import torch import network from modules import devices class ModuleTypeLora(network.ModuleType): def create_module(self, net: network.Network, weights: network.NetworkWeights): if all(x in weights.w for x in ["lora_up.weight", "lora_down.weight"]): return NetworkModuleLora(net, weights) return None class NetworkModuleLora(network.NetworkModule): def __init__(self, net: network.Network, weights: network.NetworkWeights): super().__init__(net, weights) self.up = self.create_module(weights.w["lora_up.weight"]) self.down = self.create_module(weights.w["lora_down.weight"]) self.alpha = weights.w["alpha"] if "alpha" in weights.w else None def create_module(self, weight, none_ok=False): if weight is None and none_ok: return None if type(self.sd_module) == torch.nn.Linear: module = torch.nn.Linear(weight.shape[1], weight.shape[0], bias=False) elif type(self.sd_module) == torch.nn.modules.linear.NonDynamicallyQuantizableLinear: module = torch.nn.Linear(weight.shape[1], weight.shape[0], bias=False) elif type(self.sd_module) == torch.nn.MultiheadAttention: module = torch.nn.Linear(weight.shape[1], weight.shape[0], bias=False) elif type(self.sd_module) == torch.nn.Conv2d and weight.shape[2:] == (1, 1): module = torch.nn.Conv2d(weight.shape[1], weight.shape[0], (1, 1), bias=False) elif type(self.sd_module) == torch.nn.Conv2d and weight.shape[2:] == (3, 3): module = torch.nn.Conv2d(weight.shape[1], weight.shape[0], (3, 3), bias=False) else: print(f'Network layer {self.network_key} matched a layer with unsupported type: {type(self.sd_module).__name__}') return None with torch.no_grad(): module.weight.copy_(weight) module.to(device=devices.cpu, dtype=devices.dtype) module.weight.requires_grad_(False) return module def calc_updown(self, target): up = self.up.weight.to(target.device, dtype=target.dtype) down = self.down.weight.to(target.device, dtype=target.dtype) if up.shape[2:] == (1, 1) and down.shape[2:] == (1, 1): updown = (up.squeeze(2).squeeze(2) @ down.squeeze(2).squeeze(2)).unsqueeze(2).unsqueeze(3) elif up.shape[2:] == (3, 3) or down.shape[2:] == (3, 3): updown = torch.nn.functional.conv2d(down.permute(1, 0, 2, 3), up).permute(1, 0, 2, 3) else: updown = up @ down updown = updown * self.network.multiplier * (self.alpha / self.up.weight.shape[1] if self.alpha else 1.0) return updown def forward(self, x, y): self.up.to(device=devices.device) self.down.to(device=devices.device) return y + self.up(self.down(x)) * self.network.multiplier * (self.alpha / self.up.weight.shape[1] if self.alpha else 1.0)