import torch import k_diffusion.sampling @torch.no_grad() def restart_sampler(model, x, sigmas, extra_args=None, callback=None, disable=None, s_noise=1., restart_list = None): """Implements restart sampling in Restart Sampling for Improving Generative Processes (2023)""" '''Restart_list format: {min_sigma: [ restart_steps, restart_times, max_sigma]}''' '''If restart_list is None: will choose restart_list automatically, otherwise will use the given restart_list''' from tqdm.auto import trange extra_args = {} if extra_args is None else extra_args s_in = x.new_ones([x.shape[0]]) step_id = 0 from k_diffusion.sampling import to_d, get_sigmas_karras def heun_step(x, old_sigma, new_sigma, second_order = True): nonlocal step_id denoised = model(x, old_sigma * s_in, **extra_args) d = to_d(x, old_sigma, denoised) if callback is not None: callback({'x': x, 'i': step_id, 'sigma': new_sigma, 'sigma_hat': old_sigma, 'denoised': denoised}) dt = new_sigma - old_sigma if new_sigma == 0 or not second_order: # Euler method x = x + d * dt else: # Heun's method x_2 = x + d * dt denoised_2 = model(x_2, new_sigma * s_in, **extra_args) d_2 = to_d(x_2, new_sigma, denoised_2) d_prime = (d + d_2) / 2 x = x + d_prime * dt step_id += 1 return x steps = sigmas.shape[0] - 1 if restart_list is None: if steps >= 20: restart_steps = 9 restart_times = 1 if steps >= 36: restart_steps = steps // 4 restart_times = 2 sigmas = get_sigmas_karras(steps - restart_steps * restart_times, sigmas[-2].item(), sigmas[0].item(), device=sigmas.device) restart_list = {0.1: [restart_steps + 1, restart_times, 2]} else: restart_list = dict() temp_list = dict() for key, value in restart_list.items(): temp_list[int(torch.argmin(abs(sigmas - key), dim=0))] = value restart_list = temp_list step_list = [] for i in range(len(sigmas) - 1): step_list.append((sigmas[i], sigmas[i + 1])) if i + 1 in restart_list: restart_steps, restart_times, restart_max = restart_list[i + 1] min_idx = i + 1 max_idx = int(torch.argmin(abs(sigmas - restart_max), dim=0)) if max_idx < min_idx: sigma_restart = get_sigmas_karras(restart_steps, sigmas[min_idx].item(), sigmas[max_idx].item(), device=sigmas.device)[:-1] while restart_times > 0: restart_times -= 1 step_list.extend([(old_sigma, new_sigma) for (old_sigma, new_sigma) in zip(sigma_restart[:-1], sigma_restart[1:])]) last_sigma = None for i in trange(len(step_list), disable=disable): if last_sigma is None: last_sigma = step_list[i][0] elif last_sigma < step_list[i][0]: x = x + k_diffusion.sampling.torch.randn_like(x) * s_noise * (step_list[i][0] ** 2 - last_sigma ** 2) ** 0.5 x = heun_step(x, step_list[i][0], step_list[i][1]) last_sigma = step_list[i][1] return x