import math import numpy as np import skimage import modules.scripts as scripts import gradio as gr from PIL import Image, ImageDraw from modules import images, processing, devices from modules.processing import Processed, process_images from modules.shared import opts, cmd_opts, state # this function is taken from https://github.com/parlance-zz/g-diffuser-bot def get_matched_noise(_np_src_image, np_mask_rgb, noise_q=1, color_variation=0.05): # helper fft routines that keep ortho normalization and auto-shift before and after fft def _fft2(data): if data.ndim > 2: # has channels out_fft = np.zeros((data.shape[0], data.shape[1], data.shape[2]), dtype=np.complex128) for c in range(data.shape[2]): c_data = data[:, :, c] out_fft[:, :, c] = np.fft.fft2(np.fft.fftshift(c_data), norm="ortho") out_fft[:, :, c] = np.fft.ifftshift(out_fft[:, :, c]) else: # one channel out_fft = np.zeros((data.shape[0], data.shape[1]), dtype=np.complex128) out_fft[:, :] = np.fft.fft2(np.fft.fftshift(data), norm="ortho") out_fft[:, :] = np.fft.ifftshift(out_fft[:, :]) return out_fft def _ifft2(data): if data.ndim > 2: # has channels out_ifft = np.zeros((data.shape[0], data.shape[1], data.shape[2]), dtype=np.complex128) for c in range(data.shape[2]): c_data = data[:, :, c] out_ifft[:, :, c] = np.fft.ifft2(np.fft.fftshift(c_data), norm="ortho") out_ifft[:, :, c] = np.fft.ifftshift(out_ifft[:, :, c]) else: # one channel out_ifft = np.zeros((data.shape[0], data.shape[1]), dtype=np.complex128) out_ifft[:, :] = np.fft.ifft2(np.fft.fftshift(data), norm="ortho") out_ifft[:, :] = np.fft.ifftshift(out_ifft[:, :]) return out_ifft def _get_gaussian_window(width, height, std=3.14, mode=0): window_scale_x = float(width / min(width, height)) window_scale_y = float(height / min(width, height)) window = np.zeros((width, height)) x = (np.arange(width) / width * 2. - 1.) * window_scale_x for y in range(height): fy = (y / height * 2. - 1.) * window_scale_y if mode == 0: window[:, y] = np.exp(-(x ** 2 + fy ** 2) * std) else: window[:, y] = (1 / ((x ** 2 + 1.) * (fy ** 2 + 1.))) ** (std / 3.14) # hey wait a minute that's not gaussian return window def _get_masked_window_rgb(np_mask_grey, hardness=1.): np_mask_rgb = np.zeros((np_mask_grey.shape[0], np_mask_grey.shape[1], 3)) if hardness != 1.: hardened = np_mask_grey[:] ** hardness else: hardened = np_mask_grey[:] for c in range(3): np_mask_rgb[:, :, c] = hardened[:] return np_mask_rgb width = _np_src_image.shape[0] height = _np_src_image.shape[1] num_channels = _np_src_image.shape[2] np_src_image = _np_src_image[:] * (1. - np_mask_rgb) np_mask_grey = (np.sum(np_mask_rgb, axis=2) / 3.) img_mask = np_mask_grey > 1e-6 ref_mask = np_mask_grey < 1e-3 windowed_image = _np_src_image * (1. - _get_masked_window_rgb(np_mask_grey)) windowed_image /= np.max(windowed_image) windowed_image += np.average(_np_src_image) * np_mask_rgb # / (1.-np.average(np_mask_rgb)) # rather than leave the masked area black, we get better results from fft by filling the average unmasked color src_fft = _fft2(windowed_image) # get feature statistics from masked src img src_dist = np.absolute(src_fft) src_phase = src_fft / src_dist # create a generator with a static seed to make outpainting deterministic / only follow global seed rng = np.random.default_rng(0) noise_window = _get_gaussian_window(width, height, mode=1) # start with simple gaussian noise noise_rgb = rng.random((width, height, num_channels)) noise_grey = (np.sum(noise_rgb, axis=2) / 3.) noise_rgb *= color_variation # the colorfulness of the starting noise is blended to greyscale with a parameter for c in range(num_channels): noise_rgb[:, :, c] += (1. - color_variation) * noise_grey noise_fft = _fft2(noise_rgb) for c in range(num_channels): noise_fft[:, :, c] *= noise_window noise_rgb = np.real(_ifft2(noise_fft)) shaped_noise_fft = _fft2(noise_rgb) shaped_noise_fft[:, :, :] = np.absolute(shaped_noise_fft[:, :, :]) ** 2 * (src_dist ** noise_q) * src_phase # perform the actual shaping brightness_variation = 0. # color_variation # todo: temporarily tieing brightness variation to color variation for now contrast_adjusted_np_src = _np_src_image[:] * (brightness_variation + 1.) - brightness_variation * 2. # scikit-image is used for histogram matching, very convenient! shaped_noise = np.real(_ifft2(shaped_noise_fft)) shaped_noise -= np.min(shaped_noise) shaped_noise /= np.max(shaped_noise) shaped_noise[img_mask, :] = skimage.exposure.match_histograms(shaped_noise[img_mask, :] ** 1., contrast_adjusted_np_src[ref_mask, :], channel_axis=1) shaped_noise = _np_src_image[:] * (1. - np_mask_rgb) + shaped_noise * np_mask_rgb matched_noise = shaped_noise[:] return np.clip(matched_noise, 0., 1.) class Script(scripts.Script): def title(self): return "Outpainting mk2" def show(self, is_img2img): return is_img2img def ui(self, is_img2img): if not is_img2img: return None info = gr.HTML("
Recommended settings: Sampling Steps: 80-100, Sampler: Euler a, Denoising strength: 0.8
") pixels = gr.Slider(label="Pixels to expand", minimum=8, maximum=256, step=8, value=128) mask_blur = gr.Slider(label='Mask blur', minimum=0, maximum=64, step=1, value=8, visible=False) direction = gr.CheckboxGroup(label="Outpainting direction", choices=['left', 'right', 'up', 'down'], value=['left', 'right', 'up', 'down']) noise_q = gr.Slider(label="Fall-off exponent (lower=higher detail)", minimum=0.0, maximum=4.0, step=0.01, value=1.0) color_variation = gr.Slider(label="Color variation", minimum=0.0, maximum=1.0, step=0.01, value=0.05) return [info, pixels, mask_blur, direction, noise_q, color_variation] def run(self, p, _, pixels, mask_blur, direction, noise_q, color_variation): initial_seed_and_info = [None, None] process_width = p.width process_height = p.height p.mask_blur = mask_blur*4 p.inpaint_full_res = False p.inpainting_fill = 1 p.do_not_save_samples = True p.do_not_save_grid = True left = pixels if "left" in direction else 0 right = pixels if "right" in direction else 0 up = pixels if "up" in direction else 0 down = pixels if "down" in direction else 0 init_img = p.init_images[0] target_w = math.ceil((init_img.width + left + right) / 64) * 64 target_h = math.ceil((init_img.height + up + down) / 64) * 64 if left > 0: left = left * (target_w - init_img.width) // (left + right) if right > 0: right = target_w - init_img.width - left if up > 0: up = up * (target_h - init_img.height) // (up + down) if down > 0: down = target_h - init_img.height - up def expand(init, count, expand_pixels, is_left=False, is_right=False, is_top=False, is_bottom=False): is_horiz = is_left or is_right is_vert = is_top or is_bottom pixels_horiz = expand_pixels if is_horiz else 0 pixels_vert = expand_pixels if is_vert else 0 images_to_process = [] output_images = [] for n in range(count): res_w = init[n].width + pixels_horiz res_h = init[n].height + pixels_vert process_res_w = math.ceil(res_w / 64) * 64 process_res_h = math.ceil(res_h / 64) * 64 img = Image.new("RGB", (process_res_w, process_res_h)) img.paste(init[n], (pixels_horiz if is_left else 0, pixels_vert if is_top else 0)) mask = Image.new("RGB", (process_res_w, process_res_h), "white") draw = ImageDraw.Draw(mask) draw.rectangle(( expand_pixels + mask_blur if is_left else 0, expand_pixels + mask_blur if is_top else 0, mask.width - expand_pixels - mask_blur if is_right else res_w, mask.height - expand_pixels - mask_blur if is_bottom else res_h, ), fill="black") np_image = (np.asarray(img) / 255.0).astype(np.float64) np_mask = (np.asarray(mask) / 255.0).astype(np.float64) noised = get_matched_noise(np_image, np_mask, noise_q, color_variation) output_images.append(Image.fromarray(np.clip(noised * 255., 0., 255.).astype(np.uint8), mode="RGB")) target_width = min(process_width, init[n].width + pixels_horiz) if is_horiz else img.width target_height = min(process_height, init[n].height + pixels_vert) if is_vert else img.height p.width = target_width if is_horiz else img.width p.height = target_height if is_vert else img.height crop_region = ( 0 if is_left else output_images[n].width - target_width, 0 if is_top else output_images[n].height - target_height, target_width if is_left else output_images[n].width, target_height if is_top else output_images[n].height, ) mask = mask.crop(crop_region) p.image_mask = mask image_to_process = output_images[n].crop(crop_region) images_to_process.append(image_to_process) p.init_images = images_to_process latent_mask = Image.new("RGB", (p.width, p.height), "white") draw = ImageDraw.Draw(latent_mask) draw.rectangle(( expand_pixels + mask_blur * 2 if is_left else 0, expand_pixels + mask_blur * 2 if is_top else 0, mask.width - expand_pixels - mask_blur * 2 if is_right else res_w, mask.height - expand_pixels - mask_blur * 2 if is_bottom else res_h, ), fill="black") p.latent_mask = latent_mask proc = process_images(p) if initial_seed_and_info[0] is None: initial_seed_and_info[0] = proc.seed initial_seed_and_info[1] = proc.info for n in range(count): output_images[n].paste(proc.images[n], (0 if is_left else output_images[n].width - proc.images[n].width, 0 if is_top else output_images[n].height - proc.images[n].height)) output_images[n] = output_images[n].crop((0, 0, res_w, res_h)) return output_images batch_count = p.n_iter batch_size = p.batch_size p.n_iter = 1 state.job_count = batch_count * batch_size * ((1 if left > 0 else 0) + (1 if right > 0 else 0) + (1 if up > 0 else 0) + (1 if down > 0 else 0)) all_processed_images = [] for i in range(batch_count): imgs = [init_img] * batch_size state.job = f"Batch {i + 1} out of {batch_count}" if left > 0: imgs = expand(imgs, batch_size, left, is_left=True) if right > 0: imgs = expand(imgs, batch_size, right, is_right=True) if up > 0: imgs = expand(imgs, batch_size, up, is_top=True) if down > 0: imgs = expand(imgs, batch_size, down, is_bottom=True) all_processed_images += imgs all_images = all_processed_images combined_grid_image = images.image_grid(all_processed_images) unwanted_grid_because_of_img_count = len(all_processed_images) < 2 and opts.grid_only_if_multiple if opts.return_grid and not unwanted_grid_because_of_img_count: all_images = [combined_grid_image] + all_processed_images res = Processed(p, all_images, initial_seed_and_info[0], initial_seed_and_info[1]) if opts.samples_save: for img in all_processed_images: images.save_image(img, p.outpath_samples, "", res.seed, p.prompt, opts.grid_format, info=res.info, p=p) if opts.grid_save and not unwanted_grid_because_of_img_count: images.save_image(combined_grid_image, p.outpath_grids, "grid", res.seed, p.prompt, opts.grid_format, info=res.info, short_filename=not opts.grid_extended_filename, grid=True, p=p) return res