import os from contextlib import closing from pathlib import Path import numpy as np from PIL import Image, ImageOps, ImageFilter, ImageEnhance, UnidentifiedImageError import gradio as gr from modules import images as imgutil from modules.generation_parameters_copypaste import create_override_settings_dict, parse_generation_parameters from modules.processing import Processed, StableDiffusionProcessingImg2Img, process_images from modules.shared import opts, state import modules.shared as shared import modules.processing as processing from modules.ui import plaintext_to_html import modules.scripts def process_batch(p, input_dir, output_dir, inpaint_mask_dir, args, to_scale=False, scale_by=1.0, use_png_info=False, png_info_props=None, png_info_dir=None): output_dir = output_dir.strip() processing.fix_seed(p) images = list(shared.walk_files(input_dir, allowed_extensions=(".png", ".jpg", ".jpeg", ".webp", ".tif", ".tiff"))) is_inpaint_batch = False if inpaint_mask_dir: inpaint_masks = shared.listfiles(inpaint_mask_dir) is_inpaint_batch = bool(inpaint_masks) if is_inpaint_batch: print(f"\nInpaint batch is enabled. {len(inpaint_masks)} masks found.") print(f"Will process {len(images)} images, creating {p.n_iter * p.batch_size} new images for each.") state.job_count = len(images) * p.n_iter # extract "default" params to use in case getting png info fails prompt = p.prompt negative_prompt = p.negative_prompt seed = p.seed cfg_scale = p.cfg_scale sampler_name = p.sampler_name steps = p.steps for i, image in enumerate(images): state.job = f"{i+1} out of {len(images)}" if state.skipped: state.skipped = False if state.interrupted: break try: img = Image.open(image) except UnidentifiedImageError as e: print(e) continue # Use the EXIF orientation of photos taken by smartphones. img = ImageOps.exif_transpose(img) if to_scale: p.width = int(img.width * scale_by) p.height = int(img.height * scale_by) p.init_images = [img] * p.batch_size image_path = Path(image) if is_inpaint_batch: # try to find corresponding mask for an image using simple filename matching if len(inpaint_masks) == 1: mask_image_path = inpaint_masks[0] else: # try to find corresponding mask for an image using simple filename matching mask_image_dir = Path(inpaint_mask_dir) masks_found = list(mask_image_dir.glob(f"{image_path.stem}.*")) if len(masks_found) == 0: print(f"Warning: mask is not found for {image_path} in {mask_image_dir}. Skipping it.") continue # it should contain only 1 matching mask # otherwise user has many masks with the same name but different extensions mask_image_path = masks_found[0] mask_image = Image.open(mask_image_path) p.image_mask = mask_image if use_png_info: try: info_img = img if png_info_dir: info_img_path = os.path.join(png_info_dir, os.path.basename(image)) info_img = Image.open(info_img_path) geninfo, _ = imgutil.read_info_from_image(info_img) parsed_parameters = parse_generation_parameters(geninfo) parsed_parameters = {k: v for k, v in parsed_parameters.items() if k in (png_info_props or {})} except Exception: parsed_parameters = {} p.prompt = prompt + (" " + parsed_parameters["Prompt"] if "Prompt" in parsed_parameters else "") p.negative_prompt = negative_prompt + (" " + parsed_parameters["Negative prompt"] if "Negative prompt" in parsed_parameters else "") p.seed = int(parsed_parameters.get("Seed", seed)) p.cfg_scale = float(parsed_parameters.get("CFG scale", cfg_scale)) p.sampler_name = parsed_parameters.get("Sampler", sampler_name) p.steps = int(parsed_parameters.get("Steps", steps)) proc = modules.scripts.scripts_img2img.run(p, *args) if proc is None: if output_dir: p.outpath_samples = output_dir p.override_settings['save_to_dirs'] = False if p.n_iter > 1 or p.batch_size > 1: p.override_settings['samples_filename_pattern'] = f'{image_path.stem}-[generation_number]' else: p.override_settings['samples_filename_pattern'] = f'{image_path.stem}' process_images(p) def img2img(id_task: str, mode: int, prompt: str, negative_prompt: str, prompt_styles, init_img, sketch, init_img_with_mask, inpaint_color_sketch, inpaint_color_sketch_orig, init_img_inpaint, init_mask_inpaint, steps: int, sampler_name: str, mask_blur: int, mask_alpha: float, inpainting_fill: int, n_iter: int, batch_size: int, cfg_scale: float, image_cfg_scale: float, denoising_strength: float, seed: int, subseed: int, subseed_strength: float, seed_resize_from_h: int, seed_resize_from_w: int, seed_enable_extras: bool, selected_scale_tab: int, height: int, width: int, scale_by: float, resize_mode: int, inpaint_full_res: bool, inpaint_full_res_padding: int, inpainting_mask_invert: int, img2img_batch_input_dir: str, img2img_batch_output_dir: str, img2img_batch_inpaint_mask_dir: str, override_settings_texts, img2img_batch_use_png_info: bool, img2img_batch_png_info_props: list, img2img_batch_png_info_dir: str, request: gr.Request, *args): override_settings = create_override_settings_dict(override_settings_texts) is_batch = mode == 5 if mode == 0: # img2img image = init_img.convert("RGB") mask = None elif mode == 1: # img2img sketch image = sketch.convert("RGB") mask = None elif mode == 2: # inpaint image, mask = init_img_with_mask["image"], init_img_with_mask["mask"] mask = mask.split()[-1].convert("L").point(lambda x: 255 if x > 128 else 0) image = image.convert("RGB") elif mode == 3: # inpaint sketch image = inpaint_color_sketch orig = inpaint_color_sketch_orig or inpaint_color_sketch pred = np.any(np.array(image) != np.array(orig), axis=-1) mask = Image.fromarray(pred.astype(np.uint8) * 255, "L") mask = ImageEnhance.Brightness(mask).enhance(1 - mask_alpha / 100) blur = ImageFilter.GaussianBlur(mask_blur) image = Image.composite(image.filter(blur), orig, mask.filter(blur)) image = image.convert("RGB") elif mode == 4: # inpaint upload mask image = init_img_inpaint mask = init_mask_inpaint else: image = None mask = None # Use the EXIF orientation of photos taken by smartphones. if image is not None: image = ImageOps.exif_transpose(image) if selected_scale_tab == 1 and not is_batch: assert image, "Can't scale by because no image is selected" width = int(image.width * scale_by) height = int(image.height * scale_by) assert 0. <= denoising_strength <= 1., 'can only work with strength in [0.0, 1.0]' p = StableDiffusionProcessingImg2Img( sd_model=shared.sd_model, outpath_samples=opts.outdir_samples or opts.outdir_img2img_samples, outpath_grids=opts.outdir_grids or opts.outdir_img2img_grids, prompt=prompt, negative_prompt=negative_prompt, styles=prompt_styles, seed=seed, subseed=subseed, subseed_strength=subseed_strength, seed_resize_from_h=seed_resize_from_h, seed_resize_from_w=seed_resize_from_w, seed_enable_extras=seed_enable_extras, sampler_name=sampler_name, batch_size=batch_size, n_iter=n_iter, steps=steps, cfg_scale=cfg_scale, width=width, height=height, init_images=[image], mask=mask, mask_blur=mask_blur, inpainting_fill=inpainting_fill, resize_mode=resize_mode, denoising_strength=denoising_strength, image_cfg_scale=image_cfg_scale, inpaint_full_res=inpaint_full_res, inpaint_full_res_padding=inpaint_full_res_padding, inpainting_mask_invert=inpainting_mask_invert, override_settings=override_settings, ) p.scripts = modules.scripts.scripts_img2img p.script_args = args p.user = request.username if shared.cmd_opts.enable_console_prompts: print(f"\nimg2img: {prompt}", file=shared.progress_print_out) if mask: p.extra_generation_params["Mask blur"] = mask_blur with closing(p): if is_batch: assert not shared.cmd_opts.hide_ui_dir_config, "Launched with --hide-ui-dir-config, batch img2img disabled" process_batch(p, img2img_batch_input_dir, img2img_batch_output_dir, img2img_batch_inpaint_mask_dir, args, to_scale=selected_scale_tab == 1, scale_by=scale_by, use_png_info=img2img_batch_use_png_info, png_info_props=img2img_batch_png_info_props, png_info_dir=img2img_batch_png_info_dir) processed = Processed(p, [], p.seed, "") else: processed = modules.scripts.scripts_img2img.run(p, *args) if processed is None: processed = process_images(p) shared.total_tqdm.clear() generation_info_js = processed.js() if opts.samples_log_stdout: print(generation_info_js) if opts.do_not_show_images: processed.images = [] return processed.images, generation_info_js, plaintext_to_html(processed.info), plaintext_to_html(processed.comments, classname="comments")