import torch import network from lyco_helpers import factorization from einops import rearrange class ModuleTypeOFT(network.ModuleType): def create_module(self, net: network.Network, weights: network.NetworkWeights): if all(x in weights.w for x in ["oft_blocks"]) or all(x in weights.w for x in ["oft_diag"]): return NetworkModuleOFT(net, weights) return None # Supports both kohya-ss' implementation of COFT https://github.com/kohya-ss/sd-scripts/blob/main/networks/oft.py # and KohakuBlueleaf's implementation of OFT/COFT https://github.com/KohakuBlueleaf/LyCORIS/blob/dev/lycoris/modules/diag_oft.py class NetworkModuleOFT(network.NetworkModule): def __init__(self, net: network.Network, weights: network.NetworkWeights): super().__init__(net, weights) self.lin_module = None self.org_module: list[torch.Module] = [self.sd_module] self.scale = 1.0 self.is_kohya = False self.is_boft = False # kohya-ss if "oft_blocks" in weights.w.keys(): self.is_kohya = True self.oft_blocks = weights.w["oft_blocks"] # (num_blocks, block_size, block_size) self.alpha = weights.w["alpha"] # alpha is constraint self.dim = self.oft_blocks.shape[0] # lora dim # LyCORIS OFT elif "oft_diag" in weights.w.keys(): self.oft_blocks = weights.w["oft_diag"] # self.alpha is unused self.dim = self.oft_blocks.shape[1] # (num_blocks, block_size, block_size) # LyCORIS BOFT if weights.w["oft_diag"].dim() == 4: self.is_boft = True self.rescale = weights.w.get('rescale', None) if self.rescale is not None: self.rescale = self.rescale.reshape(-1, *[1]*(self.org_module[0].weight.dim() - 1)) is_linear = type(self.sd_module) in [torch.nn.Linear, torch.nn.modules.linear.NonDynamicallyQuantizableLinear] is_conv = type(self.sd_module) in [torch.nn.Conv2d] is_other_linear = type(self.sd_module) in [torch.nn.MultiheadAttention] # unsupported if is_linear: self.out_dim = self.sd_module.out_features elif is_conv: self.out_dim = self.sd_module.out_channels elif is_other_linear: self.out_dim = self.sd_module.embed_dim if self.is_kohya: self.constraint = self.alpha * self.out_dim self.num_blocks = self.dim self.block_size = self.out_dim // self.dim elif self.is_boft: self.constraint = None self.boft_m = weights.w["oft_diag"].shape[0] self.block_num = weights.w["oft_diag"].shape[1] self.block_size = weights.w["oft_diag"].shape[2] self.boft_b = self.block_size #self.block_size, self.block_num = butterfly_factor(self.out_dim, self.dim) else: self.constraint = None self.block_size, self.num_blocks = factorization(self.out_dim, self.dim) def calc_updown(self, orig_weight): oft_blocks = self.oft_blocks.to(orig_weight.device) eye = torch.eye(self.block_size, device=oft_blocks.device) if self.is_kohya: block_Q = oft_blocks - oft_blocks.transpose(1, 2) # ensure skew-symmetric orthogonal matrix norm_Q = torch.norm(block_Q.flatten()) new_norm_Q = torch.clamp(norm_Q, max=self.constraint.to(oft_blocks.device)) block_Q = block_Q * ((new_norm_Q + 1e-8) / (norm_Q + 1e-8)) oft_blocks = torch.matmul(eye + block_Q, (eye - block_Q).float().inverse()) R = oft_blocks.to(orig_weight.device) if not self.is_boft: # This errors out for MultiheadAttention, might need to be handled up-stream merged_weight = rearrange(orig_weight, '(k n) ... -> k n ...', k=self.num_blocks, n=self.block_size) merged_weight = torch.einsum( 'k n m, k n ... -> k m ...', R, merged_weight ) merged_weight = rearrange(merged_weight, 'k m ... -> (k m) ...') else: # TODO: determine correct value for scale scale = 1.0 m = self.boft_m b = self.boft_b r_b = b // 2 inp = orig_weight for i in range(m): bi = R[i] # b_num, b_size, b_size if i == 0: # Apply multiplier/scale and rescale into first weight bi = bi * scale + (1 - scale) * eye inp = rearrange(inp, "(c g k) ... -> (c k g) ...", g=2, k=2**i * r_b) inp = rearrange(inp, "(d b) ... -> d b ...", b=b) inp = torch.einsum("b i j, b j ... -> b i ...", bi, inp) inp = rearrange(inp, "d b ... -> (d b) ...") inp = rearrange(inp, "(c k g) ... -> (c g k) ...", g=2, k=2**i * r_b) merged_weight = inp # Rescale mechanism if self.rescale is not None: merged_weight = self.rescale.to(merged_weight) * merged_weight updown = merged_weight.to(orig_weight.device) - orig_weight.to(merged_weight.dtype) output_shape = orig_weight.shape return self.finalize_updown(updown, orig_weight, output_shape)