import torch import lyco_helpers import modules.models.sd3.mmdit import network from modules import devices class ModuleTypeLora(network.ModuleType): def create_module(self, net: network.Network, weights: network.NetworkWeights): if all(x in weights.w for x in ["lora_up.weight", "lora_down.weight"]): return NetworkModuleLora(net, weights) if all(x in weights.w for x in ["lora_A.weight", "lora_B.weight"]): w = weights.w.copy() weights.w.clear() weights.w.update({"lora_up.weight": w["lora_B.weight"], "lora_down.weight": w["lora_A.weight"]}) return NetworkModuleLora(net, weights) return None class NetworkModuleLora(network.NetworkModule): def __init__(self, net: network.Network, weights: network.NetworkWeights): super().__init__(net, weights) self.up_model = self.create_module(weights.w, "lora_up.weight") self.down_model = self.create_module(weights.w, "lora_down.weight") self.mid_model = self.create_module(weights.w, "lora_mid.weight", none_ok=True) self.dim = weights.w["lora_down.weight"].shape[0] def create_module(self, weights, key, none_ok=False): weight = weights.get(key) if weight is None and none_ok: return None is_linear = type(self.sd_module) in [torch.nn.Linear, torch.nn.modules.linear.NonDynamicallyQuantizableLinear, torch.nn.MultiheadAttention, modules.models.sd3.mmdit.QkvLinear] is_conv = type(self.sd_module) in [torch.nn.Conv2d] if is_linear: weight = weight.reshape(weight.shape[0], -1) module = torch.nn.Linear(weight.shape[1], weight.shape[0], bias=False) elif is_conv and key == "lora_down.weight" or key == "dyn_up": if len(weight.shape) == 2: weight = weight.reshape(weight.shape[0], -1, 1, 1) if weight.shape[2] != 1 or weight.shape[3] != 1: module = torch.nn.Conv2d(weight.shape[1], weight.shape[0], self.sd_module.kernel_size, self.sd_module.stride, self.sd_module.padding, bias=False) else: module = torch.nn.Conv2d(weight.shape[1], weight.shape[0], (1, 1), bias=False) elif is_conv and key == "lora_mid.weight": module = torch.nn.Conv2d(weight.shape[1], weight.shape[0], self.sd_module.kernel_size, self.sd_module.stride, self.sd_module.padding, bias=False) elif is_conv and key == "lora_up.weight" or key == "dyn_down": module = torch.nn.Conv2d(weight.shape[1], weight.shape[0], (1, 1), bias=False) else: raise AssertionError(f'Lora layer {self.network_key} matched a layer with unsupported type: {type(self.sd_module).__name__}') with torch.no_grad(): if weight.shape != module.weight.shape: weight = weight.reshape(module.weight.shape) module.weight.copy_(weight) module.to(device=devices.cpu, dtype=devices.dtype) module.weight.requires_grad_(False) return module def calc_updown(self, orig_weight): up = self.up_model.weight.to(orig_weight.device) down = self.down_model.weight.to(orig_weight.device) output_shape = [up.size(0), down.size(1)] if self.mid_model is not None: # cp-decomposition mid = self.mid_model.weight.to(orig_weight.device) updown = lyco_helpers.rebuild_cp_decomposition(up, down, mid) output_shape += mid.shape[2:] else: if len(down.shape) == 4: output_shape += down.shape[2:] updown = lyco_helpers.rebuild_conventional(up, down, output_shape, self.network.dyn_dim) return self.finalize_updown(updown, orig_weight, output_shape) def forward(self, x, y): self.up_model.to(device=devices.device) self.down_model.to(device=devices.device) return y + self.up_model(self.down_model(x)) * self.multiplier() * self.calc_scale()