from __future__ import annotations import torch import sgm.models.diffusion import sgm.modules.diffusionmodules.denoiser_scaling import sgm.modules.diffusionmodules.discretizer from modules import devices, shared, prompt_parser def get_learned_conditioning(self: sgm.models.diffusion.DiffusionEngine, batch: prompt_parser.SdConditioning | list[str]): for embedder in self.conditioner.embedders: embedder.ucg_rate = 0.0 width = getattr(self, 'target_width', 1024) height = getattr(self, 'target_height', 1024) sdxl_conds = { "txt": batch, "original_size_as_tuple": torch.tensor([height, width]).repeat(len(batch), 1).to(devices.device, devices.dtype), "crop_coords_top_left": torch.tensor([shared.opts.sdxl_crop_top, shared.opts.sdxl_crop_left]).repeat(len(batch), 1).to(devices.device, devices.dtype), "target_size_as_tuple": torch.tensor([height, width]).repeat(len(batch), 1).to(devices.device, devices.dtype), } force_zero_negative_prompt = getattr(batch, 'is_negative_prompt', False) and all(x == '' for x in batch) c = self.conditioner(sdxl_conds, force_zero_embeddings=['txt'] if force_zero_negative_prompt else []) return c def apply_model(self: sgm.models.diffusion.DiffusionEngine, x, t, cond): return self.model(x, t, cond) def extend_sdxl(model): dtype = next(model.model.diffusion_model.parameters()).dtype model.model.diffusion_model.dtype = dtype model.model.conditioning_key = 'crossattn' model.cond_stage_model = [x for x in model.conditioner.embedders if 'CLIPEmbedder' in type(x).__name__][0] model.cond_stage_key = model.cond_stage_model.input_key model.parameterization = "v" if isinstance(model.denoiser.scaling, sgm.modules.diffusionmodules.denoiser_scaling.VScaling) else "eps" discretization = sgm.modules.diffusionmodules.discretizer.LegacyDDPMDiscretization() model.alphas_cumprod = torch.asarray(discretization.alphas_cumprod, device=devices.device, dtype=dtype) model.is_xl = True sgm.models.diffusion.DiffusionEngine.get_learned_conditioning = get_learned_conditioning sgm.models.diffusion.DiffusionEngine.apply_model = apply_model sgm.modules.attention.print = lambda *args: None sgm.modules.diffusionmodules.model.print = lambda *args: None sgm.modules.diffusionmodules.openaimodel.print = lambda *args: None sgm.modules.encoders.modules.print = lambda *args: None # this gets the code to load the vanilla attention that we override sgm.modules.attention.SDP_IS_AVAILABLE = True sgm.modules.attention.XFORMERS_IS_AVAILABLE = False