""" Tiny AutoEncoder for Stable Diffusion (DNN for encoding / decoding SD's latent space) https://github.com/madebyollin/taesd """ import os import torch import torch.nn as nn from modules import devices, paths_internal, shared sd_vae_taesd_models = {} def conv(n_in, n_out, **kwargs): return nn.Conv2d(n_in, n_out, 3, padding=1, **kwargs) class Clamp(nn.Module): @staticmethod def forward(x): return torch.tanh(x / 3) * 3 class Block(nn.Module): def __init__(self, n_in, n_out): super().__init__() self.conv = nn.Sequential(conv(n_in, n_out), nn.ReLU(), conv(n_out, n_out), nn.ReLU(), conv(n_out, n_out)) self.skip = nn.Conv2d(n_in, n_out, 1, bias=False) if n_in != n_out else nn.Identity() self.fuse = nn.ReLU() def forward(self, x): return self.fuse(self.conv(x) + self.skip(x)) def decoder(latent_channels=4): return nn.Sequential( Clamp(), conv(latent_channels, 64), nn.ReLU(), Block(64, 64), Block(64, 64), Block(64, 64), nn.Upsample(scale_factor=2), conv(64, 64, bias=False), Block(64, 64), Block(64, 64), Block(64, 64), nn.Upsample(scale_factor=2), conv(64, 64, bias=False), Block(64, 64), Block(64, 64), Block(64, 64), nn.Upsample(scale_factor=2), conv(64, 64, bias=False), Block(64, 64), conv(64, 3), ) def encoder(latent_channels=4): return nn.Sequential( conv(3, 64), Block(64, 64), conv(64, 64, stride=2, bias=False), Block(64, 64), Block(64, 64), Block(64, 64), conv(64, 64, stride=2, bias=False), Block(64, 64), Block(64, 64), Block(64, 64), conv(64, 64, stride=2, bias=False), Block(64, 64), Block(64, 64), Block(64, 64), conv(64, latent_channels), ) class TAESDDecoder(nn.Module): latent_magnitude = 3 latent_shift = 0.5 def __init__(self, decoder_path="taesd_decoder.pth", latent_channels=None): """Initialize pretrained TAESD on the given device from the given checkpoints.""" super().__init__() if latent_channels is None: latent_channels = 16 if any(typ in str(decoder_path) for typ in ("taesd3", "taef1")) else 4 self.decoder = decoder(latent_channels) self.decoder.load_state_dict( torch.load(decoder_path, map_location='cpu' if devices.device.type != 'cuda' else None)) class TAESDEncoder(nn.Module): latent_magnitude = 3 latent_shift = 0.5 def __init__(self, encoder_path="taesd_encoder.pth", latent_channels=None): """Initialize pretrained TAESD on the given device from the given checkpoints.""" super().__init__() if latent_channels is None: latent_channels = 16 if any(typ in str(encoder_path) for typ in ("taesd3", "taef1")) else 4 self.encoder = encoder(latent_channels) self.encoder.load_state_dict( torch.load(encoder_path, map_location='cpu' if devices.device.type != 'cuda' else None)) def download_model(model_path, model_url): if not os.path.exists(model_path): os.makedirs(os.path.dirname(model_path), exist_ok=True) print(f'Downloading TAESD model to: {model_path}') torch.hub.download_url_to_file(model_url, model_path) def decoder_model(): if shared.sd_model.is_sd3: model_name = "taesd3_decoder.pth" elif shared.sd_model.is_flux1: model_name = "taef1_decoder.pth" elif shared.sd_model.is_sdxl: model_name = "taesdxl_decoder.pth" else: model_name = "taesd_decoder.pth" loaded_model = sd_vae_taesd_models.get(model_name) if loaded_model is None: model_path = os.path.join(paths_internal.models_path, "VAE-taesd", model_name) download_model(model_path, 'https://github.com/madebyollin/taesd/raw/main/' + model_name) if os.path.exists(model_path): loaded_model = TAESDDecoder(model_path) loaded_model.eval() loaded_model.to(devices.device, devices.dtype) sd_vae_taesd_models[model_name] = loaded_model else: raise FileNotFoundError('TAESD model not found') return loaded_model.decoder def encoder_model(): if shared.sd_model.is_sd3: model_name = "taesd3_encoder.pth" elif shared.sd_model.is_flux1: model_name = "taef1_encoder.pth" elif shared.sd_model.is_sdxl: model_name = "taesdxl_encoder.pth" else: model_name = "taesd_encoder.pth" loaded_model = sd_vae_taesd_models.get(model_name) if loaded_model is None: model_path = os.path.join(paths_internal.models_path, "VAE-taesd", model_name) download_model(model_path, 'https://github.com/madebyollin/taesd/raw/main/' + model_name) if os.path.exists(model_path): loaded_model = TAESDEncoder(model_path) loaded_model.eval() loaded_model.to(devices.device, devices.dtype) sd_vae_taesd_models[model_name] = loaded_model else: raise FileNotFoundError('TAESD model not found') return loaded_model.encoder