import torch import inspect import k_diffusion.sampling from modules import sd_samplers_common, sd_samplers_extra, sd_samplers_cfg_denoiser, sd_schedulers, devices from modules.sd_samplers_cfg_denoiser import CFGDenoiser # noqa: F401 from modules.script_callbacks import ExtraNoiseParams, extra_noise_callback from modules.shared import opts import modules.shared as shared samplers_k_diffusion = [ ('DPM++ 2M', 'sample_dpmpp_2m', ['k_dpmpp_2m'], {'scheduler': 'karras'}), ('DPM++ SDE', 'sample_dpmpp_sde', ['k_dpmpp_sde'], {'scheduler': 'karras', "second_order": True, "brownian_noise": True}), ('DPM++ 2M SDE', 'sample_dpmpp_2m_sde', ['k_dpmpp_2m_sde'], {'scheduler': 'exponential', "brownian_noise": True}), ('DPM++ 2M SDE Heun', 'sample_dpmpp_2m_sde', ['k_dpmpp_2m_sde_heun'], {'scheduler': 'exponential', "brownian_noise": True, "solver_type": "heun"}), ('DPM++ 2S a', 'sample_dpmpp_2s_ancestral', ['k_dpmpp_2s_a'], {'scheduler': 'karras', "uses_ensd": True, "second_order": True}), ('DPM++ 3M SDE', 'sample_dpmpp_3m_sde', ['k_dpmpp_3m_sde'], {'scheduler': 'exponential', 'discard_next_to_last_sigma': True, "brownian_noise": True}), ('Euler a', 'sample_euler_ancestral', ['k_euler_a', 'k_euler_ancestral'], {"uses_ensd": True}), ('Euler', 'sample_euler', ['k_euler'], {}), ('LMS', 'sample_lms', ['k_lms'], {}), ('Heun', 'sample_heun', ['k_heun'], {"second_order": True}), ('DPM2', 'sample_dpm_2', ['k_dpm_2'], {'scheduler': 'karras', 'discard_next_to_last_sigma': True, "second_order": True}), ('DPM2 a', 'sample_dpm_2_ancestral', ['k_dpm_2_a'], {'scheduler': 'karras', 'discard_next_to_last_sigma': True, "uses_ensd": True, "second_order": True}), ('DPM fast', 'sample_dpm_fast', ['k_dpm_fast'], {"uses_ensd": True}), ('DPM adaptive', 'sample_dpm_adaptive', ['k_dpm_ad'], {"uses_ensd": True}), ('Restart', sd_samplers_extra.restart_sampler, ['restart'], {'scheduler': 'karras', "second_order": True}), ] samplers_data_k_diffusion = [ sd_samplers_common.SamplerData(label, lambda model, funcname=funcname: KDiffusionSampler(funcname, model), aliases, options) for label, funcname, aliases, options in samplers_k_diffusion if callable(funcname) or hasattr(k_diffusion.sampling, funcname) ] sampler_extra_params = { 'sample_euler': ['s_churn', 's_tmin', 's_tmax', 's_noise'], 'sample_heun': ['s_churn', 's_tmin', 's_tmax', 's_noise'], 'sample_dpm_2': ['s_churn', 's_tmin', 's_tmax', 's_noise'], 'sample_dpm_fast': ['s_noise'], 'sample_dpm_2_ancestral': ['s_noise'], 'sample_dpmpp_2s_ancestral': ['s_noise'], 'sample_dpmpp_sde': ['s_noise'], 'sample_dpmpp_2m_sde': ['s_noise'], 'sample_dpmpp_3m_sde': ['s_noise'], } k_diffusion_samplers_map = {x.name: x for x in samplers_data_k_diffusion} k_diffusion_scheduler = {x.name: x.function for x in sd_schedulers.schedulers} class CFGDenoiserKDiffusion(sd_samplers_cfg_denoiser.CFGDenoiser): @property def inner_model(self): if self.model_wrap is None: denoiser_constructor = getattr(shared.sd_model, 'create_denoiser', None) if denoiser_constructor is not None: self.model_wrap = denoiser_constructor() else: denoiser = k_diffusion.external.CompVisVDenoiser if shared.sd_model.parameterization == "v" else k_diffusion.external.CompVisDenoiser self.model_wrap = denoiser(shared.sd_model, quantize=shared.opts.enable_quantization) return self.model_wrap class KDiffusionSampler(sd_samplers_common.Sampler): def __init__(self, funcname, sd_model, options=None): super().__init__(funcname) self.extra_params = sampler_extra_params.get(funcname, []) self.options = options or {} self.func = funcname if callable(funcname) else getattr(k_diffusion.sampling, self.funcname) self.model_wrap_cfg = CFGDenoiserKDiffusion(self) self.model_wrap = self.model_wrap_cfg.inner_model def get_sigmas(self, p, steps): discard_next_to_last_sigma = self.config is not None and self.config.options.get('discard_next_to_last_sigma', False) if opts.always_discard_next_to_last_sigma and not discard_next_to_last_sigma: discard_next_to_last_sigma = True p.extra_generation_params["Discard penultimate sigma"] = True steps += 1 if discard_next_to_last_sigma else 0 scheduler_name = (p.hr_scheduler if p.is_hr_pass else p.scheduler) or 'Automatic' if scheduler_name == 'Automatic': scheduler_name = self.config.options.get('scheduler', None) scheduler = sd_schedulers.schedulers_map.get(scheduler_name) m_sigma_min, m_sigma_max = self.model_wrap.sigmas[0].item(), self.model_wrap.sigmas[-1].item() sigma_min, sigma_max = (0.1, 10) if opts.use_old_karras_scheduler_sigmas else (m_sigma_min, m_sigma_max) if p.sampler_noise_scheduler_override: sigmas = p.sampler_noise_scheduler_override(steps) elif scheduler is None or scheduler.function is None: sigmas = self.model_wrap.get_sigmas(steps) else: sigmas_kwargs = {'sigma_min': sigma_min, 'sigma_max': sigma_max} if scheduler.label != 'Automatic' and not p.is_hr_pass: p.extra_generation_params["Schedule type"] = scheduler.label elif scheduler.label != p.extra_generation_params.get("Schedule type"): p.extra_generation_params["Hires schedule type"] = scheduler.label if opts.sigma_min != 0 and opts.sigma_min != m_sigma_min: sigmas_kwargs['sigma_min'] = opts.sigma_min p.extra_generation_params["Schedule min sigma"] = opts.sigma_min if opts.sigma_max != 0 and opts.sigma_max != m_sigma_max: sigmas_kwargs['sigma_max'] = opts.sigma_max p.extra_generation_params["Schedule max sigma"] = opts.sigma_max if scheduler.default_rho != -1 and opts.rho != 0 and opts.rho != scheduler.default_rho: sigmas_kwargs['rho'] = opts.rho p.extra_generation_params["Schedule rho"] = opts.rho if scheduler.need_inner_model: sigmas_kwargs['inner_model'] = self.model_wrap if scheduler.label == 'Beta': p.extra_generation_params["Beta schedule alpha"] = opts.beta_dist_alpha p.extra_generation_params["Beta schedule beta"] = opts.beta_dist_beta sigmas = scheduler.function(n=steps, **sigmas_kwargs, device=devices.cpu) if discard_next_to_last_sigma: sigmas = torch.cat([sigmas[:-2], sigmas[-1:]]) return sigmas.cpu() def sample_img2img(self, p, x, noise, conditioning, unconditional_conditioning, steps=None, image_conditioning=None): steps, t_enc = sd_samplers_common.setup_img2img_steps(p, steps) sigmas = self.get_sigmas(p, steps) sigma_sched = sigmas[steps - t_enc - 1:] if hasattr(shared.sd_model, 'add_noise_to_latent'): xi = shared.sd_model.add_noise_to_latent(x, noise, sigma_sched[0]) else: xi = x + noise * sigma_sched[0] if opts.img2img_extra_noise > 0: p.extra_generation_params["Extra noise"] = opts.img2img_extra_noise extra_noise_params = ExtraNoiseParams(noise, x, xi) extra_noise_callback(extra_noise_params) noise = extra_noise_params.noise xi += noise * opts.img2img_extra_noise extra_params_kwargs = self.initialize(p) parameters = inspect.signature(self.func).parameters if 'sigma_min' in parameters: ## last sigma is zero which isn't allowed by DPM Fast & Adaptive so taking value before last extra_params_kwargs['sigma_min'] = sigma_sched[-2] if 'sigma_max' in parameters: extra_params_kwargs['sigma_max'] = sigma_sched[0] if 'n' in parameters: extra_params_kwargs['n'] = len(sigma_sched) - 1 if 'sigma_sched' in parameters: extra_params_kwargs['sigma_sched'] = sigma_sched if 'sigmas' in parameters: extra_params_kwargs['sigmas'] = sigma_sched if self.config.options.get('brownian_noise', False): noise_sampler = self.create_noise_sampler(x, sigmas, p) extra_params_kwargs['noise_sampler'] = noise_sampler if self.config.options.get('solver_type', None) == 'heun': extra_params_kwargs['solver_type'] = 'heun' self.model_wrap_cfg.init_latent = x self.last_latent = x self.sampler_extra_args = { 'cond': conditioning, 'image_cond': image_conditioning, 'uncond': unconditional_conditioning, 'cond_scale': p.cfg_scale, 's_min_uncond': self.s_min_uncond } samples = self.launch_sampling(t_enc + 1, lambda: self.func(self.model_wrap_cfg, xi, extra_args=self.sampler_extra_args, disable=False, callback=self.callback_state, **extra_params_kwargs)) self.add_infotext(p) return samples def sample(self, p, x, conditioning, unconditional_conditioning, steps=None, image_conditioning=None): steps = steps or p.steps sigmas = self.get_sigmas(p, steps) if opts.sgm_noise_multiplier: p.extra_generation_params["SGM noise multiplier"] = True x = x * torch.sqrt(1.0 + sigmas[0] ** 2.0) else: x = x * sigmas[0] extra_params_kwargs = self.initialize(p) parameters = inspect.signature(self.func).parameters if 'n' in parameters: extra_params_kwargs['n'] = steps if 'sigma_min' in parameters: extra_params_kwargs['sigma_min'] = self.model_wrap.sigmas[0].item() extra_params_kwargs['sigma_max'] = self.model_wrap.sigmas[-1].item() if 'sigmas' in parameters: extra_params_kwargs['sigmas'] = sigmas if self.config.options.get('brownian_noise', False): noise_sampler = self.create_noise_sampler(x, sigmas, p) extra_params_kwargs['noise_sampler'] = noise_sampler if self.config.options.get('solver_type', None) == 'heun': extra_params_kwargs['solver_type'] = 'heun' self.last_latent = x self.sampler_extra_args = { 'cond': conditioning, 'image_cond': image_conditioning, 'uncond': unconditional_conditioning, 'cond_scale': p.cfg_scale, 's_min_uncond': self.s_min_uncond } samples = self.launch_sampling(steps, lambda: self.func(self.model_wrap_cfg, x, extra_args=self.sampler_extra_args, disable=False, callback=self.callback_state, **extra_params_kwargs)) self.add_infotext(p) return samples