import dataclasses import torch import k_diffusion @dataclasses.dataclass class Scheduler: name: str label: str function: any default_rho: float = -1 need_inner_model: bool = False aliases: list = None def uniform(n, sigma_min, sigma_max, inner_model, device): return inner_model.get_sigmas(n) def sgm_uniform(n, sigma_min, sigma_max, inner_model, device): start = inner_model.sigma_to_t(torch.tensor(sigma_max)) end = inner_model.sigma_to_t(torch.tensor(sigma_min)) sigs = [ inner_model.t_to_sigma(ts) for ts in torch.linspace(start, end, n + 1)[:-1] ] sigs += [0.0] return torch.FloatTensor(sigs).to(device) def kl_optimal(n, sigma_min, sigma_max, device): alpha_min = torch.arctan(torch.tensor(sigma_min, device=device)) alpha_max = torch.arctan(torch.tensor(sigma_max, device=device)) sigmas = torch.empty((n+1,), device=device) for i in range(n+1): sigmas[i] = torch.tan((i/n) * alpha_min + (1.0-i/n) * alpha_max) return sigmas schedulers = [ Scheduler('automatic', 'Automatic', None), Scheduler('uniform', 'Uniform', uniform, need_inner_model=True), Scheduler('karras', 'Karras', k_diffusion.sampling.get_sigmas_karras, default_rho=7.0), Scheduler('exponential', 'Exponential', k_diffusion.sampling.get_sigmas_exponential), Scheduler('polyexponential', 'Polyexponential', k_diffusion.sampling.get_sigmas_polyexponential, default_rho=1.0), Scheduler('sgm_uniform', 'SGM Uniform', sgm_uniform, need_inner_model=True, aliases=["SGMUniform"]), Scheduler('kl_optimal', 'KL Optimal', kl_optimal), ] schedulers_map = {**{x.name: x for x in schedulers}, **{x.label: x for x in schedulers}}