import os import threading from modules.paths import script_path import torch import numpy as np from omegaconf import OmegaConf from PIL import Image import signal from ldm.util import instantiate_from_config from modules.shared import opts, cmd_opts, state import modules.shared as shared import modules.ui from modules.ui import plaintext_to_html import modules.scripts import modules.processing as processing import modules.sd_hijack import modules.gfpgan_model as gfpgan import modules.realesrgan_model as realesrgan import modules.images as images import modules.lowvram import modules.txt2img import modules.img2img shared.sd_upscalers = { "RealESRGAN": lambda img: realesrgan.upscale_with_realesrgan(img, 2, 0), "Lanczos": lambda img: img.resize((img.width*2, img.height*2), resample=images.LANCZOS), "None": lambda img: img } realesrgan.setup_realesrgan() gfpgan.setup_gfpgan() def load_model_from_config(config, ckpt, verbose=False): print(f"Loading model from {ckpt}") pl_sd = torch.load(ckpt, map_location="cpu") if "global_step" in pl_sd: print(f"Global Step: {pl_sd['global_step']}") sd = pl_sd["state_dict"] model = instantiate_from_config(config.model) m, u = model.load_state_dict(sd, strict=False) if len(m) > 0 and verbose: print("missing keys:") print(m) if len(u) > 0 and verbose: print("unexpected keys:") print(u) model.eval() return model def draw_xy_grid(xs, ys, x_label, y_label, cell): res = [] ver_texts = [[images.GridAnnotation(y_label(y))] for y in ys] hor_texts = [[images.GridAnnotation(x_label(x))] for x in xs] for y in ys: for x in xs: state.job = f"{x + y * len(xs)} out of {len(xs) * len(ys)}" res.append(cell(x, y)) grid = images.image_grid(res, rows=len(ys)) grid = images.draw_grid_annotations(grid, res[0].width, res[0].height, hor_texts, ver_texts) return grid def run_extras(image, GFPGAN_strength, RealESRGAN_upscaling, RealESRGAN_model_index): processing.torch_gc() image = image.convert("RGB") outpath = opts.outdir_samples or opts.outdir_extras_samples if gfpgan.have_gfpgan is not None and GFPGAN_strength > 0: restored_img = gfpgan.gfpgan_fix_faces(np.array(image, dtype=np.uint8)) res = Image.fromarray(restored_img) if GFPGAN_strength < 1.0: res = Image.blend(image, res, GFPGAN_strength) image = res if realesrgan.have_realesrgan and RealESRGAN_upscaling != 1.0: image = realesrgan.upscale_with_realesrgan(image, RealESRGAN_upscaling, RealESRGAN_model_index) images.save_image(image, outpath, "", None, '', opts.samples_format, short_filename=True, no_prompt=True) return image, '', '' def run_pnginfo(image): info = '' for key, text in image.info.items(): info += f"""
{plaintext_to_html(str(key))}
{plaintext_to_html(str(text))}
{message}