import contextlib import os from typing import Mapping import safetensors import torch import k_diffusion from modules.models.sd3.other_impls import SDClipModel, SDXLClipG, T5XXLModel, SD3Tokenizer from modules.models.sd3.sd3_impls import BaseModel, SDVAE, SD3LatentFormat from modules import shared, modelloader, devices CLIPG_URL = "https://huggingface.co/stabilityai/stable-diffusion-3-medium/resolve/main/text_encoders/clip_g.safetensors" CLIPG_CONFIG = { "hidden_act": "gelu", "hidden_size": 1280, "intermediate_size": 5120, "num_attention_heads": 20, "num_hidden_layers": 32, } CLIPL_URL = "https://huggingface.co/stabilityai/stable-diffusion-3-medium/resolve/main/text_encoders/clip_l.safetensors" CLIPL_CONFIG = { "hidden_act": "quick_gelu", "hidden_size": 768, "intermediate_size": 3072, "num_attention_heads": 12, "num_hidden_layers": 12, } T5_URL = "https://huggingface.co/stabilityai/stable-diffusion-3-medium/resolve/main/text_encoders/t5xxl_fp16.safetensors" T5_CONFIG = { "d_ff": 10240, "d_model": 4096, "num_heads": 64, "num_layers": 24, "vocab_size": 32128, } class SafetensorsMapping(Mapping): def __init__(self, file): self.file = file def __len__(self): return len(self.file.keys()) def __iter__(self): for key in self.file.keys(): yield key def __getitem__(self, key): return self.file.get_tensor(key) class SD3Cond(torch.nn.Module): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.tokenizer = SD3Tokenizer() with torch.no_grad(): self.clip_g = SDXLClipG(CLIPG_CONFIG, device="cpu", dtype=torch.float32) self.clip_l = SDClipModel(layer="hidden", layer_idx=-2, device="cpu", dtype=torch.float32, layer_norm_hidden_state=False, return_projected_pooled=False, textmodel_json_config=CLIPL_CONFIG) self.t5xxl = T5XXLModel(T5_CONFIG, device="cpu", dtype=torch.float32) self.weights_loaded = False def forward(self, prompts: list[str]): res = [] for prompt in prompts: tokens = self.tokenizer.tokenize_with_weights(prompt) l_out, l_pooled = self.clip_l.encode_token_weights(tokens["l"]) g_out, g_pooled = self.clip_g.encode_token_weights(tokens["g"]) t5_out, t5_pooled = self.t5xxl.encode_token_weights(tokens["t5xxl"]) lg_out = torch.cat([l_out, g_out], dim=-1) lg_out = torch.nn.functional.pad(lg_out, (0, 4096 - lg_out.shape[-1])) lgt_out = torch.cat([lg_out, t5_out], dim=-2) vector_out = torch.cat((l_pooled, g_pooled), dim=-1) res.append({ 'crossattn': lgt_out[0].to(devices.device), 'vector': vector_out[0].to(devices.device), }) return res def load_weights(self): if self.weights_loaded: return clip_path = os.path.join(shared.models_path, "CLIP") clip_g_file = modelloader.load_file_from_url(CLIPG_URL, model_dir=clip_path, file_name="clip_g.safetensors") with safetensors.safe_open(clip_g_file, framework="pt") as file: self.clip_g.transformer.load_state_dict(SafetensorsMapping(file)) clip_l_file = modelloader.load_file_from_url(CLIPL_URL, model_dir=clip_path, file_name="clip_l.safetensors") with safetensors.safe_open(clip_l_file, framework="pt") as file: self.clip_l.transformer.load_state_dict(SafetensorsMapping(file), strict=False) t5_file = modelloader.load_file_from_url(T5_URL, model_dir=clip_path, file_name="t5xxl_fp16.safetensors") with safetensors.safe_open(t5_file, framework="pt") as file: self.t5xxl.transformer.load_state_dict(SafetensorsMapping(file), strict=False) self.weights_loaded = True def encode_embedding_init_text(self, init_text, nvpt): return torch.tensor([[0]], device=devices.device) # XXX class SD3Denoiser(k_diffusion.external.DiscreteSchedule): def __init__(self, inner_model, sigmas): super().__init__(sigmas, quantize=shared.opts.enable_quantization) self.inner_model = inner_model def forward(self, input, sigma, **kwargs): return self.inner_model.apply_model(input, sigma, **kwargs) class SD3Inferencer(torch.nn.Module): def __init__(self, state_dict, shift=3, use_ema=False): super().__init__() self.shift = shift with torch.no_grad(): self.model = BaseModel(shift=shift, state_dict=state_dict, prefix="model.diffusion_model.", device="cpu", dtype=devices.dtype) self.first_stage_model = SDVAE(device="cpu", dtype=devices.dtype_vae) self.first_stage_model.dtype = self.model.diffusion_model.dtype self.alphas_cumprod = 1 / (self.model.model_sampling.sigmas ** 2 + 1) self.cond_stage_model = SD3Cond() self.cond_stage_key = 'txt' self.parameterization = "eps" self.model.conditioning_key = "crossattn" self.latent_format = SD3LatentFormat() self.latent_channels = 16 def after_load_weights(self): self.cond_stage_model.load_weights() def ema_scope(self): return contextlib.nullcontext() def get_learned_conditioning(self, batch: list[str]): return self.cond_stage_model(batch) def apply_model(self, x, t, cond): return self.model.apply_model(x, t, c_crossattn=cond['crossattn'], y=cond['vector']) def decode_first_stage(self, latent): latent = self.latent_format.process_out(latent) return self.first_stage_model.decode(latent) def encode_first_stage(self, image): latent = self.first_stage_model.encode(image) return self.latent_format.process_in(latent) def create_denoiser(self): return SD3Denoiser(self, self.model.model_sampling.sigmas)