import os import gc import time import numpy as np import torch import torchvision from PIL import Image from einops import rearrange, repeat from omegaconf import OmegaConf import safetensors.torch from ldm.models.diffusion.ddim import DDIMSampler from ldm.util import instantiate_from_config, ismap from modules import shared, sd_hijack cached_ldsr_model: torch.nn.Module = None # Create LDSR Class class LDSR: def load_model_from_config(self, half_attention): global cached_ldsr_model if shared.opts.ldsr_cached and cached_ldsr_model is not None: print("Loading model from cache") model: torch.nn.Module = cached_ldsr_model else: print(f"Loading model from {self.modelPath}") _, extension = os.path.splitext(self.modelPath) if extension.lower() == ".safetensors": pl_sd = safetensors.torch.load_file(self.modelPath, device="cpu") else: pl_sd = torch.load(self.modelPath, map_location="cpu") sd = pl_sd["state_dict"] if "state_dict" in pl_sd else pl_sd config = OmegaConf.load(self.yamlPath) config.model.target = "ldm.models.diffusion.ddpm.LatentDiffusionV1" model: torch.nn.Module = instantiate_from_config(config.model) model.load_state_dict(sd, strict=False) model = model.to(shared.device) if half_attention: model = model.half() if shared.cmd_opts.opt_channelslast: model = model.to(memory_format=torch.channels_last) sd_hijack.model_hijack.hijack(model) # apply optimization model.eval() if shared.opts.ldsr_cached: cached_ldsr_model = model return {"model": model} def __init__(self, model_path, yaml_path): self.modelPath = model_path self.yamlPath = yaml_path @staticmethod def run(model, selected_path, custom_steps, eta): example = get_cond(selected_path) n_runs = 1 guider = None ckwargs = None ddim_use_x0_pred = False temperature = 1. eta = eta custom_shape = None height, width = example["image"].shape[1:3] split_input = height >= 128 and width >= 128 if split_input: ks = 128 stride = 64 vqf = 4 # model.split_input_params = {"ks": (ks, ks), "stride": (stride, stride), "vqf": vqf, "patch_distributed_vq": True, "tie_braker": False, "clip_max_weight": 0.5, "clip_min_weight": 0.01, "clip_max_tie_weight": 0.5, "clip_min_tie_weight": 0.01} else: if hasattr(model, "split_input_params"): delattr(model, "split_input_params") x_t = None logs = None for n in range(n_runs): if custom_shape is not None: x_t = torch.randn(1, custom_shape[1], custom_shape[2], custom_shape[3]).to(model.device) x_t = repeat(x_t, '1 c h w -> b c h w', b=custom_shape[0]) logs = make_convolutional_sample(example, model, custom_steps=custom_steps, eta=eta, quantize_x0=False, custom_shape=custom_shape, temperature=temperature, noise_dropout=0., corrector=guider, corrector_kwargs=ckwargs, x_T=x_t, ddim_use_x0_pred=ddim_use_x0_pred ) return logs def super_resolution(self, image, steps=100, target_scale=2, half_attention=False): model = self.load_model_from_config(half_attention) # Run settings diffusion_steps = int(steps) eta = 1.0 gc.collect() if torch.cuda.is_available: torch.cuda.empty_cache() im_og = image width_og, height_og = im_og.size # If we can adjust the max upscale size, then the 4 below should be our variable down_sample_rate = target_scale / 4 wd = width_og * down_sample_rate hd = height_og * down_sample_rate width_downsampled_pre = int(np.ceil(wd)) height_downsampled_pre = int(np.ceil(hd)) if down_sample_rate != 1: print( f'Downsampling from [{width_og}, {height_og}] to [{width_downsampled_pre}, {height_downsampled_pre}]') im_og = im_og.resize((width_downsampled_pre, height_downsampled_pre), Image.LANCZOS) else: print(f"Down sample rate is 1 from {target_scale} / 4 (Not downsampling)") # pad width and height to multiples of 64, pads with the edge values of image to avoid artifacts pad_w, pad_h = np.max(((2, 2), np.ceil(np.array(im_og.size) / 64).astype(int)), axis=0) * 64 - im_og.size im_padded = Image.fromarray(np.pad(np.array(im_og), ((0, pad_h), (0, pad_w), (0, 0)), mode='edge')) logs = self.run(model["model"], im_padded, diffusion_steps, eta) sample = logs["sample"] sample = sample.detach().cpu() sample = torch.clamp(sample, -1., 1.) sample = (sample + 1.) / 2. * 255 sample = sample.numpy().astype(np.uint8) sample = np.transpose(sample, (0, 2, 3, 1)) a = Image.fromarray(sample[0]) # remove padding a = a.crop((0, 0) + tuple(np.array(im_og.size) * 4)) del model gc.collect() if torch.cuda.is_available: torch.cuda.empty_cache() return a def get_cond(selected_path): example = dict() up_f = 4 c = selected_path.convert('RGB') c = torch.unsqueeze(torchvision.transforms.ToTensor()(c), 0) c_up = torchvision.transforms.functional.resize(c, size=[up_f * c.shape[2], up_f * c.shape[3]], antialias=True) c_up = rearrange(c_up, '1 c h w -> 1 h w c') c = rearrange(c, '1 c h w -> 1 h w c') c = 2. * c - 1. c = c.to(shared.device) example["LR_image"] = c example["image"] = c_up return example @torch.no_grad() def convsample_ddim(model, cond, steps, shape, eta=1.0, callback=None, normals_sequence=None, mask=None, x0=None, quantize_x0=False, temperature=1., score_corrector=None, corrector_kwargs=None, x_t=None ): ddim = DDIMSampler(model) bs = shape[0] shape = shape[1:] print(f"Sampling with eta = {eta}; steps: {steps}") samples, intermediates = ddim.sample(steps, batch_size=bs, shape=shape, conditioning=cond, callback=callback, normals_sequence=normals_sequence, quantize_x0=quantize_x0, eta=eta, mask=mask, x0=x0, temperature=temperature, verbose=False, score_corrector=score_corrector, corrector_kwargs=corrector_kwargs, x_t=x_t) return samples, intermediates @torch.no_grad() def make_convolutional_sample(batch, model, custom_steps=None, eta=1.0, quantize_x0=False, custom_shape=None, temperature=1., noise_dropout=0., corrector=None, corrector_kwargs=None, x_T=None, ddim_use_x0_pred=False): log = dict() z, c, x, xrec, xc = model.get_input(batch, model.first_stage_key, return_first_stage_outputs=True, force_c_encode=not (hasattr(model, 'split_input_params') and model.cond_stage_key == 'coordinates_bbox'), return_original_cond=True) if custom_shape is not None: z = torch.randn(custom_shape) print(f"Generating {custom_shape[0]} samples of shape {custom_shape[1:]}") z0 = None log["input"] = x log["reconstruction"] = xrec if ismap(xc): log["original_conditioning"] = model.to_rgb(xc) if hasattr(model, 'cond_stage_key'): log[model.cond_stage_key] = model.to_rgb(xc) else: log["original_conditioning"] = xc if xc is not None else torch.zeros_like(x) if model.cond_stage_model: log[model.cond_stage_key] = xc if xc is not None else torch.zeros_like(x) if model.cond_stage_key == 'class_label': log[model.cond_stage_key] = xc[model.cond_stage_key] with model.ema_scope("Plotting"): t0 = time.time() sample, intermediates = convsample_ddim(model, c, steps=custom_steps, shape=z.shape, eta=eta, quantize_x0=quantize_x0, mask=None, x0=z0, temperature=temperature, score_corrector=corrector, corrector_kwargs=corrector_kwargs, x_t=x_T) t1 = time.time() if ddim_use_x0_pred: sample = intermediates['pred_x0'][-1] x_sample = model.decode_first_stage(sample) try: x_sample_noquant = model.decode_first_stage(sample, force_not_quantize=True) log["sample_noquant"] = x_sample_noquant log["sample_diff"] = torch.abs(x_sample_noquant - x_sample) except Exception: pass log["sample"] = x_sample log["time"] = t1 - t0 return log