""" Hypertile module for splitting attention layers in SD-1.5 U-Net and SD-1.5 VAE Warn: The patch works well only if the input image has a width and height that are multiples of 128 Original author: @tfernd GitHub: https://github.com/tfernd/HyperTile """ from __future__ import annotations from dataclasses import dataclass from typing import Callable from functools import wraps, cache import math import torch.nn as nn import random from einops import rearrange @dataclass class HypertileParams: depth = 0 layer_name = "" tile_size: int = 0 swap_size: int = 0 aspect_ratio: float = 1.0 forward = None enabled = False # TODO add SD-XL layers DEPTH_LAYERS = { 0: [ # SD 1.5 U-Net (diffusers) "down_blocks.0.attentions.0.transformer_blocks.0.attn1", "down_blocks.0.attentions.1.transformer_blocks.0.attn1", "up_blocks.3.attentions.0.transformer_blocks.0.attn1", "up_blocks.3.attentions.1.transformer_blocks.0.attn1", "up_blocks.3.attentions.2.transformer_blocks.0.attn1", # SD 1.5 U-Net (ldm) "input_blocks.1.1.transformer_blocks.0.attn1", "input_blocks.2.1.transformer_blocks.0.attn1", "output_blocks.9.1.transformer_blocks.0.attn1", "output_blocks.10.1.transformer_blocks.0.attn1", "output_blocks.11.1.transformer_blocks.0.attn1", # SD 1.5 VAE "decoder.mid_block.attentions.0", "decoder.mid.attn_1", ], 1: [ # SD 1.5 U-Net (diffusers) "down_blocks.1.attentions.0.transformer_blocks.0.attn1", "down_blocks.1.attentions.1.transformer_blocks.0.attn1", "up_blocks.2.attentions.0.transformer_blocks.0.attn1", "up_blocks.2.attentions.1.transformer_blocks.0.attn1", "up_blocks.2.attentions.2.transformer_blocks.0.attn1", # SD 1.5 U-Net (ldm) "input_blocks.4.1.transformer_blocks.0.attn1", "input_blocks.5.1.transformer_blocks.0.attn1", "output_blocks.6.1.transformer_blocks.0.attn1", "output_blocks.7.1.transformer_blocks.0.attn1", "output_blocks.8.1.transformer_blocks.0.attn1", ], 2: [ # SD 1.5 U-Net (diffusers) "down_blocks.2.attentions.0.transformer_blocks.0.attn1", "down_blocks.2.attentions.1.transformer_blocks.0.attn1", "up_blocks.1.attentions.0.transformer_blocks.0.attn1", "up_blocks.1.attentions.1.transformer_blocks.0.attn1", "up_blocks.1.attentions.2.transformer_blocks.0.attn1", # SD 1.5 U-Net (ldm) "input_blocks.7.1.transformer_blocks.0.attn1", "input_blocks.8.1.transformer_blocks.0.attn1", "output_blocks.3.1.transformer_blocks.0.attn1", "output_blocks.4.1.transformer_blocks.0.attn1", "output_blocks.5.1.transformer_blocks.0.attn1", ], 3: [ # SD 1.5 U-Net (diffusers) "mid_block.attentions.0.transformer_blocks.0.attn1", # SD 1.5 U-Net (ldm) "middle_block.1.transformer_blocks.0.attn1", ], } # XL layers, thanks for GitHub@gel-crabs for the help DEPTH_LAYERS_XL = { 0: [ # SD 1.5 U-Net (diffusers) "down_blocks.0.attentions.0.transformer_blocks.0.attn1", "down_blocks.0.attentions.1.transformer_blocks.0.attn1", "up_blocks.3.attentions.0.transformer_blocks.0.attn1", "up_blocks.3.attentions.1.transformer_blocks.0.attn1", "up_blocks.3.attentions.2.transformer_blocks.0.attn1", # SD 1.5 U-Net (ldm) "input_blocks.4.1.transformer_blocks.0.attn1", "input_blocks.5.1.transformer_blocks.0.attn1", "output_blocks.3.1.transformer_blocks.0.attn1", "output_blocks.4.1.transformer_blocks.0.attn1", "output_blocks.5.1.transformer_blocks.0.attn1", # SD 1.5 VAE "decoder.mid_block.attentions.0", "decoder.mid.attn_1", ], 1: [ # SD 1.5 U-Net (diffusers) #"down_blocks.1.attentions.0.transformer_blocks.0.attn1", #"down_blocks.1.attentions.1.transformer_blocks.0.attn1", #"up_blocks.2.attentions.0.transformer_blocks.0.attn1", #"up_blocks.2.attentions.1.transformer_blocks.0.attn1", #"up_blocks.2.attentions.2.transformer_blocks.0.attn1", # SD 1.5 U-Net (ldm) "input_blocks.4.1.transformer_blocks.1.attn1", "input_blocks.5.1.transformer_blocks.1.attn1", "output_blocks.3.1.transformer_blocks.1.attn1", "output_blocks.4.1.transformer_blocks.1.attn1", "output_blocks.5.1.transformer_blocks.1.attn1", "input_blocks.7.1.transformer_blocks.0.attn1", "input_blocks.8.1.transformer_blocks.0.attn1", "output_blocks.0.1.transformer_blocks.0.attn1", "output_blocks.1.1.transformer_blocks.0.attn1", "output_blocks.2.1.transformer_blocks.0.attn1", "input_blocks.7.1.transformer_blocks.1.attn1", "input_blocks.8.1.transformer_blocks.1.attn1", "output_blocks.0.1.transformer_blocks.1.attn1", "output_blocks.1.1.transformer_blocks.1.attn1", "output_blocks.2.1.transformer_blocks.1.attn1", "input_blocks.7.1.transformer_blocks.2.attn1", "input_blocks.8.1.transformer_blocks.2.attn1", "output_blocks.0.1.transformer_blocks.2.attn1", "output_blocks.1.1.transformer_blocks.2.attn1", "output_blocks.2.1.transformer_blocks.2.attn1", "input_blocks.7.1.transformer_blocks.3.attn1", "input_blocks.8.1.transformer_blocks.3.attn1", "output_blocks.0.1.transformer_blocks.3.attn1", "output_blocks.1.1.transformer_blocks.3.attn1", "output_blocks.2.1.transformer_blocks.3.attn1", "input_blocks.7.1.transformer_blocks.4.attn1", "input_blocks.8.1.transformer_blocks.4.attn1", "output_blocks.0.1.transformer_blocks.4.attn1", "output_blocks.1.1.transformer_blocks.4.attn1", "output_blocks.2.1.transformer_blocks.4.attn1", "input_blocks.7.1.transformer_blocks.5.attn1", "input_blocks.8.1.transformer_blocks.5.attn1", "output_blocks.0.1.transformer_blocks.5.attn1", "output_blocks.1.1.transformer_blocks.5.attn1", "output_blocks.2.1.transformer_blocks.5.attn1", "input_blocks.7.1.transformer_blocks.6.attn1", "input_blocks.8.1.transformer_blocks.6.attn1", "output_blocks.0.1.transformer_blocks.6.attn1", "output_blocks.1.1.transformer_blocks.6.attn1", "output_blocks.2.1.transformer_blocks.6.attn1", "input_blocks.7.1.transformer_blocks.7.attn1", "input_blocks.8.1.transformer_blocks.7.attn1", "output_blocks.0.1.transformer_blocks.7.attn1", "output_blocks.1.1.transformer_blocks.7.attn1", "output_blocks.2.1.transformer_blocks.7.attn1", "input_blocks.7.1.transformer_blocks.8.attn1", "input_blocks.8.1.transformer_blocks.8.attn1", "output_blocks.0.1.transformer_blocks.8.attn1", "output_blocks.1.1.transformer_blocks.8.attn1", "output_blocks.2.1.transformer_blocks.8.attn1", "input_blocks.7.1.transformer_blocks.9.attn1", "input_blocks.8.1.transformer_blocks.9.attn1", "output_blocks.0.1.transformer_blocks.9.attn1", "output_blocks.1.1.transformer_blocks.9.attn1", "output_blocks.2.1.transformer_blocks.9.attn1", ], 2: [ # SD 1.5 U-Net (diffusers) "mid_block.attentions.0.transformer_blocks.0.attn1", # SD 1.5 U-Net (ldm) "middle_block.1.transformer_blocks.0.attn1", "middle_block.1.transformer_blocks.1.attn1", "middle_block.1.transformer_blocks.2.attn1", "middle_block.1.transformer_blocks.3.attn1", "middle_block.1.transformer_blocks.4.attn1", "middle_block.1.transformer_blocks.5.attn1", "middle_block.1.transformer_blocks.6.attn1", "middle_block.1.transformer_blocks.7.attn1", "middle_block.1.transformer_blocks.8.attn1", "middle_block.1.transformer_blocks.9.attn1", ], 3 : [] # TODO - separate layers for SD-XL } RNG_INSTANCE = random.Random() @cache def get_divisors(value: int, min_value: int, /, max_options: int = 1) -> list[int]: """ Returns divisors of value that x * min_value <= value in big -> small order, amount of divisors is limited by max_options """ max_options = max(1, max_options) # at least 1 option should be returned min_value = min(min_value, value) divisors = [i for i in range(min_value, value + 1) if value % i == 0] # divisors in small -> big order ns = [value // i for i in divisors[:max_options]] # has at least 1 element # big -> small order return ns def random_divisor(value: int, min_value: int, /, max_options: int = 1) -> int: """ Returns a random divisor of value that x * min_value <= value if max_options is 1, the behavior is deterministic """ ns = get_divisors(value, min_value, max_options=max_options) # get cached divisors idx = RNG_INSTANCE.randint(0, len(ns) - 1) return ns[idx] def set_hypertile_seed(seed: int) -> None: RNG_INSTANCE.seed(seed) @cache def largest_tile_size_available(width: int, height: int) -> int: """ Calculates the largest tile size available for a given width and height Tile size is always a power of 2 """ gcd = math.gcd(width, height) largest_tile_size_available = 1 while gcd % (largest_tile_size_available * 2) == 0: largest_tile_size_available *= 2 return largest_tile_size_available def iterative_closest_divisors(hw:int, aspect_ratio:float) -> tuple[int, int]: """ Finds h and w such that h*w = hw and h/w = aspect_ratio We check all possible divisors of hw and return the closest to the aspect ratio """ divisors = [i for i in range(2, hw + 1) if hw % i == 0] # all divisors of hw pairs = [(i, hw // i) for i in divisors] # all pairs of divisors of hw ratios = [w/h for h, w in pairs] # all ratios of pairs of divisors of hw closest_ratio = min(ratios, key=lambda x: abs(x - aspect_ratio)) # closest ratio to aspect_ratio closest_pair = pairs[ratios.index(closest_ratio)] # closest pair of divisors to aspect_ratio return closest_pair @cache def find_hw_candidates(hw:int, aspect_ratio:float) -> tuple[int, int]: """ Finds h and w such that h*w = hw and h/w = aspect_ratio """ h, w = round(math.sqrt(hw * aspect_ratio)), round(math.sqrt(hw / aspect_ratio)) # find h and w such that h*w = hw and h/w = aspect_ratio if h * w != hw: w_candidate = hw / h # check if w is an integer if not w_candidate.is_integer(): h_candidate = hw / w # check if h is an integer if not h_candidate.is_integer(): return iterative_closest_divisors(hw, aspect_ratio) else: h = int(h_candidate) else: w = int(w_candidate) return h, w def self_attn_forward(params: HypertileParams, scale_depth=True) -> Callable: @wraps(params.forward) def wrapper(*args, **kwargs): if not params.enabled: return params.forward(*args, **kwargs) latent_tile_size = max(128, params.tile_size) // 8 x = args[0] # VAE if x.ndim == 4: b, c, h, w = x.shape nh = random_divisor(h, latent_tile_size, params.swap_size) nw = random_divisor(w, latent_tile_size, params.swap_size) if nh * nw > 1: x = rearrange(x, "b c (nh h) (nw w) -> (b nh nw) c h w", nh=nh, nw=nw) # split into nh * nw tiles out = params.forward(x, *args[1:], **kwargs) if nh * nw > 1: out = rearrange(out, "(b nh nw) c h w -> b c (nh h) (nw w)", nh=nh, nw=nw) # U-Net else: hw: int = x.size(1) h, w = find_hw_candidates(hw, params.aspect_ratio) assert h * w == hw, f"Invalid aspect ratio {params.aspect_ratio} for input of shape {x.shape}, hw={hw}, h={h}, w={w}" factor = 2 ** params.depth if scale_depth else 1 nh = random_divisor(h, latent_tile_size * factor, params.swap_size) nw = random_divisor(w, latent_tile_size * factor, params.swap_size) if nh * nw > 1: x = rearrange(x, "b (nh h nw w) c -> (b nh nw) (h w) c", h=h // nh, w=w // nw, nh=nh, nw=nw) out = params.forward(x, *args[1:], **kwargs) if nh * nw > 1: out = rearrange(out, "(b nh nw) hw c -> b nh nw hw c", nh=nh, nw=nw) out = rearrange(out, "b nh nw (h w) c -> b (nh h nw w) c", h=h // nh, w=w // nw) return out return wrapper def hypertile_hook_model(model: nn.Module, width, height, *, enable=False, tile_size_max=128, swap_size=1, max_depth=3, is_sdxl=False): hypertile_layers = getattr(model, "__webui_hypertile_layers", None) if hypertile_layers is None: if not enable: return hypertile_layers = {} layers = DEPTH_LAYERS_XL if is_sdxl else DEPTH_LAYERS for depth in range(4): for layer_name, module in model.named_modules(): if any(layer_name.endswith(try_name) for try_name in layers[depth]): params = HypertileParams() module.__webui_hypertile_params = params params.forward = module.forward params.depth = depth params.layer_name = layer_name module.forward = self_attn_forward(params) hypertile_layers[layer_name] = 1 model.__webui_hypertile_layers = hypertile_layers aspect_ratio = width / height tile_size = min(largest_tile_size_available(width, height), tile_size_max) for layer_name, module in model.named_modules(): if layer_name in hypertile_layers: params = module.__webui_hypertile_params params.tile_size = tile_size params.swap_size = swap_size params.aspect_ratio = aspect_ratio params.enabled = enable and params.depth <= max_depth