-1B)""" delattr(m.model.diffusion_model.middle_block, '1') delattr(m.model.diffusion_model.middle_block, '2') for i in ['9', '8', '7', '6', '5', '4']: delattr(m.model.diffusion_model.input_blocks[7][1].transformer_blocks, i) delattr(m.model.diffusion_model.input_blocks[8][1].transformer_blocks, i) delattr(m.model.diffusion_model.output_blocks[0][1].transformer_blocks, i) delattr(m.model.diffusion_model.output_blocks[1][1].transformer_blocks, i) delattr(m.model.diffusion_model.output_blocks[4][1].transformer_blocks, '1') delattr(m.model.diffusion_model.output_blocks[5][1].transformer_blocks, '1') devices.torch_gc() def hijack(self, m): conditioner = getattr(m, 'conditioner', None) if conditioner: text_cond_models = [] for i in range(len(conditioner.embedders)): embedder = conditioner.embedders[i] typename = type(embedder).__name__ if typename == 'FrozenOpenCLIPEmbedder': embedder.model.token_embedding = EmbeddingsWithFixes(embedder.model.token_embedding, self) conditioner.embedders[i] = sd_hijack_open_clip.FrozenOpenCLIPEmbedderWithCustomWords(embedder, self) text_cond_models.append(conditioner.embedders[i]) if typename == 'FrozenCLIPEmbedder': model_embeddings = embedder.transformer.text_model.embeddings model_embeddings.token_embedding = EmbeddingsWithFixes(model_embeddings.token_embedding, self) conditioner.embedders[i] = sd_hijack_clip.FrozenCLIPEmbedderForSDXLWithCustomWords(embedder, self) text_cond_models.append(conditioner.embedders[i]) if typename == 'FrozenOpenCLIPEmbedder2': embedder.model.token_embedding = EmbeddingsWithFixes(embedder.model.token_embedding, self, textual_inversion_key='clip_g') conditioner.embedders[i] = sd_hijack_open_clip.FrozenOpenCLIPEmbedder2WithCustomWords(embedder, self) text_cond_models.append(conditioner.embedders[i]) if len(text_cond_models) == 1: m.cond_stage_model = text_cond_models[0] else: m.cond_stage_model = conditioner if type(m.cond_stage_model) == xlmr.BertSeriesModelWithTransformation or type(m.cond_stage_model) == xlmr_m18.BertSeriesModelWithTransformation: model_embeddings = m.cond_stage_model.roberta.embeddings model_embeddings.token_embedding = EmbeddingsWithFixes(model_embeddings.word_embeddings, self) m.cond_stage_model = sd_hijack_xlmr.FrozenXLMREmbedderWithCustomWords(m.cond_stage_model, self) elif type(m.cond_stage_model) == ldm.modules.encoders.modules.FrozenCLIPEmbedder: model_embeddings = m.cond_stage_model.transformer.text_model.embeddings model_embeddings.token_embedding = EmbeddingsWithFixes(model_embeddings.token_embedding, self) m.cond_stage_model = sd_hijack_clip.FrozenCLIPEmbedderWithCustomWords(m.cond_stage_model, self) elif type(m.cond_stage_model) == ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder: m.cond_stage_model.model.token_embedding = EmbeddingsWithFixes(m.cond_stage_model.model.token_embedding, self) m.cond_stage_model = sd_hijack_open_clip.FrozenOpenCLIPEmbedderWithCustomWords(m.cond_stage_model, self) apply_weighted_forward(m) if m.cond_stage_key == "edit": sd_hijack_unet.hijack_ddpm_edit() self.apply_optimizations() self.clip = m.cond_stage_model def flatten(el): flattened = [flatten(children) for children in el.children()] res = [el] for c in flattened: res += c return res self.layers = flatten(m) import modules.models.diffusion.ddpm_edit if isinstance(m, ldm.models.diffusion.ddpm.LatentDiffusion): sd_unet.original_forward = ldm_original_forward elif isinstance(m, modules.models.diffusion.ddpm_edit.LatentDiffusion): sd_unet.original_forward = ldm_original_forward elif isinstance(m, sgm.models.diffusion.DiffusionEngine): sd_unet.original_forward = sgm_original_forward else: sd_unet.original_forward = None def undo_hijack(self, m): conditioner = getattr(m, 'conditioner', None) if conditioner: for i in range(len(conditioner.embedders)): embedder = conditioner.embedders[i] if isinstance(embedder, (sd_hijack_open_clip.FrozenOpenCLIPEmbedderWithCustomWords, sd_hijack_open_clip.FrozenOpenCLIPEmbedder2WithCustomWords)): embedder.wrapped.model.token_embedding = embedder.wrapped.model.token_embedding.wrapped conditioner.embedders[i] = embedder.wrapped if isinstance(embedder, sd_hijack_clip.FrozenCLIPEmbedderForSDXLWithCustomWords): embedder.wrapped.transformer.text_model.embeddings.token_embedding = embedder.wrapped.transformer.text_model.embeddings.token_embedding.wrapped conditioner.embedders[i] = embedder.wrapped if hasattr(m, 'cond_stage_model'): delattr(m, 'cond_stage_model') elif type(m.cond_stage_model) == sd_hijack_xlmr.FrozenXLMREmbedderWithCustomWords: m.cond_stage_model = m.cond_stage_model.wrapped elif type(m.cond_stage_model) == sd_hijack_clip.FrozenCLIPEmbedderWithCustomWords: m.cond_stage_model = m.cond_stage_model.wrapped model_embeddings = m.cond_stage_model.transformer.text_model.embeddings if type(model_embeddings.token_embedding) == EmbeddingsWithFixes: model_embeddings.token_embedding = model_embeddings.token_embedding.wrapped elif type(m.cond_stage_model) == sd_hijack_open_clip.FrozenOpenCLIPEmbedderWithCustomWords: m.cond_stage_model.wrapped.model.token_embedding = m.cond_stage_model.wrapped.model.token_embedding.wrapped m.cond_stage_model = m.cond_stage_model.wrapped undo_optimizations() undo_weighted_forward(m) self.apply_circular(False) self.layers = None self.clip = None def apply_circular(self, enable): if self.circular_enabled == enable: return self.circular_enabled = enable for layer in [layer for layer in self.layers if type(layer) == torch.nn.Conv2d]: layer.padding_mode = 'circular' if enable else 'zeros' def clear_comments(self): self.comments = [] self.extra_generation_params = {} def get_prompt_lengths(self, text): if self.clip is None: return "-", "-" if hasattr(self.clip, 'get_token_count'): token_count = self.clip.get_token_count(text) else: _, token_count = self.clip.process_texts([text]) return token_count, self.clip.get_target_prompt_token_count(token_count) def redo_hijack(self, m): self.undo_hijack(m) self.hijack(m) class EmbeddingsWithFixes(torch.nn.Module): def __init__(self, wrapped, embeddings, textual_inversion_key='clip_l'): super().__init__() self.wrapped = wrapped self.embeddings = embeddings self.textual_inversion_key = textual_inversion_key def forward(self, input_ids): batch_fixes = self.embeddings.fixes self.embeddings.fixes = None inputs_embeds = self.wrapped(input_ids) if batch_fixes is None or len(batch_fixes) == 0 or max([len(x) for x in batch_fixes]) == 0: return inputs_embeds vecs = [] for fixes, tensor in zip(batch_fixes, inputs_embeds): for offset, embedding in fixes: vec = embedding.vec[self.textual_inversion_key] if isinstance(embedding.vec, dict) else embedding.vec emb = devices.cond_cast_unet(vec) emb_len = min(tensor.shape[0] - offset - 1, emb.shape[0]) tensor = torch.cat([tensor[0:offset + 1], emb[0:emb_len], tensor[offset + 1 + emb_len:]]) vecs.append(tensor) return torch.stack(vecs) def add_circular_option_to_conv_2d(): conv2d_constructor = torch.nn.Conv2d.__init__ def conv2d_constructor_circular(self, *args, **kwargs): return conv2d_constructor(self, *args, padding_mode='circular', **kwargs) torch.nn.Conv2d.__init__ = conv2d_constructor_circular model_hijack = StableDiffusionModelHijack() def register_buffer(self, name, attr): """ Fix register buffer bug for Mac OS. """ if type(attr) == torch.Tensor: if attr.device != devices.device: attr = attr.to(device=devices.device, dtype=(torch.float32 if devices.device.type == 'mps' else None)) setattr(self, name, attr) ldm.models.diffusion.ddim.DDIMSampler.register_buffer = register_buffer ldm.models.diffusion.plms.PLMSSampler.register_buffer = register_buffer