import torch from modules import prompt_parser, devices, sd_samplers_common from modules.shared import opts, state import modules.shared as shared from modules.script_callbacks import CFGDenoiserParams, cfg_denoiser_callback from modules.script_callbacks import CFGDenoisedParams, cfg_denoised_callback from modules.script_callbacks import AfterCFGCallbackParams, cfg_after_cfg_callback def catenate_conds(conds): if not isinstance(conds[0], dict): return torch.cat(conds) return {key: torch.cat([x[key] for x in conds]) for key in conds[0].keys()} def subscript_cond(cond, a, b): if not isinstance(cond, dict): return cond[a:b] return {key: vec[a:b] for key, vec in cond.items()} def pad_cond(tensor, repeats, empty): if not isinstance(tensor, dict): return torch.cat([tensor, empty.repeat((tensor.shape[0], repeats, 1))], axis=1) tensor['crossattn'] = pad_cond(tensor['crossattn'], repeats, empty) return tensor class CFGDenoiser(torch.nn.Module): """ Classifier free guidance denoiser. A wrapper for stable diffusion model (specifically for unet) that can take a noisy picture and produce a noise-free picture using two guidances (prompts) instead of one. Originally, the second prompt is just an empty string, but we use non-empty negative prompt. """ def __init__(self, sampler): super().__init__() self.model_wrap = None self.mask = None self.nmask = None self.init_latent = None self.steps = None """number of steps as specified by user in UI""" self.total_steps = None """expected number of calls to denoiser calculated from self.steps and specifics of the selected sampler""" self.step = 0 self.image_cfg_scale = None self.padded_cond_uncond = False self.padded_cond_uncond_v0 = False self.sampler = sampler self.model_wrap = None self.p = None # NOTE: masking before denoising can cause the original latents to be oversmoothed # as the original latents do not have noise self.mask_before_denoising = False @property def inner_model(self): raise NotImplementedError() def combine_denoised(self, x_out, conds_list, uncond, cond_scale): denoised_uncond = x_out[-uncond.shape[0]:] denoised = torch.clone(denoised_uncond) for i, conds in enumerate(conds_list): for cond_index, weight in conds: denoised[i] += (x_out[cond_index] - denoised_uncond[i]) * (weight * cond_scale) return denoised def combine_denoised_for_edit_model(self, x_out, cond_scale): out_cond, out_img_cond, out_uncond = x_out.chunk(3) denoised = out_uncond + cond_scale * (out_cond - out_img_cond) + self.image_cfg_scale * (out_img_cond - out_uncond) return denoised def get_pred_x0(self, x_in, x_out, sigma): return x_out def update_inner_model(self): self.model_wrap = None c, uc = self.p.get_conds() self.sampler.sampler_extra_args['cond'] = c self.sampler.sampler_extra_args['uncond'] = uc def pad_cond_uncond(self, cond, uncond): empty = shared.sd_model.cond_stage_model_empty_prompt num_repeats = (cond.shape[1] - uncond.shape[1]) // empty.shape[1] if num_repeats < 0: cond = pad_cond(cond, -num_repeats, empty) self.padded_cond_uncond = True elif num_repeats > 0: uncond = pad_cond(uncond, num_repeats, empty) self.padded_cond_uncond = True return cond, uncond def pad_cond_uncond_v0(self, cond, uncond): """ Pads the 'uncond' tensor to match the shape of the 'cond' tensor. If 'uncond' is a dictionary, it is assumed that the 'crossattn' key holds the tensor to be padded. If 'uncond' is a tensor, it is padded directly. If the number of columns in 'uncond' is less than the number of columns in 'cond', the last column of 'uncond' is repeated to match the number of columns in 'cond'. If the number of columns in 'uncond' is greater than the number of columns in 'cond', 'uncond' is truncated to match the number of columns in 'cond'. Args: cond (torch.Tensor or DictWithShape): The condition tensor to match the shape of 'uncond'. uncond (torch.Tensor or DictWithShape): The tensor to be padded, or a dictionary containing the tensor to be padded. Returns: tuple: A tuple containing the 'cond' tensor and the padded 'uncond' tensor. Note: This is the padding that was always used in DDIM before version 1.6.0 """ is_dict_cond = isinstance(uncond, dict) uncond_vec = uncond['crossattn'] if is_dict_cond else uncond if uncond_vec.shape[1] < cond.shape[1]: last_vector = uncond_vec[:, -1:] last_vector_repeated = last_vector.repeat([1, cond.shape[1] - uncond_vec.shape[1], 1]) uncond_vec = torch.hstack([uncond_vec, last_vector_repeated]) self.padded_cond_uncond_v0 = True elif uncond_vec.shape[1] > cond.shape[1]: uncond_vec = uncond_vec[:, :cond.shape[1]] self.padded_cond_uncond_v0 = True if is_dict_cond: uncond['crossattn'] = uncond_vec else: uncond = uncond_vec return cond, uncond def forward(self, x, sigma, uncond, cond, cond_scale, s_min_uncond, image_cond): if state.interrupted or state.skipped: raise sd_samplers_common.InterruptedException if sd_samplers_common.apply_refiner(self, sigma): cond = self.sampler.sampler_extra_args['cond'] uncond = self.sampler.sampler_extra_args['uncond'] # at self.image_cfg_scale == 1.0 produced results for edit model are the same as with normal sampling, # so is_edit_model is set to False to support AND composition. is_edit_model = shared.sd_model.cond_stage_key == "edit" and self.image_cfg_scale is not None and self.image_cfg_scale != 1.0 conds_list, tensor = prompt_parser.reconstruct_multicond_batch(cond, self.step) uncond = prompt_parser.reconstruct_cond_batch(uncond, self.step) assert not is_edit_model or all(len(conds) == 1 for conds in conds_list), "AND is not supported for InstructPix2Pix checkpoint (unless using Image CFG scale = 1.0)" # If we use masks, blending between the denoised and original latent images occurs here. def apply_blend(current_latent): blended_latent = current_latent * self.nmask + self.init_latent * self.mask if self.p.scripts is not None: from modules import scripts mba = scripts.MaskBlendArgs(current_latent, self.nmask, self.init_latent, self.mask, blended_latent, denoiser=self, sigma=sigma) self.p.scripts.on_mask_blend(self.p, mba) blended_latent = mba.blended_latent return blended_latent # Blend in the original latents (before) if self.mask_before_denoising and self.mask is not None: x = apply_blend(x) batch_size = len(conds_list) repeats = [len(conds_list[i]) for i in range(batch_size)] if shared.sd_model.model.conditioning_key == "crossattn-adm": image_uncond = torch.zeros_like(image_cond) make_condition_dict = lambda c_crossattn, c_adm: {"c_crossattn": [c_crossattn], "c_adm": c_adm} else: image_uncond = image_cond if isinstance(uncond, dict): make_condition_dict = lambda c_crossattn, c_concat: {**c_crossattn, "c_concat": [c_concat]} else: make_condition_dict = lambda c_crossattn, c_concat: {"c_crossattn": [c_crossattn], "c_concat": [c_concat]} if not is_edit_model: x_in = torch.cat([torch.stack([x[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [x]) sigma_in = torch.cat([torch.stack([sigma[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [sigma]) image_cond_in = torch.cat([torch.stack([image_cond[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [image_uncond]) else: x_in = torch.cat([torch.stack([x[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [x] + [x]) sigma_in = torch.cat([torch.stack([sigma[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [sigma] + [sigma]) image_cond_in = torch.cat([torch.stack([image_cond[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [image_uncond] + [torch.zeros_like(self.init_latent)]) denoiser_params = CFGDenoiserParams(x_in, image_cond_in, sigma_in, state.sampling_step, state.sampling_steps, tensor, uncond, self) cfg_denoiser_callback(denoiser_params) x_in = denoiser_params.x image_cond_in = denoiser_params.image_cond sigma_in = denoiser_params.sigma tensor = denoiser_params.text_cond uncond = denoiser_params.text_uncond skip_uncond = False if shared.opts.skip_early_cond != 0. and self.step / self.total_steps <= shared.opts.skip_early_cond: skip_uncond = True self.p.extra_generation_params["Skip Early CFG"] = shared.opts.skip_early_cond elif (self.step % 2 or shared.opts.s_min_uncond_all) and s_min_uncond > 0 and sigma[0] < s_min_uncond and not is_edit_model: skip_uncond = True self.p.extra_generation_params["NGMS"] = s_min_uncond if shared.opts.s_min_uncond_all: self.p.extra_generation_params["NGMS all steps"] = shared.opts.s_min_uncond_all if skip_uncond: x_in = x_in[:-batch_size] sigma_in = sigma_in[:-batch_size] self.padded_cond_uncond = False self.padded_cond_uncond_v0 = False if shared.opts.pad_cond_uncond_v0 and tensor.shape[1] != uncond.shape[1]: tensor, uncond = self.pad_cond_uncond_v0(tensor, uncond) elif shared.opts.pad_cond_uncond and tensor.shape[1] != uncond.shape[1]: tensor, uncond = self.pad_cond_uncond(tensor, uncond) if tensor.shape[1] == uncond.shape[1] or skip_uncond: if is_edit_model: cond_in = catenate_conds([tensor, uncond, uncond]) elif skip_uncond: cond_in = tensor else: cond_in = catenate_conds([tensor, uncond]) if shared.opts.batch_cond_uncond: x_out = self.inner_model(x_in, sigma_in, cond=make_condition_dict(cond_in, image_cond_in)) else: x_out = torch.zeros_like(x_in) for batch_offset in range(0, x_out.shape[0], batch_size): a = batch_offset b = a + batch_size x_out[a:b] = self.inner_model(x_in[a:b], sigma_in[a:b], cond=make_condition_dict(subscript_cond(cond_in, a, b), image_cond_in[a:b])) else: x_out = torch.zeros_like(x_in) batch_size = batch_size*2 if shared.opts.batch_cond_uncond else batch_size for batch_offset in range(0, tensor.shape[0], batch_size): a = batch_offset b = min(a + batch_size, tensor.shape[0]) if not is_edit_model: c_crossattn = subscript_cond(tensor, a, b) else: c_crossattn = torch.cat([tensor[a:b]], uncond) x_out[a:b] = self.inner_model(x_in[a:b], sigma_in[a:b], cond=make_condition_dict(c_crossattn, image_cond_in[a:b])) if not skip_uncond: x_out[-uncond.shape[0]:] = self.inner_model(x_in[-uncond.shape[0]:], sigma_in[-uncond.shape[0]:], cond=make_condition_dict(uncond, image_cond_in[-uncond.shape[0]:])) denoised_image_indexes = [x[0][0] for x in conds_list] if skip_uncond: fake_uncond = torch.cat([x_out[i:i+1] for i in denoised_image_indexes]) x_out = torch.cat([x_out, fake_uncond]) # we skipped uncond denoising, so we put cond-denoised image to where the uncond-denoised image should be denoised_params = CFGDenoisedParams(x_out, state.sampling_step, state.sampling_steps, self.inner_model) cfg_denoised_callback(denoised_params) devices.test_for_nans(x_out, "unet") if is_edit_model: denoised = self.combine_denoised_for_edit_model(x_out, cond_scale) elif skip_uncond: denoised = self.combine_denoised(x_out, conds_list, uncond, 1.0) else: denoised = self.combine_denoised(x_out, conds_list, uncond, cond_scale) # Blend in the original latents (after) if not self.mask_before_denoising and self.mask is not None: denoised = apply_blend(denoised) self.sampler.last_latent = self.get_pred_x0(torch.cat([x_in[i:i + 1] for i in denoised_image_indexes]), torch.cat([x_out[i:i + 1] for i in denoised_image_indexes]), sigma) if opts.live_preview_content == "Prompt": preview = self.sampler.last_latent elif opts.live_preview_content == "Negative prompt": preview = self.get_pred_x0(x_in[-uncond.shape[0]:], x_out[-uncond.shape[0]:], sigma) else: preview = self.get_pred_x0(torch.cat([x_in[i:i+1] for i in denoised_image_indexes]), torch.cat([denoised[i:i+1] for i in denoised_image_indexes]), sigma) sd_samplers_common.store_latent(preview) after_cfg_callback_params = AfterCFGCallbackParams(denoised, state.sampling_step, state.sampling_steps) cfg_after_cfg_callback(after_cfg_callback_params) denoised = after_cfg_callback_params.x self.step += 1 return denoised