from collections import namedtuple import numpy as np import torch from PIL import Image from modules import devices, processing, images, sd_vae_approx, sd_samplers, sd_vae_taesd from modules.shared import opts, state import modules.shared as shared SamplerData = namedtuple('SamplerData', ['name', 'constructor', 'aliases', 'options']) def setup_img2img_steps(p, steps=None): if opts.img2img_fix_steps or steps is not None: requested_steps = (steps or p.steps) steps = int(requested_steps / min(p.denoising_strength, 0.999)) if p.denoising_strength > 0 else 0 t_enc = requested_steps - 1 else: steps = p.steps t_enc = int(min(p.denoising_strength, 0.999) * steps) return steps, t_enc approximation_indexes = {"Full": 0, "Approx NN": 1, "Approx cheap": 2, "TAESD": 3} def single_sample_to_image(sample, approximation=None): if approximation is None: approximation = approximation_indexes.get(opts.show_progress_type, 0) if approximation == 2: x_sample = sd_vae_approx.cheap_approximation(sample) elif approximation == 1: x_sample = sd_vae_approx.model()(sample.to(devices.device, devices.dtype).unsqueeze(0))[0].detach() elif approximation == 3: x_sample = sample * 1.5 x_sample = sd_vae_taesd.model()(x_sample.to(devices.device, devices.dtype).unsqueeze(0))[0].detach() else: x_sample = processing.decode_first_stage(shared.sd_model, sample.unsqueeze(0))[0] if approximation != 3: x_sample = (x_sample + 1.0) / 2.0 x_sample = torch.clamp(x_sample, min=0.0, max=1.0) x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2) x_sample = x_sample.astype(np.uint8) return Image.fromarray(x_sample) def sample_to_image(samples, index=0, approximation=None): return single_sample_to_image(samples[index], approximation) def samples_to_image_grid(samples, approximation=None): return images.image_grid([single_sample_to_image(sample, approximation) for sample in samples]) def store_latent(decoded): state.current_latent = decoded if opts.live_previews_enable and opts.show_progress_every_n_steps > 0 and shared.state.sampling_step % opts.show_progress_every_n_steps == 0: if not shared.parallel_processing_allowed: shared.state.assign_current_image(sample_to_image(decoded)) def is_sampler_using_eta_noise_seed_delta(p): """returns whether sampler from config will use eta noise seed delta for image creation""" sampler_config = sd_samplers.find_sampler_config(p.sampler_name) eta = p.eta if eta is None and p.sampler is not None: eta = p.sampler.eta if eta is None and sampler_config is not None: eta = 0 if sampler_config.options.get("default_eta_is_0", False) else 1.0 if eta == 0: return False return sampler_config.options.get("uses_ensd", False) class InterruptedException(BaseException): pass if opts.randn_source == "CPU": import torchsde._brownian.brownian_interval def torchsde_randn(size, dtype, device, seed): generator = torch.Generator(devices.cpu).manual_seed(int(seed)) return torch.randn(size, dtype=dtype, device=devices.cpu, generator=generator).to(device) torchsde._brownian.brownian_interval._randn = torchsde_randn