import os
import numpy as np
import PIL
import torch
from PIL import Image
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms

import random
import tqdm
from modules import devices, shared
import re

from ldm.modules.distributions.distributions import DiagonalGaussianDistribution

re_numbers_at_start = re.compile(r"^[-\d]+\s*")


class DatasetEntry:
    def __init__(self, filename=None, filename_text=None, latent_dist=None, latent_sample=None, cond=None, cond_text=None, pixel_values=None):
        self.filename = filename
        self.filename_text = filename_text
        self.latent_dist = latent_dist
        self.latent_sample = latent_sample
        self.cond = cond
        self.cond_text = cond_text
        self.pixel_values = pixel_values


class PersonalizedBase(Dataset):
    def __init__(self, data_root, width, height, repeats, flip_p=0.5, placeholder_token="*", model=None, cond_model=None, device=None, template_file=None, include_cond=False, batch_size=1, gradient_step=1, shuffle_tags=False, tag_drop_out=0, latent_sampling_method='once'):        
        re_word = re.compile(shared.opts.dataset_filename_word_regex) if len(shared.opts.dataset_filename_word_regex) > 0 else None
        
        self.placeholder_token = placeholder_token

        self.width = width
        self.height = height
        self.flip = transforms.RandomHorizontalFlip(p=flip_p)

        self.dataset = []

        with open(template_file, "r") as file:
            lines = [x.strip() for x in file.readlines()]

        self.lines = lines

        assert data_root, 'dataset directory not specified'
        assert os.path.isdir(data_root), "Dataset directory doesn't exist"
        assert os.listdir(data_root), "Dataset directory is empty"

        self.image_paths = [os.path.join(data_root, file_path) for file_path in os.listdir(data_root)]

        
        self.shuffle_tags = shuffle_tags
        self.tag_drop_out = tag_drop_out

        print("Preparing dataset...")
        for path in tqdm.tqdm(self.image_paths):
            if shared.state.interrupted:
                raise Exception("inturrupted")
            try:
                image = Image.open(path).convert('RGB').resize((self.width, self.height), PIL.Image.BICUBIC)
            except Exception:
                continue

            text_filename = os.path.splitext(path)[0] + ".txt"
            filename = os.path.basename(path)

            if os.path.exists(text_filename):
                with open(text_filename, "r", encoding="utf8") as file:
                    filename_text = file.read()
            else:
                filename_text = os.path.splitext(filename)[0]
                filename_text = re.sub(re_numbers_at_start, '', filename_text)
                if re_word:
                    tokens = re_word.findall(filename_text)
                    filename_text = (shared.opts.dataset_filename_join_string or "").join(tokens)

            npimage = np.array(image).astype(np.uint8)
            npimage = (npimage / 127.5 - 1.0).astype(np.float32)

            torchdata = torch.from_numpy(npimage).permute(2, 0, 1).to(device=device, dtype=torch.float32)
            latent_sample = None

            with torch.autocast("cuda"):
                latent_dist = model.encode_first_stage(torchdata.unsqueeze(dim=0))

            if latent_sampling_method == "once" or (latent_sampling_method == "deterministic" and not isinstance(latent_dist, DiagonalGaussianDistribution)):
                latent_sample = model.get_first_stage_encoding(latent_dist).squeeze().to(devices.cpu)
                latent_sampling_method = "once"
                entry = DatasetEntry(filename=path, filename_text=filename_text, latent_sample=latent_sample)
            elif latent_sampling_method == "deterministic":
                # Works only for DiagonalGaussianDistribution
                latent_dist.std = 0
                latent_sample = model.get_first_stage_encoding(latent_dist).squeeze().to(devices.cpu)
                entry = DatasetEntry(filename=path, filename_text=filename_text, latent_sample=latent_sample)
            elif latent_sampling_method == "random":
                entry = DatasetEntry(filename=path, filename_text=filename_text, latent_dist=latent_dist)

            if not (self.tag_drop_out != 0 or self.shuffle_tags):
                entry.cond_text = self.create_text(filename_text)

            if include_cond and not (self.tag_drop_out != 0 or self.shuffle_tags):
                with torch.autocast("cuda"):
                    entry.cond = cond_model([entry.cond_text]).to(devices.cpu).squeeze(0)

            self.dataset.append(entry)
            del torchdata
            del latent_dist
            del latent_sample

        self.length = len(self.dataset)
        assert self.length > 0, "No images have been found in the dataset."
        self.batch_size = min(batch_size, self.length)
        self.gradient_step = min(gradient_step, self.length // self.batch_size)
        self.latent_sampling_method = latent_sampling_method

    def create_text(self, filename_text):
        text = random.choice(self.lines)
        tags = filename_text.split(',')
        if self.tag_drop_out != 0:
            tags = [t for t in tags if random.random() > self.tag_drop_out]
        if self.shuffle_tags:
            random.shuffle(tags)
        text = text.replace("[filewords]", ','.join(tags))
        text = text.replace("[name]", self.placeholder_token)
        return text

    def __len__(self):
        return self.length

    def __getitem__(self, i):
        entry = self.dataset[i]
        if self.tag_drop_out != 0 or self.shuffle_tags:
            entry.cond_text = self.create_text(entry.filename_text)
        if self.latent_sampling_method == "random":
            entry.latent_sample = shared.sd_model.get_first_stage_encoding(entry.latent_dist).to(devices.cpu)
        return entry

class PersonalizedDataLoader(DataLoader):
    def __init__(self, dataset, latent_sampling_method="once", batch_size=1, pin_memory=False):
        super(PersonalizedDataLoader, self).__init__(dataset, shuffle=True, drop_last=True, batch_size=batch_size, pin_memory=pin_memory)
        if latent_sampling_method == "random":
            self.collate_fn = collate_wrapper_random
        else:
            self.collate_fn = collate_wrapper
        

class BatchLoader:
    def __init__(self, data):
        self.cond_text = [entry.cond_text for entry in data]
        self.cond = [entry.cond for entry in data]
        self.latent_sample = torch.stack([entry.latent_sample for entry in data]).squeeze(1)
        #self.emb_index = [entry.emb_index for entry in data]
        #print(self.latent_sample.device)

    def pin_memory(self):
        self.latent_sample = self.latent_sample.pin_memory()
        return self

def collate_wrapper(batch):
    return BatchLoader(batch)

class BatchLoaderRandom(BatchLoader):
    def __init__(self, data):
        super().__init__(data)

    def pin_memory(self):
        return self

def collate_wrapper_random(batch):
    return BatchLoaderRandom(batch)