import argparse import os import sys script_path = os.path.dirname(os.path.realpath(__file__)) # use current directory as SD dir if it has related files, otherwise parent dir of script as stated in guide sd_path = os.path.abspath('.') if os.path.exists('./ldm/models/diffusion/ddpm.py') else os.path.dirname(script_path) # add parent directory to path; this is where Stable diffusion repo should be path_dirs = [ (sd_path, 'ldm', 'Stable Diffusion'), (os.path.join(sd_path,'../taming-transformers'), 'taming', 'Taming Transformers') ] for d, must_exist, what in path_dirs: must_exist_path = os.path.abspath(os.path.join(script_path, d, must_exist)) if not os.path.exists(must_exist_path): print(f"Warning: {what} not found at path {must_exist_path}", file=sys.stderr) else: sys.path.append(os.path.join(script_path, d)) import torch import torch.nn as nn import numpy as np import gradio as gr import gradio.utils from omegaconf import OmegaConf from PIL import Image, ImageFont, ImageDraw, PngImagePlugin, ImageFilter, ImageOps from torch import autocast import mimetypes import random import math import html import time import json import traceback from collections import namedtuple from contextlib import nullcontext import signal import tqdm import re import threading import time import base64 import io import k_diffusion.sampling from ldm.util import instantiate_from_config from ldm.models.diffusion.ddim import DDIMSampler from ldm.models.diffusion.plms import PLMSSampler # this is a fix for Windows users. Without it, javascript files will be served with text/html content-type and the bowser will not show any UI mimetypes.init() mimetypes.add_type('application/javascript', '.js') # some of those options should not be changed at all because they would break the model, so I removed them from options. opt_C = 4 opt_f = 8 LANCZOS = (Image.Resampling.LANCZOS if hasattr(Image, 'Resampling') else Image.LANCZOS) invalid_filename_chars = '<>:"/\\|?*\n' config_filename = "config.json" sd_model_file = os.path.join(script_path, 'model.ckpt') if not os.path.exists(sd_model_file): sd_model_file = "models/ldm/stable-diffusion-v1/model.ckpt" parser = argparse.ArgumentParser() parser.add_argument("--config", type=str, default=os.path.join(sd_path, "configs/stable-diffusion/v1-inference.yaml"), help="path to config which constructs model",) parser.add_argument("--ckpt", type=str, default=os.path.join(sd_path, sd_model_file), help="path to checkpoint of model",) parser.add_argument("--gfpgan-dir", type=str, help="GFPGAN directory", default=('./src/gfpgan' if os.path.exists('./src/gfpgan') else './GFPGAN')) parser.add_argument("--gfpgan-model", type=str, help="GFPGAN model file name", default='GFPGANv1.3.pth') parser.add_argument("--no-half", action='store_true', help="do not switch the model to 16-bit floats") parser.add_argument("--no-progressbar-hiding", action='store_true', help="do not hide progressbar in gradio UI (we hide it because it slows down ML if you have hardware accleration in browser)") parser.add_argument("--max-batch-count", type=int, default=16, help="maximum batch count value for the UI") parser.add_argument("--embeddings-dir", type=str, default='embeddings', help="embeddings dirtectory for textual inversion (default: embeddings)") parser.add_argument("--allow-code", action='store_true', help="allow custom script execution from webui") parser.add_argument("--medvram", action='store_true', help="enable stable diffusion model optimizations for sacrficing a little speed for low VRM usage") parser.add_argument("--lowvram", action='store_true', help="enable stable diffusion model optimizations for sacrficing a lot of speed for very low VRM usage") parser.add_argument("--always-batch-cond-uncond", action='store_true', help="a workaround test; may help with speed in you use --lowvram") parser.add_argument("--precision", type=str, help="evaluate at this precision", choices=["full", "autocast"], default="autocast") parser.add_argument("--share", action='store_true', help="use share=True for gradio and make the UI accessible through their site (doesn't work for me but you might have better luck)") cmd_opts = parser.parse_args() cpu = torch.device("cpu") gpu = torch.device("cuda") device = gpu if torch.cuda.is_available() else cpu batch_cond_uncond = cmd_opts.always_batch_cond_uncond or not (cmd_opts.lowvram or cmd_opts.medvram) queue_lock = threading.Lock() def gr_show(visible=True): return {"visible": visible, "__type__": "update"} class State: interrupted = False job = "" def interrupt(self): self.interrupted = True state = State() if not cmd_opts.share: # fix gradio phoning home gradio.utils.version_check = lambda: None gradio.utils.get_local_ip_address = lambda: '127.0.0.1' css_hide_progressbar = """ .wrap .m-12 svg { display:none!important; } .wrap .m-12::before { content:"Loading..." } .progress-bar { display:none!important; } .meta-text { display:none!important; } """ SamplerData = namedtuple('SamplerData', ['name', 'constructor']) samplers = [ *[SamplerData(x[0], lambda funcname=x[1]: KDiffusionSampler(funcname)) for x in [ ('Euler a', 'sample_euler_ancestral'), ('Euler', 'sample_euler'), ('LMS', 'sample_lms'), ('Heun', 'sample_heun'), ('DPM2', 'sample_dpm_2'), ('DPM2 a', 'sample_dpm_2_ancestral'), ] if hasattr(k_diffusion.sampling, x[1])], SamplerData('DDIM', lambda: VanillaStableDiffusionSampler(DDIMSampler)), SamplerData('PLMS', lambda: VanillaStableDiffusionSampler(PLMSSampler)), ] samplers_for_img2img = [x for x in samplers if x.name != 'PLMS'] RealesrganModelInfo = namedtuple("RealesrganModelInfo", ["name", "location", "model", "netscale"]) try: from basicsr.archs.rrdbnet_arch import RRDBNet from realesrgan import RealESRGANer from realesrgan.archs.srvgg_arch import SRVGGNetCompact realesrgan_models = [ RealesrganModelInfo( name="Real-ESRGAN 4x plus", location="https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth", netscale=4, model=lambda: RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4) ), RealesrganModelInfo( name="Real-ESRGAN 4x plus anime 6B", location="https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth", netscale=4, model=lambda: RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=6, num_grow_ch=32, scale=4) ), RealesrganModelInfo( name="Real-ESRGAN 2x plus", location="https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.1/RealESRGAN_x2plus.pth", netscale=2, model=lambda: RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=2) ), ] have_realesrgan = True except Exception: print("Error importing Real-ESRGAN:", file=sys.stderr) print(traceback.format_exc(), file=sys.stderr) realesrgan_models = [RealesrganModelInfo('None', '', 0, None)] have_realesrgan = False sd_upscalers = { "RealESRGAN": lambda img: upscale_with_realesrgan(img, 2, 0), "Lanczos": lambda img: img.resize((img.width*2, img.height*2), resample=LANCZOS), "None": lambda img: img } def gfpgan_model_path(): places = [script_path, '.', os.path.join(cmd_opts.gfpgan_dir, 'experiments/pretrained_models')] files = [cmd_opts.gfpgan_model] + [os.path.join(dirname, cmd_opts.gfpgan_model) for dirname in places] found = [x for x in files if os.path.exists(x)] if len(found) == 0: raise Exception("GFPGAN model not found in paths: " + ", ".join(files)) return found[0] def gfpgan(): return GFPGANer(model_path=gfpgan_model_path(), upscale=1, arch='clean', channel_multiplier=2, bg_upsampler=None) def gfpgan_fix_faces(gfpgan_model, np_image): np_image_bgr = np_image[:, :, ::-1] cropped_faces, restored_faces, gfpgan_output_bgr = gfpgan_model.enhance(np_image_bgr, has_aligned=False, only_center_face=False, paste_back=True) np_image = gfpgan_output_bgr[:, :, ::-1] return np_image have_gfpgan = False try: model_path = gfpgan_model_path() if os.path.exists(cmd_opts.gfpgan_dir): sys.path.append(os.path.abspath(cmd_opts.gfpgan_dir)) from gfpgan import GFPGANer have_gfpgan = True except Exception: print("Error setting up GFPGAN:", file=sys.stderr) print(traceback.format_exc(), file=sys.stderr) class Options: class OptionInfo: def __init__(self, default=None, label="", component=None, component_args=None): self.default = default self.label = label self.component = component self.component_args = component_args data = None data_labels = { "outdir_samples": OptionInfo("", "Output dictectory for images; if empty, defaults to two directories below"), "outdir_txt2img_samples": OptionInfo("outputs/txt2img-images", 'Output dictectory for txt2img images'), "outdir_img2img_samples": OptionInfo("outputs/img2img-images", 'Output dictectory for img2img images'), "outdir_extras_samples": OptionInfo("outputs/extras-images", 'Output dictectory for images from extras tab'), "outdir_grids": OptionInfo("", "Output dictectory for grids; if empty, defaults to two directories below"), "outdir_txt2img_grids": OptionInfo("outputs/txt2img-grids", 'Output dictectory for txt2img grids'), "outdir_img2img_grids": OptionInfo("outputs/img2img-grids", 'Output dictectory for img2img grids'), "save_to_dirs": OptionInfo(False, "When writing images/grids, create a directory with name derived from the prompt"), "save_to_dirs_prompt_len": OptionInfo(10, "When using above, how many words from prompt to put into directory name", gr.Slider, {"minimum": 1, "maximum": 32, "step": 1}), "outdir_save": OptionInfo("log/images", "Directory for saving images using the Save button"), "samples_save": OptionInfo(True, "Save indiviual samples"), "samples_format": OptionInfo('png', 'File format for indiviual samples'), "grid_save": OptionInfo(True, "Save image grids"), "return_grid": OptionInfo(True, "Show grid in results for web"), "grid_format": OptionInfo('png', 'File format for grids'), "grid_extended_filename": OptionInfo(False, "Add extended info (seed, prompt) to filename when saving grid"), "grid_only_if_multiple": OptionInfo(True, "Do not save grids consisting of one picture"), "n_rows": OptionInfo(-1, "Grid row count; use -1 for autodetect and 0 for it to be same as batch size", gr.Slider, {"minimum": -1, "maximum": 16, "step": 1}), "jpeg_quality": OptionInfo(80, "Quality for saved jpeg images", gr.Slider, {"minimum": 1, "maximum": 100, "step": 1}), "export_for_4chan": OptionInfo(True, "If PNG image is larger than 4MB or any dimension is larger than 4000, downscale and save copy as JPG"), "enable_pnginfo": OptionInfo(True, "Save text information about generation parameters as chunks to png files"), "font": OptionInfo("arial.ttf", "Font for image grids that have text"), "prompt_matrix_add_to_start": OptionInfo(True, "In prompt matrix, add the variable combination of text to the start of the prompt, rather than the end"), "enable_emphasis": OptionInfo(True, "Use (text) to make model pay more attention to text text and [text] to make it pay less attention"), "save_txt": OptionInfo(False, "Create a text file next to every image with generation parameters."), } def __init__(self): self.data = {k: v.default for k, v in self.data_labels.items()} def __setattr__(self, key, value): if self.data is not None: if key in self.data: self.data[key] = value return super(Options, self).__setattr__(key, value) def __getattr__(self, item): if self.data is not None: if item in self.data: return self.data[item] if item in self.data_labels: return self.data_labels[item].default return super(Options, self).__getattribute__(item) def save(self, filename): with open(filename, "w", encoding="utf8") as file: json.dump(self.data, file) def load(self, filename): with open(filename, "r", encoding="utf8") as file: self.data = json.load(file) def load_model_from_config(config, ckpt, verbose=False): print(f"Loading model from {ckpt}") pl_sd = torch.load(ckpt, map_location="cpu") if "global_step" in pl_sd: print(f"Global Step: {pl_sd['global_step']}") sd = pl_sd["state_dict"] model = instantiate_from_config(config.model) m, u = model.load_state_dict(sd, strict=False) if len(m) > 0 and verbose: print("missing keys:") print(m) if len(u) > 0 and verbose: print("unexpected keys:") print(u) model.eval() return model module_in_gpu = None def setup_for_low_vram(sd_model): parents = {} def send_me_to_gpu(module, _): """send this module to GPU; send whatever tracked module was previous in GPU to CPU; we add this as forward_pre_hook to a lot of modules and this way all but one of them will be in CPU """ global module_in_gpu module = parents.get(module, module) if module_in_gpu == module: return if module_in_gpu is not None: module_in_gpu.to(cpu) module.to(gpu) module_in_gpu = module # see below for register_forward_pre_hook; # first_stage_model does not use forward(), it uses encode/decode, so register_forward_pre_hook is # useless here, and we just replace those methods def first_stage_model_encode_wrap(self, encoder, x): send_me_to_gpu(self, None) return encoder(x) def first_stage_model_decode_wrap(self, decoder, z): send_me_to_gpu(self, None) return decoder(z) # remove three big modules, cond, first_stage, and unet from the model and then # send the model to GPU. Then put modules back. the modules will be in CPU. stored = sd_model.cond_stage_model.transformer, sd_model.first_stage_model, sd_model.model sd_model.cond_stage_model.transformer, sd_model.first_stage_model, sd_model.model = None, None, None sd_model.to(device) sd_model.cond_stage_model.transformer, sd_model.first_stage_model, sd_model.model = stored # register hooks for those the first two models sd_model.cond_stage_model.transformer.register_forward_pre_hook(send_me_to_gpu) sd_model.first_stage_model.register_forward_pre_hook(send_me_to_gpu) sd_model.first_stage_model.encode = lambda x, en=sd_model.first_stage_model.encode: first_stage_model_encode_wrap(sd_model.first_stage_model, en, x) sd_model.first_stage_model.decode = lambda z, de=sd_model.first_stage_model.decode: first_stage_model_decode_wrap(sd_model.first_stage_model, de, z) parents[sd_model.cond_stage_model.transformer] = sd_model.cond_stage_model if cmd_opts.medvram: sd_model.model.register_forward_pre_hook(send_me_to_gpu) else: diff_model = sd_model.model.diffusion_model # the third remaining model is still too big for 4GB, so we also do the same for its submodules # so that only one of them is in GPU at a time stored = diff_model.input_blocks, diff_model.middle_block, diff_model.output_blocks, diff_model.time_embed diff_model.input_blocks, diff_model.middle_block, diff_model.output_blocks, diff_model.time_embed = None, None, None, None sd_model.model.to(device) diff_model.input_blocks, diff_model.middle_block, diff_model.output_blocks, diff_model.time_embed = stored # install hooks for bits of third model diff_model.time_embed.register_forward_pre_hook(send_me_to_gpu) for block in diff_model.input_blocks: block.register_forward_pre_hook(send_me_to_gpu) diff_model.middle_block.register_forward_pre_hook(send_me_to_gpu) for block in diff_model.output_blocks: block.register_forward_pre_hook(send_me_to_gpu) def create_random_tensors(shape, seeds): xs = [] for seed in seeds: torch.manual_seed(seed) # randn results depend on device; gpu and cpu get different results for same seed; # the way I see it, it's better to do this on CPU, so that everyone gets same result; # but the original script had it like this so i do not dare change it for now because # it will break everyone's seeds. xs.append(torch.randn(shape, device=device)) x = torch.stack(xs) return x def torch_gc(): if torch.cuda.is_available(): torch.cuda.empty_cache() torch.cuda.ipc_collect() def save_image(image, path, basename, seed=None, prompt=None, extension='png', info=None, short_filename=False, no_prompt=False): if short_filename or prompt is None or seed is None: file_decoration = "" elif opts.save_to_dirs: file_decoration = f"-{seed}" else: file_decoration = f"-{seed}-{sanitize_filename_part(prompt)[:128]}" if extension == 'png' and opts.enable_pnginfo and info is not None: pnginfo = PngImagePlugin.PngInfo() pnginfo.add_text("parameters", info) else: pnginfo = None if opts.save_to_dirs and not no_prompt: words = re.findall(r'\w+', prompt or "") if len(words) == 0: words = ["empty"] dirname = " ".join(words[0:opts.save_to_dirs_prompt_len]) path = os.path.join(path, dirname) os.makedirs(path, exist_ok=True) filecount = len([x for x in os.listdir(path) if os.path.splitext(x)[1] == '.' + extension]) fullfn = "a.png" fullfn_without_extension = "a" for i in range(100): fn = f"{filecount:05}" if basename == '' else f"{basename}-{filecount:04}" fullfn = os.path.join(path, f"{fn}{file_decoration}.{extension}") fullfn_without_extension = os.path.join(path, f"{fn}{file_decoration}") if not os.path.exists(fullfn): break image.save(fullfn, quality=opts.jpeg_quality, pnginfo=pnginfo) target_side_length = 4000 oversize = image.width > target_side_length or image.height > target_side_length if opts.export_for_4chan and (oversize or os.stat(fullfn).st_size > 4 * 1024 * 1024): ratio = image.width / image.height if oversize and ratio > 1: image = image.resize((target_side_length, image.height * target_side_length // image.width), LANCZOS) elif oversize: image = image.resize((image.width * target_side_length // image.height, target_side_length), LANCZOS) image.save(f"{fullfn_without_extension}.jpg", quality=opts.jpeg_quality, pnginfo=pnginfo) if opts.save_txt and info is not None: with open(f"{fullfn_without_extension}.txt", "w", encoding="utf8") as file: file.write(info + "\n") def sanitize_filename_part(text): return text.replace(' ', '_').translate({ord(x): '' for x in invalid_filename_chars})[:128] def plaintext_to_html(text): text = "".join([f"
{html.escape(x)}
\n" for x in text.split('\n')]) return text def image_grid(imgs, batch_size=1, rows=None): if rows is None: if opts.n_rows > 0: rows = opts.n_rows elif opts.n_rows == 0: rows = batch_size else: rows = math.sqrt(len(imgs)) rows = round(rows) cols = math.ceil(len(imgs) / rows) w, h = imgs[0].size grid = Image.new('RGB', size=(cols * w, rows * h), color='black') for i, img in enumerate(imgs): grid.paste(img, box=(i % cols * w, i // cols * h)) return grid Grid = namedtuple("Grid", ["tiles", "tile_w", "tile_h", "image_w", "image_h", "overlap"]) def split_grid(image, tile_w=512, tile_h=512, overlap=64): w = image.width h = image.height now = tile_w - overlap # non-overlap width noh = tile_h - overlap cols = math.ceil((w - overlap) / now) rows = math.ceil((h - overlap) / noh) grid = Grid([], tile_w, tile_h, w, h, overlap) for row in range(rows): row_images = [] y = row * noh if y + tile_h >= h: y = h - tile_h for col in range(cols): x = col * now if x+tile_w >= w: x = w - tile_w tile = image.crop((x, y, x + tile_w, y + tile_h)) row_images.append([x, tile_w, tile]) grid.tiles.append([y, tile_h, row_images]) return grid def combine_grid(grid): def make_mask_image(r): r = r * 255 / grid.overlap r = r.astype(np.uint8) return Image.fromarray(r, 'L') mask_w = make_mask_image(np.arange(grid.overlap, dtype=np.float32).reshape((1, grid.overlap)).repeat(grid.tile_h, axis=0)) mask_h = make_mask_image(np.arange(grid.overlap, dtype=np.float32).reshape((grid.overlap, 1)).repeat(grid.image_w, axis=1)) combined_image = Image.new("RGB", (grid.image_w, grid.image_h)) for y, h, row in grid.tiles: combined_row = Image.new("RGB", (grid.image_w, h)) for x, w, tile in row: if x == 0: combined_row.paste(tile, (0, 0)) continue combined_row.paste(tile.crop((0, 0, grid.overlap, h)), (x, 0), mask=mask_w) combined_row.paste(tile.crop((grid.overlap, 0, w, h)), (x + grid.overlap, 0)) if y == 0: combined_image.paste(combined_row, (0, 0)) continue combined_image.paste(combined_row.crop((0, 0, combined_row.width, grid.overlap)), (0, y), mask=mask_h) combined_image.paste(combined_row.crop((0, grid.overlap, combined_row.width, h)), (0, y + grid.overlap)) return combined_image class GridAnnotation: def __init__(self, text='', is_active=True): self.text = text self.is_active = is_active self.size = None def draw_grid_annotations(im, width, height, hor_texts, ver_texts): def wrap(drawing, text, font, line_length): lines = [''] for word in text.split(): line = f'{lines[-1]} {word}'.strip() if drawing.textlength(line, font=font) <= line_length: lines[-1] = line else: lines.append(word) return lines def draw_texts(drawing, draw_x, draw_y, lines): for i, line in enumerate(lines): drawing.multiline_text((draw_x, draw_y + line.size[1] / 2), line.text, font=fnt, fill=color_active if line.is_active else color_inactive, anchor="mm", align="center") if not line.is_active: drawing.line((draw_x - line.size[0]//2, draw_y + line.size[1]//2, draw_x + line.size[0]//2, draw_y + line.size[1]//2), fill=color_inactive, width=4) draw_y += line.size[1] + line_spacing fontsize = (width + height) // 25 line_spacing = fontsize // 2 fnt = ImageFont.truetype(opts.font, fontsize) color_active = (0, 0, 0) color_inactive = (153, 153, 153) pad_left = width * 3 // 4 if len(ver_texts) > 0 else 0 cols = im.width // width rows = im.height // height assert cols == len(hor_texts), f'bad number of horizontal texts: {len(hor_texts)}; must be {cols}' assert rows == len(ver_texts), f'bad number of vertical texts: {len(ver_texts)}; must be {rows}' calc_img = Image.new("RGB", (1, 1), "white") calc_d = ImageDraw.Draw(calc_img) for texts, allowed_width in zip(hor_texts + ver_texts, [width] * len(hor_texts) + [pad_left] * len(ver_texts)): items = [] + texts texts.clear() for line in items: wrapped = wrap(calc_d, line.text, fnt, allowed_width) texts += [GridAnnotation(x, line.is_active) for x in wrapped] for line in texts: bbox = calc_d.multiline_textbbox((0, 0), line.text, font=fnt) line.size = (bbox[2] - bbox[0], bbox[3] - bbox[1]) hor_text_heights = [sum([line.size[1] + line_spacing for line in lines]) - line_spacing for lines in hor_texts] ver_text_heights = [sum([line.size[1] + line_spacing for line in lines]) - line_spacing * len(lines) for lines in ver_texts] pad_top = max(hor_text_heights) + line_spacing * 2 result = Image.new("RGB", (im.width + pad_left, im.height + pad_top), "white") result.paste(im, (pad_left, pad_top)) d = ImageDraw.Draw(result) for col in range(cols): x = pad_left + width * col + width / 2 y = pad_top / 2 - hor_text_heights[col] / 2 draw_texts(d, x, y, hor_texts[col]) for row in range(rows): x = pad_left / 2 y = pad_top + height * row + height / 2 - ver_text_heights[row] / 2 draw_texts(d, x, y, ver_texts[row]) return result def draw_prompt_matrix(im, width, height, all_prompts): prompts = all_prompts[1:] boundary = math.ceil(len(prompts) / 2) prompts_horiz = prompts[:boundary] prompts_vert = prompts[boundary:] hor_texts = [[GridAnnotation(x, is_active=pos & (1 << i) != 0) for i, x in enumerate(prompts_horiz)] for pos in range(1 << len(prompts_horiz))] ver_texts = [[GridAnnotation(x, is_active=pos & (1 << i) != 0) for i, x in enumerate(prompts_vert)] for pos in range(1 << len(prompts_vert))] return draw_grid_annotations(im, width, height, hor_texts, ver_texts) def draw_xy_grid(xs, ys, x_label, y_label, cell): res = [] ver_texts = [[GridAnnotation(y_label(y))] for y in ys] hor_texts = [[GridAnnotation(x_label(x))] for x in xs] for y in ys: for x in xs: state.job = f"{x + y * len(xs)} out of {len(xs) * len(ys)}" res.append(cell(x, y)) grid = image_grid(res, rows=len(ys)) grid = draw_grid_annotations(grid, res[0].width, res[0].height, hor_texts, ver_texts) return grid def resize_image(resize_mode, im, width, height): if resize_mode == 0: res = im.resize((width, height), resample=LANCZOS) elif resize_mode == 1: ratio = width / height src_ratio = im.width / im.height src_w = width if ratio > src_ratio else im.width * height // im.height src_h = height if ratio <= src_ratio else im.height * width // im.width resized = im.resize((src_w, src_h), resample=LANCZOS) res = Image.new("RGB", (width, height)) res.paste(resized, box=(width // 2 - src_w // 2, height // 2 - src_h // 2)) else: ratio = width / height src_ratio = im.width / im.height src_w = width if ratio < src_ratio else im.width * height // im.height src_h = height if ratio >= src_ratio else im.height * width // im.width resized = im.resize((src_w, src_h), resample=LANCZOS) res = Image.new("RGB", (width, height)) res.paste(resized, box=(width // 2 - src_w // 2, height // 2 - src_h // 2)) if ratio < src_ratio: fill_height = height // 2 - src_h // 2 res.paste(resized.resize((width, fill_height), box=(0, 0, width, 0)), box=(0, 0)) res.paste(resized.resize((width, fill_height), box=(0, resized.height, width, resized.height)), box=(0, fill_height + src_h)) elif ratio > src_ratio: fill_width = width // 2 - src_w // 2 res.paste(resized.resize((fill_width, height), box=(0, 0, 0, height)), box=(0, 0)) res.paste(resized.resize((fill_width, height), box=(resized.width, 0, resized.width, height)), box=(fill_width + src_w, 0)) return res def wrap_gradio_gpu_call(func): def f(*args, **kwargs): with queue_lock: res = func(*args, **kwargs) return res return wrap_gradio_call(f) def wrap_gradio_call(func): def f(*args, **kwargs): t = time.perf_counter() try: res = list(func(*args, **kwargs)) except Exception as e: print("Error completing request", file=sys.stderr) print("Arguments:", args, kwargs, file=sys.stderr) print(traceback.format_exc(), file=sys.stderr) res = [None, '', f"Time taken: {elapsed:.2f}s
" state.interrupted = False return tuple(res) return f class StableDiffusionModelHijack: ids_lookup = {} word_embeddings = {} word_embeddings_checksums = {} fixes = None comments = [] dir_mtime = None def load_textual_inversion_embeddings(self, dirname, model): mt = os.path.getmtime(dirname) if self.dir_mtime is not None and mt <= self.dir_mtime: return self.dir_mtime = mt self.ids_lookup.clear() self.word_embeddings.clear() tokenizer = model.cond_stage_model.tokenizer def const_hash(a): r = 0 for v in a: r = (r * 281 ^ int(v) * 997) & 0xFFFFFFFF return r def process_file(path, filename): name = os.path.splitext(filename)[0] data = torch.load(path) param_dict = data['string_to_param'] if hasattr(param_dict, '_parameters'): param_dict = getattr(param_dict, '_parameters') # fix for torch 1.12.1 loading saved file from torch 1.11 assert len(param_dict) == 1, 'embedding file has multiple terms in it' emb = next(iter(param_dict.items()))[1].reshape(768) self.word_embeddings[name] = emb self.word_embeddings_checksums[name] = f'{const_hash(emb)&0xffff:04x}' ids = tokenizer([name], add_special_tokens=False)['input_ids'][0] first_id = ids[0] if first_id not in self.ids_lookup: self.ids_lookup[first_id] = [] self.ids_lookup[first_id].append((ids, name)) for fn in os.listdir(dirname): try: process_file(os.path.join(dirname, fn), fn) except Exception: print(f"Error loading emedding {fn}:", file=sys.stderr) print(traceback.format_exc(), file=sys.stderr) continue print(f"Loaded a total of {len(self.word_embeddings)} text inversion embeddings.") def hijack(self, m): model_embeddings = m.cond_stage_model.transformer.text_model.embeddings model_embeddings.token_embedding = EmbeddingsWithFixes(model_embeddings.token_embedding, self) m.cond_stage_model = FrozenCLIPEmbedderWithCustomWords(m.cond_stage_model, self) class FrozenCLIPEmbedderWithCustomWords(torch.nn.Module): def __init__(self, wrapped, hijack): super().__init__() self.wrapped = wrapped self.hijack = hijack self.tokenizer = wrapped.tokenizer self.max_length = wrapped.max_length self.token_mults = {} tokens_with_parens = [(k, v) for k, v in self.tokenizer.get_vocab().items() if '(' in k or ')' in k or '[' in k or ']' in k] for text, ident in tokens_with_parens: mult = 1.0 for c in text: if c == '[': mult /= 1.1 if c == ']': mult *= 1.1 if c == '(': mult *= 1.1 if c == ')': mult /= 1.1 if mult != 1.0: self.token_mults[ident] = mult def forward(self, text): self.hijack.fixes = [] self.hijack.comments = [] remade_batch_tokens = [] id_start = self.wrapped.tokenizer.bos_token_id id_end = self.wrapped.tokenizer.eos_token_id maxlen = self.wrapped.max_length - 2 used_custom_terms = [] cache = {} batch_tokens = self.wrapped.tokenizer(text, truncation=False, add_special_tokens=False)["input_ids"] batch_multipliers = [] for tokens in batch_tokens: tuple_tokens = tuple(tokens) if tuple_tokens in cache: remade_tokens, fixes, multipliers = cache[tuple_tokens] else: fixes = [] remade_tokens = [] multipliers = [] mult = 1.0 i = 0 while i < len(tokens): token = tokens[i] possible_matches = self.hijack.ids_lookup.get(token, None) mult_change = self.token_mults.get(token) if opts.enable_emphasis else None if mult_change is not None: mult *= mult_change elif possible_matches is None: remade_tokens.append(token) multipliers.append(mult) else: found = False for ids, word in possible_matches: if tokens[i:i+len(ids)] == ids: fixes.append((len(remade_tokens), word)) remade_tokens.append(777) multipliers.append(mult) i += len(ids) - 1 found = True used_custom_terms.append((word, self.hijack.word_embeddings_checksums[word])) break if not found: remade_tokens.append(token) multipliers.append(mult) i += 1 if len(remade_tokens) > maxlen - 2: vocab = {v: k for k, v in self.wrapped.tokenizer.get_vocab().items()} ovf = remade_tokens[maxlen - 2:] overflowing_words = [vocab.get(int(x), "") for x in ovf] overflowing_text = self.wrapped.tokenizer.convert_tokens_to_string(''.join(overflowing_words)) self.hijack.comments.append(f"Warning: too many input tokens; some ({len(overflowing_words)}) have been truncated:\n{overflowing_text}\n") remade_tokens = remade_tokens + [id_end] * (maxlen - 2 - len(remade_tokens)) remade_tokens = [id_start] + remade_tokens[0:maxlen-2] + [id_end] cache[tuple_tokens] = (remade_tokens, fixes, multipliers) multipliers = multipliers + [1.0] * (maxlen - 2 - len(multipliers)) multipliers = [1.0] + multipliers[0:maxlen - 2] + [1.0] remade_batch_tokens.append(remade_tokens) self.hijack.fixes.append(fixes) batch_multipliers.append(multipliers) if len(used_custom_terms) > 0: self.hijack.comments.append("Used custom terms: " + ", ".join([f'{word} [{checksum}]' for word, checksum in used_custom_terms])) tokens = torch.asarray(remade_batch_tokens).to(device) outputs = self.wrapped.transformer(input_ids=tokens) z = outputs.last_hidden_state # restoring original mean is likely not correct, but it seems to work well to prevent artifacts that happen otherwise batch_multipliers = torch.asarray(np.array(batch_multipliers)).to(device) original_mean = z.mean() z *= batch_multipliers.reshape(batch_multipliers.shape + (1,)).expand(z.shape) new_mean = z.mean() z *= original_mean / new_mean return z class EmbeddingsWithFixes(nn.Module): def __init__(self, wrapped, embeddings): super().__init__() self.wrapped = wrapped self.embeddings = embeddings def forward(self, input_ids): batch_fixes = self.embeddings.fixes self.embeddings.fixes = None inputs_embeds = self.wrapped(input_ids) if batch_fixes is not None: for fixes, tensor in zip(batch_fixes, inputs_embeds): for offset, word in fixes: tensor[offset] = self.embeddings.word_embeddings[word] return inputs_embeds class StableDiffusionProcessing: def __init__(self, outpath_samples=None, outpath_grids=None, prompt="", seed=-1, sampler_index=0, batch_size=1, n_iter=1, steps=50, cfg_scale=7.0, width=512, height=512, prompt_matrix=False, use_GFPGAN=False, do_not_save_samples=False, do_not_save_grid=False, extra_generation_params=None, overlay_images=None, negative_prompt=None): self.outpath_samples: str = outpath_samples self.outpath_grids: str = outpath_grids self.prompt: str = prompt self.negative_prompt: str = (negative_prompt or "") self.seed: int = seed self.sampler_index: int = sampler_index self.batch_size: int = batch_size self.n_iter: int = n_iter self.steps: int = steps self.cfg_scale: float = cfg_scale self.width: int = width self.height: int = height self.prompt_matrix: bool = prompt_matrix self.use_GFPGAN: bool = use_GFPGAN self.do_not_save_samples: bool = do_not_save_samples self.do_not_save_grid: bool = do_not_save_grid self.extra_generation_params: dict = extra_generation_params self.overlay_images = overlay_images self.paste_to = None def init(self): pass def sample(self, x, conditioning, unconditional_conditioning): raise NotImplementedError() def p_sample_ddim_hook(sampler_wrapper, x_dec, cond, ts, *args, **kwargs): if sampler_wrapper.mask is not None: img_orig = sampler_wrapper.sampler.model.q_sample(sampler_wrapper.init_latent, ts) x_dec = img_orig * sampler_wrapper.mask + sampler_wrapper.nmask * x_dec return sampler_wrapper.orig_p_sample_ddim(x_dec, cond, ts, *args, **kwargs) class VanillaStableDiffusionSampler: def __init__(self, constructor): self.sampler = constructor(sd_model) self.orig_p_sample_ddim = self.sampler.p_sample_ddim if hasattr(self.sampler, 'p_sample_ddim') else None self.mask = None self.nmask = None self.init_latent = None def sample_img2img(self, p, x, noise, conditioning, unconditional_conditioning): t_enc = int(min(p.denoising_strength, 0.999) * p.steps) # existing code fails with cetin step counts, like 9 try: self.sampler.make_schedule(ddim_num_steps=p.steps, verbose=False) except Exception: self.sampler.make_schedule(ddim_num_steps=p.steps+1, verbose=False) x1 = self.sampler.stochastic_encode(x, torch.tensor([t_enc] * int(x.shape[0])).to(device), noise=noise) self.sampler.p_sample_ddim = lambda x_dec, cond, ts, *args, **kwargs: p_sample_ddim_hook(self, x_dec, cond, ts, *args, **kwargs) self.mask = p.mask self.nmask = p.nmask self.init_latent = p.init_latent samples = self.sampler.decode(x1, conditioning, t_enc, unconditional_guidance_scale=p.cfg_scale, unconditional_conditioning=unconditional_conditioning) return samples def sample(self, p: StableDiffusionProcessing, x, conditioning, unconditional_conditioning): samples_ddim, _ = self.sampler.sample(S=p.steps, conditioning=conditioning, batch_size=int(x.shape[0]), shape=x[0].shape, verbose=False, unconditional_guidance_scale=p.cfg_scale, unconditional_conditioning=unconditional_conditioning, x_T=x) return samples_ddim class CFGDenoiser(nn.Module): def __init__(self, model): super().__init__() self.inner_model = model self.mask = None self.nmask = None self.init_latent = None def forward(self, x, sigma, uncond, cond, cond_scale): if batch_cond_uncond: x_in = torch.cat([x] * 2) sigma_in = torch.cat([sigma] * 2) cond_in = torch.cat([uncond, cond]) uncond, cond = self.inner_model(x_in, sigma_in, cond=cond_in).chunk(2) denoised = uncond + (cond - uncond) * cond_scale else: uncond = self.inner_model(x, sigma, cond=uncond) cond = self.inner_model(x, sigma, cond=cond) denoised = uncond + (cond - uncond) * cond_scale if self.mask is not None: denoised = self.init_latent * self.mask + self.nmask * denoised return denoised def extended_trange(*args, **kwargs): for x in tqdm.trange(*args, desc=state.job, **kwargs): if state.interrupted: break yield x class KDiffusionSampler: def __init__(self, funcname): self.model_wrap = k_diffusion.external.CompVisDenoiser(sd_model) self.funcname = funcname self.func = getattr(k_diffusion.sampling, self.funcname) self.model_wrap_cfg = CFGDenoiser(self.model_wrap) def sample_img2img(self, p, x, noise, conditioning, unconditional_conditioning): t_enc = int(min(p.denoising_strength, 0.999) * p.steps) sigmas = self.model_wrap.get_sigmas(p.steps) noise = noise * sigmas[p.steps - t_enc - 1] xi = x + noise sigma_sched = sigmas[p.steps - t_enc - 1:] self.model_wrap_cfg.mask = p.mask self.model_wrap_cfg.nmask = p.nmask self.model_wrap_cfg.init_latent = p.init_latent if hasattr(k_diffusion.sampling, 'trange'): k_diffusion.sampling.trange = lambda *args, **kwargs: extended_trange(*args, **kwargs) return self.func(self.model_wrap_cfg, xi, sigma_sched, extra_args={'cond': conditioning, 'uncond': unconditional_conditioning, 'cond_scale': p.cfg_scale}, disable=False) def sample(self, p: StableDiffusionProcessing, x, conditioning, unconditional_conditioning): sigmas = self.model_wrap.get_sigmas(p.steps) x = x * sigmas[0] if hasattr(k_diffusion.sampling, 'trange'): k_diffusion.sampling.trange = lambda *args, **kwargs: extended_trange(*args, **kwargs) def cb(d): n = d['i'] img = d['denoised'] x_samples_ddim = sd_model.decode_first_stage(img) x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0) for i, x_sample in enumerate(x_samples_ddim): x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2) x_sample = x_sample.astype(np.uint8) image = Image.fromarray(x_sample) image.save(f'a/{n}.png') samples_ddim = self.func(self.model_wrap_cfg, x, sigmas, extra_args={'cond': conditioning, 'uncond': unconditional_conditioning, 'cond_scale': p.cfg_scale}, disable=False) return samples_ddim class Processed: def __init__(self, p: StableDiffusionProcessing, images, seed, info): self.images = images self.prompt = p.prompt self.seed = seed self.info = info self.width = p.width self.height = p.height self.sampler = samplers[p.sampler_index].name self.cfg_scale = p.cfg_scale self.steps = p.steps def js(self): obj = { "prompt": self.prompt, "seed": int(self.seed), "width": self.width, "height": self.height, "sampler": self.sampler, "cfg_scale": self.cfg_scale, "steps": self.steps, } return json.dumps(obj) def process_images(p: StableDiffusionProcessing) -> Processed: """this is the main loop that both txt2img and img2img use; it calls func_init once inside all the scopes and func_sample once per batch""" prompt = p.prompt model = sd_model assert p.prompt is not None torch_gc() seed = int(random.randrange(4294967294) if p.seed == -1 else p.seed) os.makedirs(p.outpath_samples, exist_ok=True) os.makedirs(p.outpath_grids, exist_ok=True) comments = [] prompt_matrix_parts = [] if p.prompt_matrix: all_prompts = [] prompt_matrix_parts = prompt.split("|") combination_count = 2 ** (len(prompt_matrix_parts) - 1) for combination_num in range(combination_count): selected_prompts = [text.strip().strip(',') for n, text in enumerate(prompt_matrix_parts[1:]) if combination_num & (1 << n)] if opts.prompt_matrix_add_to_start: selected_prompts = selected_prompts + [prompt_matrix_parts[0]] else: selected_prompts = [prompt_matrix_parts[0]] + selected_prompts all_prompts.append(", ".join(selected_prompts)) p.n_iter = math.ceil(len(all_prompts) / p.batch_size) all_seeds = len(all_prompts) * [seed] print(f"Prompt matrix will create {len(all_prompts)} images using a total of {p.n_iter} batches.") else: all_prompts = p.batch_size * p.n_iter * [prompt] all_seeds = [seed + x for x in range(len(all_prompts))] def infotext(iteration=0, position_in_batch=0): generation_params = { "Steps": p.steps, "Sampler": samplers[p.sampler_index].name, "CFG scale": p.cfg_scale, "Seed": all_seeds[position_in_batch + iteration * p.batch_size], "GFPGAN": ("GFPGAN" if p.use_GFPGAN else None) } if p.extra_generation_params is not None: generation_params.update(p.extra_generation_params) generation_params_text = ", ".join([k if k == v else f'{k}: {v}' for k, v in generation_params.items() if v is not None]) return f"{prompt}\n{generation_params_text}".strip() + "".join(["\n\n" + x for x in comments]) if os.path.exists(cmd_opts.embeddings_dir): model_hijack.load_textual_inversion_embeddings(cmd_opts.embeddings_dir, model) output_images = [] precision_scope = autocast if cmd_opts.precision == "autocast" else nullcontext ema_scope = (nullcontext if cmd_opts.lowvram else model.ema_scope) with torch.no_grad(), precision_scope("cuda"), ema_scope(): p.init() for n in range(p.n_iter): if state.interrupted: break prompts = all_prompts[n * p.batch_size:(n + 1) * p.batch_size] seeds = all_seeds[n * p.batch_size:(n + 1) * p.batch_size] uc = model.get_learned_conditioning(len(prompts) * [p.negative_prompt]) c = model.get_learned_conditioning(prompts) if len(model_hijack.comments) > 0: comments += model_hijack.comments # we manually generate all input noises because each one should have a specific seed x = create_random_tensors([opt_C, p.height // opt_f, p.width // opt_f], seeds=seeds) if p.n_iter > 1: state.job = f"Batch {n+1} out of {p.n_iter}" samples_ddim = p.sample(x=x, conditioning=c, unconditional_conditioning=uc) x_samples_ddim = model.decode_first_stage(samples_ddim) x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0) for i, x_sample in enumerate(x_samples_ddim): x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2) x_sample = x_sample.astype(np.uint8) if p.use_GFPGAN: torch_gc() gfpgan_model = gfpgan() x_sample = gfpgan_fix_faces(gfpgan_model, x_sample) image = Image.fromarray(x_sample) if p.overlay_images is not None and i < len(p.overlay_images): overlay = p.overlay_images[i] if p.paste_to is not None: x, y, w, h = p.paste_to base_image = Image.new('RGBA', (overlay.width, overlay.height)) image = resize_image(1, image, w, h) base_image.paste(image, (x, y)) image = base_image image = image.convert('RGBA') image.alpha_composite(overlay) image = image.convert('RGB') if opts.samples_save and not p.do_not_save_samples: save_image(image, p.outpath_samples, "", seeds[i], prompts[i], opts.samples_format, info=infotext(n, i)) output_images.append(image) unwanted_grid_because_of_img_count = len(output_images) < 2 and opts.grid_only_if_multiple if not p.do_not_save_grid and not unwanted_grid_because_of_img_count: return_grid = opts.return_grid if p.prompt_matrix: grid = image_grid(output_images, p.batch_size, rows=1 << ((len(prompt_matrix_parts)-1)//2)) try: grid = draw_prompt_matrix(grid, p.width, p.height, prompt_matrix_parts) except Exception: import traceback print("Error creating prompt_matrix text:", file=sys.stderr) print(traceback.format_exc(), file=sys.stderr) return_grid = True else: grid = image_grid(output_images, p.batch_size) if return_grid: output_images.insert(0, grid) if opts.grid_save: save_image(grid, p.outpath_grids, "grid", seed, prompt, opts.grid_format, info=infotext(), short_filename=not opts.grid_extended_filename) torch_gc() return Processed(p, output_images, seed, infotext()) class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing): sampler = None def init(self): self.sampler = samplers[self.sampler_index].constructor() def sample(self, x, conditioning, unconditional_conditioning): samples_ddim = self.sampler.sample(self, x, conditioning, unconditional_conditioning) return samples_ddim def txt2img(prompt: str, negative_prompt: str, steps: int, sampler_index: int, use_GFPGAN: bool, prompt_matrix: bool, n_iter: int, batch_size: int, cfg_scale: float, seed: int, height: int, width: int, code: str): p = StableDiffusionProcessingTxt2Img( outpath_samples=opts.outdir_samples or opts.outdir_txt2img_samples, outpath_grids=opts.outdir_grids or opts.outdir_txt2img_grids, prompt=prompt, negative_prompt=negative_prompt, seed=seed, sampler_index=sampler_index, batch_size=batch_size, n_iter=n_iter, steps=steps, cfg_scale=cfg_scale, width=width, height=height, prompt_matrix=prompt_matrix, use_GFPGAN=use_GFPGAN ) if code != '' and cmd_opts.allow_code: p.do_not_save_grid = True p.do_not_save_samples = True display_result_data = [[], -1, ""] def display(imgs, s=display_result_data[1], i=display_result_data[2]): display_result_data[0] = imgs display_result_data[1] = s display_result_data[2] = i from types import ModuleType compiled = compile(code, '', 'exec') module = ModuleType("testmodule") module.__dict__.update(globals()) module.p = p module.display = display exec(compiled, module.__dict__) processed = Processed(p, *display_result_data) else: processed = process_images(p) return processed.images, processed.js(), plaintext_to_html(processed.info) def image_from_url_text(filedata): if type(filedata) == list: if len(filedata) == 0: return None filedata = filedata[0] if filedata.startswith("data:image/png;base64,"): filedata = filedata[len("data:image/png;base64,"):] filedata = base64.decodebytes(filedata.encode('utf-8')) image = Image.open(io.BytesIO(filedata)) return image def send_gradio_gallery_to_image(x): if len(x) == 0: return None return image_from_url_text(x[0]) def save_files(js_data, images): import csv os.makedirs(opts.outdir_save, exist_ok=True) filenames = [] data = json.loads(js_data) with open("log/log.csv", "a", encoding="utf8", newline='') as file: at_start = file.tell() == 0 writer = csv.writer(file) if at_start: writer.writerow(["prompt", "seed", "width", "height", "sampler", "cfgs", "steps", "filename"]) filename_base = str(int(time.time() * 1000)) for i, filedata in enumerate(images): filename = filename_base + ("" if len(images) == 1 else "-" + str(i + 1)) + ".png" filepath = os.path.join(opts.outdir_save, filename) if filedata.startswith("data:image/png;base64,"): filedata = filedata[len("data:image/png;base64,"):] with open(filepath, "wb") as imgfile: imgfile.write(base64.decodebytes(filedata.encode('utf-8'))) filenames.append(filename) writer.writerow([data["prompt"], data["seed"], data["width"], data["height"], data["sampler"], data["cfg_scale"], data["steps"], filenames[0]]) return '', '', plaintext_to_html(f"Saved: {filenames[0]}") with gr.Blocks(analytics_enabled=False) as txt2img_interface: with gr.Row(): prompt = gr.Textbox(label="Prompt", elem_id="txt2img_prompt", show_label=False, placeholder="Prompt", lines=1) negative_prompt = gr.Textbox(label="Negative prompt", elem_id="txt2img_negative_prompt", show_label=False, placeholder="Negative prompt", lines=1, visible=False) submit = gr.Button('Generate', elem_id="txt2img_generate", variant='primary') with gr.Row().style(equal_height=False): with gr.Column(variant='panel'): steps = gr.Slider(minimum=1, maximum=150, step=1, label="Sampling Steps", value=20) sampler_index = gr.Radio(label='Sampling method', elem_id="txt2img_sampling", choices=[x.name for x in samplers], value=samplers[0].name, type="index") with gr.Row(): use_GFPGAN = gr.Checkbox(label='GFPGAN', value=False, visible=have_gfpgan) prompt_matrix = gr.Checkbox(label='Prompt matrix', value=False) with gr.Row(): batch_count = gr.Slider(minimum=1, maximum=cmd_opts.max_batch_count, step=1, label='Batch count', value=1) batch_size = gr.Slider(minimum=1, maximum=8, step=1, label='Batch size', value=1) cfg_scale = gr.Slider(minimum=1.0, maximum=15.0, step=0.5, label='CFG Scale', value=7.0) with gr.Group(): height = gr.Slider(minimum=64, maximum=2048, step=64, label="Height", value=512) width = gr.Slider(minimum=64, maximum=2048, step=64, label="Width", value=512) seed = gr.Number(label='Seed', value=-1) code = gr.Textbox(label="Python script", visible=cmd_opts.allow_code, lines=1) with gr.Column(variant='panel'): with gr.Group(): txt2img_gallery = gr.Gallery(label='Output', elem_id='txt2img_gallery') with gr.Group(): with gr.Row(): save = gr.Button('Save') send_to_img2img = gr.Button('Send to img2img') send_to_inpaint = gr.Button('Send to inpaint') send_to_extras = gr.Button('Send to extras') interrupt = gr.Button('Interrupt') with gr.Group(): html_info = gr.HTML() generation_info = gr.Textbox(visible=False) txt2img_args = dict( fn=wrap_gradio_gpu_call(txt2img), inputs=[ prompt, negative_prompt, steps, sampler_index, use_GFPGAN, prompt_matrix, batch_count, batch_size, cfg_scale, seed, height, width, code ], outputs=[ txt2img_gallery, generation_info, html_info ] ) prompt.submit(**txt2img_args) submit.click(**txt2img_args) interrupt.click( fn=lambda: state.interrupt(), inputs=[], outputs=[], ) save.click( fn=wrap_gradio_call(save_files), inputs=[ generation_info, txt2img_gallery, ], outputs=[ html_info, html_info, html_info, ] ) def get_crop_region(mask, pad=0): h, w = mask.shape crop_left = 0 for i in range(w): if not (mask[:,i] == 0).all(): break crop_left += 1 crop_right = 0 for i in reversed(range(w)): if not (mask[:,i] == 0).all(): break crop_right += 1 crop_top = 0 for i in range(h): if not (mask[i] == 0).all(): break crop_top += 1 crop_bottom = 0 for i in reversed(range(h)): if not (mask[i] == 0).all(): break crop_bottom += 1 return ( int(max(crop_left-pad, 0)), int(max(crop_top-pad, 0)), int(min(w - crop_right + pad, w)), int(min(h - crop_bottom + pad, h)) ) def fill(image, mask): image_mod = Image.new('RGBA', (image.width, image.height)) image_masked = Image.new('RGBa', (image.width, image.height)) image_masked.paste(image.convert("RGBA").convert("RGBa"), mask=ImageOps.invert(mask.convert('L'))) image_masked = image_masked.convert('RGBa') for radius, repeats in [(64, 1), (16, 2), (4, 4), (2, 2), (0, 1)]: blurred = image_masked.filter(ImageFilter.GaussianBlur(radius)).convert('RGBA') for _ in range(repeats): image_mod.alpha_composite(blurred) return image_mod.convert("RGB") class StableDiffusionProcessingImg2Img(StableDiffusionProcessing): sampler = None def __init__(self, init_images=None, resize_mode=0, denoising_strength=0.75, mask=None, mask_blur=4, inpainting_fill=0, inpaint_full_res=True, **kwargs): super().__init__(**kwargs) self.init_images = init_images self.resize_mode: int = resize_mode self.denoising_strength: float = denoising_strength self.init_latent = None self.image_mask = mask self.mask_for_overlay = None self.mask_blur = mask_blur self.inpainting_fill = inpainting_fill self.inpaint_full_res = inpaint_full_res self.mask = None self.nmask = None def init(self): self.sampler = samplers_for_img2img[self.sampler_index].constructor() crop_region = None if self.image_mask is not None: if self.mask_blur > 0: self.image_mask = self.image_mask.filter(ImageFilter.GaussianBlur(self.mask_blur)).convert('L') if self.inpaint_full_res: self.mask_for_overlay = self.image_mask mask = self.image_mask.convert('L') crop_region = get_crop_region(np.array(mask), 64) x1, y1, x2, y2 = crop_region mask = mask.crop(crop_region) self.image_mask = resize_image(2, mask, self.width, self.height) self.paste_to = (x1, y1, x2-x1, y2-y1) else: self.image_mask = resize_image(self.resize_mode, self.image_mask, self.width, self.height) self.mask_for_overlay = self.image_mask self.overlay_images = [] imgs = [] for img in self.init_images: image = img.convert("RGB") if crop_region is None: image = resize_image(self.resize_mode, image, self.width, self.height) if self.image_mask is not None: if self.inpainting_fill != 1: image = fill(image, self.mask_for_overlay) image_masked = Image.new('RGBa', (image.width, image.height)) image_masked.paste(image.convert("RGBA").convert("RGBa"), mask=ImageOps.invert(self.mask_for_overlay.convert('L'))) self.overlay_images.append(image_masked.convert('RGBA')) if crop_region is not None: image = image.crop(crop_region) image = resize_image(2, image, self.width, self.height) image = np.array(image).astype(np.float32) / 255.0 image = np.moveaxis(image, 2, 0) imgs.append(image) if len(imgs) == 1: batch_images = np.expand_dims(imgs[0], axis=0).repeat(self.batch_size, axis=0) if self.overlay_images is not None: self.overlay_images = self.overlay_images * self.batch_size elif len(imgs) <= self.batch_size: self.batch_size = len(imgs) batch_images = np.array(imgs) else: raise RuntimeError(f"bad number of images passed: {len(imgs)}; expecting {self.batch_size} or less") image = torch.from_numpy(batch_images) image = 2. * image - 1. image = image.to(device) self.init_latent = sd_model.get_first_stage_encoding(sd_model.encode_first_stage(image)) if self.image_mask is not None: latmask = self.image_mask.convert('RGB').resize((self.init_latent.shape[3], self.init_latent.shape[2])) latmask = np.moveaxis(np.array(latmask, dtype=np.float64), 2, 0) / 255 latmask = latmask[0] latmask = np.tile(latmask[None], (4, 1, 1)) self.mask = torch.asarray(1.0 - latmask).to(device).type(sd_model.dtype) self.nmask = torch.asarray(latmask).to(device).type(sd_model.dtype) if self.inpainting_fill == 2: self.init_latent = self.init_latent * self.mask + create_random_tensors(self.init_latent.shape[1:], [self.seed + x + 1 for x in range(self.init_latent.shape[0])]) * self.nmask elif self.inpainting_fill == 3: self.init_latent = self.init_latent * self.mask def sample(self, x, conditioning, unconditional_conditioning): samples = self.sampler.sample_img2img(self, self.init_latent, x, conditioning, unconditional_conditioning) if self.mask is not None: samples = samples * self.nmask + self.init_latent * self.mask return samples def img2img(prompt: str, init_img, init_img_with_mask, steps: int, sampler_index: int, mask_blur: int, inpainting_fill: int, use_GFPGAN: bool, prompt_matrix, mode: int, n_iter: int, batch_size: int, cfg_scale: float, denoising_strength: float, seed: int, height: int, width: int, resize_mode: int, upscaler_name: str, upscale_overlap: int, inpaint_full_res: bool): is_classic = mode == 0 is_inpaint = mode == 1 is_loopback = mode == 2 is_upscale = mode == 3 if is_inpaint: image = init_img_with_mask['image'] mask = init_img_with_mask['mask'] else: image = init_img mask = None assert 0. <= denoising_strength <= 1., 'can only work with strength in [0.0, 1.0]' p = StableDiffusionProcessingImg2Img( outpath_samples=opts.outdir_samples or opts.outdir_img2img_samples, outpath_grids=opts.outdir_grids or opts.outdir_img2img_grids, prompt=prompt, seed=seed, sampler_index=sampler_index, batch_size=batch_size, n_iter=n_iter, steps=steps, cfg_scale=cfg_scale, width=width, height=height, prompt_matrix=prompt_matrix, use_GFPGAN=use_GFPGAN, init_images=[image], mask=mask, mask_blur=mask_blur, inpainting_fill=inpainting_fill, resize_mode=resize_mode, denoising_strength=denoising_strength, inpaint_full_res=inpaint_full_res, extra_generation_params={"Denoising Strength": denoising_strength} ) if is_loopback: output_images, info = None, None history = [] initial_seed = None initial_info = None for i in range(n_iter): p.n_iter = 1 p.batch_size = 1 p.do_not_save_grid = True state.job = f"Batch {i + 1} out of {n_iter}" processed = process_images(p) if initial_seed is None: initial_seed = processed.seed initial_info = processed.info p.init_images = [processed.images[0]] p.seed = processed.seed + 1 p.denoising_strength = max(p.denoising_strength * 0.95, 0.1) history.append(processed.images[0]) grid = image_grid(history, batch_size, rows=1) save_image(grid, p.outpath_grids, "grid", initial_seed, prompt, opts.grid_format, info=info, short_filename=not opts.grid_extended_filename) processed = Processed(p, history, initial_seed, initial_info) elif is_upscale: initial_seed = None initial_info = None upscaler = sd_upscalers.get(upscaler_name, next(iter(sd_upscalers.values()))) img = upscaler(init_img) torch_gc() grid = split_grid(img, tile_w=width, tile_h=height, overlap=upscale_overlap) p.n_iter = 1 p.do_not_save_grid = True p.do_not_save_samples = True work = [] work_results = [] for y, h, row in grid.tiles: for tiledata in row: work.append(tiledata[2]) batch_count = math.ceil(len(work) / p.batch_size) print(f"SD upscaling will process a total of {len(work)} images tiled as {len(grid.tiles[0][2])}x{len(grid.tiles)} in a total of {batch_count} batches.") for i in range(batch_count): p.init_images = work[i*p.batch_size:(i+1)*p.batch_size] state.job = f"Batch {i + 1} out of {batch_count}" processed = process_images(p) if initial_seed is None: initial_seed = processed.seed initial_info = processed.info p.seed = processed.seed + 1 work_results += processed.images image_index = 0 for y, h, row in grid.tiles: for tiledata in row: tiledata[2] = work_results[image_index] if image_index{plaintext_to_html(str(key))}
{plaintext_to_html(str(text))}
{message}