import base64 import html import io import json import mimetypes import os import random import sys import time import traceback import numpy as np import torch from PIL import Image import gradio as gr import gradio.utils import gradio.routes from modules.paths import script_path from modules.shared import opts, cmd_opts import modules.shared as shared from modules.sd_samplers import samplers, samplers_for_img2img import modules.realesrgan_model as realesrgan import modules.scripts import modules.gfpgan_model import modules.codeformer_model # this is a fix for Windows users. Without it, javascript files will be served with text/html content-type and the bowser will not show any UI mimetypes.init() mimetypes.add_type('application/javascript', '.js') if not cmd_opts.share and not cmd_opts.listen: # fix gradio phoning home gradio.utils.version_check = lambda: None gradio.utils.get_local_ip_address = lambda: '127.0.0.1' def gr_show(visible=True): return {"visible": visible, "__type__": "update"} sample_img2img = "assets/stable-samples/img2img/sketch-mountains-input.jpg" sample_img2img = sample_img2img if os.path.exists(sample_img2img) else None css_hide_progressbar = """ .wrap .m-12 svg { display:none!important; } .wrap .m-12::before { content:"Loading..." } .progress-bar { display:none!important; } .meta-text { display:none!important; } """ def plaintext_to_html(text): text = "".join([f"

{html.escape(x)}

\n" for x in text.split('\n')]) return text def image_from_url_text(filedata): if type(filedata) == list: if len(filedata) == 0: return None filedata = filedata[0] if filedata.startswith("data:image/png;base64,"): filedata = filedata[len("data:image/png;base64,"):] filedata = base64.decodebytes(filedata.encode('utf-8')) image = Image.open(io.BytesIO(filedata)) return image def send_gradio_gallery_to_image(x): if len(x) == 0: return None return image_from_url_text(x[0]) def save_files(js_data, images): import csv os.makedirs(opts.outdir_save, exist_ok=True) filenames = [] data = json.loads(js_data) with open(os.path.join(opts.outdir_save, "log.csv"), "a", encoding="utf8", newline='') as file: at_start = file.tell() == 0 writer = csv.writer(file) if at_start: writer.writerow(["prompt", "seed", "width", "height", "sampler", "cfgs", "steps", "filename"]) filename_base = str(int(time.time() * 1000)) for i, filedata in enumerate(images): filename = filename_base + ("" if len(images) == 1 else "-" + str(i + 1)) + ".png" filepath = os.path.join(opts.outdir_save, filename) if filedata.startswith("data:image/png;base64,"): filedata = filedata[len("data:image/png;base64,"):] with open(filepath, "wb") as imgfile: imgfile.write(base64.decodebytes(filedata.encode('utf-8'))) filenames.append(filename) writer.writerow([data["prompt"], data["seed"], data["width"], data["height"], data["sampler"], data["cfg_scale"], data["steps"], filenames[0]]) return '', '', plaintext_to_html(f"Saved: {filenames[0]}") def wrap_gradio_call(func): def f(*args, **kwargs): t = time.perf_counter() try: res = list(func(*args, **kwargs)) except Exception as e: print("Error completing request", file=sys.stderr) print("Arguments:", args, kwargs, file=sys.stderr) print(traceback.format_exc(), file=sys.stderr) shared.state.job = "" shared.state.job_count = 0 res = [None, '', f"
{plaintext_to_html(type(e).__name__+': '+str(e))}
"] elapsed = time.perf_counter() - t # last item is always HTML res[-1] = res[-1] + f"

Time taken: {elapsed:.2f}s

" shared.state.interrupted = False return tuple(res) return f def check_progress_call(): if shared.state.job_count == 0: return "", gr_show(False), gr_show(False) progress = 0 if shared.state.job_count > 0: progress += shared.state.job_no / shared.state.job_count if shared.state.sampling_steps > 0: progress += 1 / shared.state.job_count * shared.state.sampling_step / shared.state.sampling_steps progress = min(progress, 1) progressbar = "" if opts.show_progressbar: progressbar = f"""
{str(int(progress*100))+"%" if progress > 0.01 else ""}
""" image = gr_show(False) preview_visibility = gr_show(False) if opts.show_progress_every_n_steps > 0: if shared.parallel_processing_allowed: if shared.state.sampling_step - shared.state.current_image_sampling_step >= opts.show_progress_every_n_steps and shared.state.current_latent is not None: shared.state.current_image = modules.sd_samplers.sample_to_image(shared.state.current_latent) shared.state.current_image_sampling_step = shared.state.sampling_step image = shared.state.current_image if image is None or progress >= 1: image = gr.update(value=None) else: preview_visibility = gr_show(True) return f"{time.time()}

{progressbar}

", preview_visibility, image def roll_artist(prompt): allowed_cats = set([x for x in shared.artist_db.categories() if len(opts.random_artist_categories)==0 or x in opts.random_artist_categories]) artist = random.choice([x for x in shared.artist_db.artists if x.category in allowed_cats]) return prompt + ", " + artist.name if prompt != '' else artist.name def visit(x, func, path=""): if hasattr(x, 'children'): for c in x.children: visit(c, func, path) elif x.label is not None: func(path + "/" + str(x.label), x) def create_seed_inputs(): with gr.Row(): seed = gr.Number(label='Seed', value=-1) subseed = gr.Number(label='Variation seed', value=-1, visible=False) seed_checkbox = gr.Checkbox(label="Extra", elem_id="subseed_show", value=False) with gr.Row(): subseed_strength = gr.Slider(label='Variation strength', value=0.0, minimum=0, maximum=1, step=0.01, visible=False) seed_resize_from_h = gr.Slider(minimum=0, maximum=2048, step=64, label="Resize seed from height", value=0, visible=False) seed_resize_from_w = gr.Slider(minimum=0, maximum=2048, step=64, label="Resize seed from width", value=0, visible=False) def change_visiblity(show): return { subseed: gr_show(show), subseed_strength: gr_show(show), seed_resize_from_h: gr_show(show), seed_resize_from_w: gr_show(show), } seed_checkbox.change( change_visiblity, inputs=[seed_checkbox], outputs=[ subseed, subseed_strength, seed_resize_from_h, seed_resize_from_w ] ) return seed, subseed, subseed_strength, seed_resize_from_h, seed_resize_from_w def create_ui(txt2img, img2img, run_extras, run_pnginfo): with gr.Blocks(analytics_enabled=False) as txt2img_interface: with gr.Row(): prompt = gr.Textbox(label="Prompt", elem_id="txt2img_prompt", show_label=False, placeholder="Prompt", lines=1) negative_prompt = gr.Textbox(label="Negative prompt", elem_id="txt2img_negative_prompt", show_label=False, placeholder="Negative prompt", lines=1, visible=cmd_opts.show_negative_prompt) roll = gr.Button('Roll', elem_id="txt2img_roll", visible=len(shared.artist_db.artists) > 0) submit = gr.Button('Generate', elem_id="txt2img_generate", variant='primary') check_progress = gr.Button('Check progress', elem_id="check_progress", visible=False) with gr.Row().style(equal_height=False): with gr.Column(variant='panel'): steps = gr.Slider(minimum=1, maximum=150, step=1, label="Sampling Steps", value=20) sampler_index = gr.Radio(label='Sampling method', elem_id="txt2img_sampling", choices=[x.name for x in samplers], value=samplers[0].name, type="index") with gr.Row(): restore_faces = gr.Checkbox(label='Restore faces', value=False, visible=len(shared.face_restorers) > 1) tiling = gr.Checkbox(label='Tiling', value=False) with gr.Row(): batch_count = gr.Slider(minimum=1, maximum=cmd_opts.max_batch_count, step=1, label='Batch count', value=1) batch_size = gr.Slider(minimum=1, maximum=8, step=1, label='Batch size', value=1) cfg_scale = gr.Slider(minimum=1.0, maximum=15.0, step=0.5, label='CFG Scale', value=7.0) with gr.Group(): height = gr.Slider(minimum=64, maximum=2048, step=64, label="Height", value=512) width = gr.Slider(minimum=64, maximum=2048, step=64, label="Width", value=512) seed, subseed, subseed_strength, seed_resize_from_h, seed_resize_from_w = create_seed_inputs() with gr.Group(): custom_inputs = modules.scripts.scripts_txt2img.setup_ui(is_img2img=False) with gr.Column(variant='panel'): with gr.Group(): txt2img_preview = gr.Image(elem_id='txt2img_preview', visible=False) txt2img_gallery = gr.Gallery(label='Output', elem_id='txt2img_gallery').style(grid=4) with gr.Group(): with gr.Row(): save = gr.Button('Save') send_to_img2img = gr.Button('Send to img2img') send_to_inpaint = gr.Button('Send to inpaint') send_to_extras = gr.Button('Send to extras') interrupt = gr.Button('Interrupt') progressbar = gr.HTML(elem_id="progressbar") with gr.Group(): html_info = gr.HTML() generation_info = gr.Textbox(visible=False) txt2img_args = dict( fn=txt2img, _js="submit", inputs=[ prompt, negative_prompt, steps, sampler_index, restore_faces, tiling, batch_count, batch_size, cfg_scale, seed, subseed, subseed_strength, seed_resize_from_h, seed_resize_from_w, height, width, ] + custom_inputs, outputs=[ txt2img_gallery, generation_info, html_info ] ) prompt.submit(**txt2img_args) submit.click(**txt2img_args) check_progress.click( fn=check_progress_call, show_progress=False, inputs=[], outputs=[progressbar, txt2img_preview, txt2img_preview], ) interrupt.click( fn=lambda: shared.state.interrupt(), inputs=[], outputs=[], ) save.click( fn=wrap_gradio_call(save_files), inputs=[ generation_info, txt2img_gallery, ], outputs=[ html_info, html_info, html_info, ] ) roll.click( fn=roll_artist, inputs=[ prompt, ], outputs=[ prompt ] ) with gr.Blocks(analytics_enabled=False) as img2img_interface: with gr.Row(): prompt = gr.Textbox(label="Prompt", elem_id="img2img_prompt", show_label=False, placeholder="Prompt", lines=1) negative_prompt = gr.Textbox(label="Negative prompt", elem_id="img2img_negative_prompt", show_label=False, placeholder="Negative prompt", lines=1, visible=cmd_opts.show_negative_prompt) submit = gr.Button('Generate', elem_id="img2img_generate", variant='primary') check_progress = gr.Button('Check progress', elem_id="check_progress", visible=False) with gr.Row().style(equal_height=False): with gr.Column(variant='panel'): with gr.Group(): switch_mode = gr.Radio(label='Mode', elem_id="img2img_mode", choices=['Redraw whole image', 'Inpaint a part of image', 'Loopback', 'SD upscale'], value='Redraw whole image', type="index", show_label=False) init_img = gr.Image(label="Image for img2img", source="upload", interactive=True, type="pil") init_img_with_mask = gr.Image(label="Image for inpainting with mask", elem_id="img2maskimg", source="upload", interactive=True, type="pil", tool="sketch", visible=False, image_mode="RGBA") init_mask = gr.Image(label="Mask", source="upload", interactive=True, type="pil", visible=False) with gr.Row(): resize_mode = gr.Radio(label="Resize mode", elem_id="resize_mode", show_label=False, choices=["Just resize", "Crop and resize", "Resize and fill"], type="index", value="Just resize") mask_mode = gr.Radio(label="Mask mode", show_label=False, choices=["Draw mask", "Upload mask"], type="index", value="Draw mask") steps = gr.Slider(minimum=1, maximum=150, step=1, label="Sampling Steps", value=20) sampler_index = gr.Radio(label='Sampling method', choices=[x.name for x in samplers_for_img2img], value=samplers_for_img2img[0].name, type="index") mask_blur = gr.Slider(label='Mask blur', minimum=0, maximum=64, step=1, value=4, visible=False) inpainting_fill = gr.Radio(label='Masked content', choices=['fill', 'original', 'latent noise', 'latent nothing'], value='fill', type="index", visible=False) with gr.Row(): inpaint_full_res = gr.Checkbox(label='Inpaint at full resolution', value=False, visible=False) inpainting_mask_invert = gr.Radio(label='Masking mode', choices=['Inpaint masked', 'Inpaint not masked'], value='Inpaint masked', type="index", visible=False) with gr.Row(): restore_faces = gr.Checkbox(label='Restore faces', value=False, visible=len(shared.face_restorers) > 1) tiling = gr.Checkbox(label='Tiling', value=False) sd_upscale_overlap = gr.Slider(minimum=0, maximum=256, step=16, label='Tile overlap', value=64, visible=False) with gr.Row(): sd_upscale_upscaler_name = gr.Radio(label='Upscaler', choices=[x.name for x in shared.sd_upscalers], value=shared.sd_upscalers[0].name, type="index", visible=False) with gr.Row(): batch_count = gr.Slider(minimum=1, maximum=cmd_opts.max_batch_count, step=1, label='Batch count', value=1) batch_size = gr.Slider(minimum=1, maximum=8, step=1, label='Batch size', value=1) with gr.Group(): cfg_scale = gr.Slider(minimum=1.0, maximum=15.0, step=0.5, label='CFG Scale', value=7.0) denoising_strength = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label='Denoising strength', value=0.75) denoising_strength_change_factor = gr.Slider(minimum=0.9, maximum=1.1, step=0.01, label='Denoising strength change factor', value=1, visible=False) with gr.Group(): height = gr.Slider(minimum=64, maximum=2048, step=64, label="Height", value=512) width = gr.Slider(minimum=64, maximum=2048, step=64, label="Width", value=512) seed, subseed, subseed_strength, seed_resize_from_h, seed_resize_from_w = create_seed_inputs() with gr.Group(): custom_inputs = modules.scripts.scripts_img2img.setup_ui(is_img2img=True) with gr.Column(variant='panel'): with gr.Group(): img2img_preview = gr.Image(elem_id='img2img_preview', visible=False) img2img_gallery = gr.Gallery(label='Output', elem_id='img2img_gallery').style(grid=4) with gr.Group(): with gr.Row(): save = gr.Button('Save') img2img_send_to_img2img = gr.Button('Send to img2img') img2img_send_to_inpaint = gr.Button('Send to inpaint') img2img_send_to_extras = gr.Button('Send to extras') interrupt = gr.Button('Interrupt') progressbar = gr.HTML(elem_id="progressbar") with gr.Group(): html_info = gr.HTML() generation_info = gr.Textbox(visible=False) def apply_mode(mode, uploadmask): is_classic = mode == 0 is_inpaint = mode == 1 is_loopback = mode == 2 is_upscale = mode == 3 return { init_img: gr_show(not is_inpaint or (is_inpaint and uploadmask == 1)), init_img_with_mask: gr_show(is_inpaint and uploadmask == 0), init_mask: gr_show(is_inpaint and uploadmask == 1), mask_mode: gr_show(is_inpaint), mask_blur: gr_show(is_inpaint), inpainting_fill: gr_show(is_inpaint), batch_count: gr_show(not is_upscale), batch_size: gr_show(not is_loopback), sd_upscale_upscaler_name: gr_show(is_upscale), sd_upscale_overlap: gr_show(is_upscale), inpaint_full_res: gr_show(is_inpaint), inpainting_mask_invert: gr_show(is_inpaint), denoising_strength_change_factor: gr_show(is_loopback), } switch_mode.change( apply_mode, inputs=[switch_mode, mask_mode], outputs=[ init_img, init_img_with_mask, init_mask, mask_mode, mask_blur, inpainting_fill, batch_count, batch_size, sd_upscale_upscaler_name, sd_upscale_overlap, inpaint_full_res, inpainting_mask_invert, denoising_strength_change_factor, ] ) mask_mode.change( lambda mode: { init_img: gr_show(mode == 1), init_img_with_mask: gr_show(mode == 0), init_mask: gr_show(mode == 1), }, inputs=[mask_mode], outputs=[ init_img, init_img_with_mask, init_mask, ], ) img2img_args = dict( fn=img2img, _js="submit", inputs=[ prompt, negative_prompt, init_img, init_img_with_mask, init_mask, mask_mode, steps, sampler_index, mask_blur, inpainting_fill, restore_faces, tiling, switch_mode, batch_count, batch_size, cfg_scale, denoising_strength, denoising_strength_change_factor, seed, subseed, subseed_strength, seed_resize_from_h, seed_resize_from_w, height, width, resize_mode, sd_upscale_upscaler_name, sd_upscale_overlap, inpaint_full_res, inpainting_mask_invert, ] + custom_inputs, outputs=[ img2img_gallery, generation_info, html_info ] ) prompt.submit(**img2img_args) submit.click(**img2img_args) check_progress.click( fn=check_progress_call, show_progress=False, inputs=[], outputs=[progressbar, img2img_preview, img2img_preview], ) interrupt.click( fn=lambda: shared.state.interrupt(), inputs=[], outputs=[], ) save.click( fn=wrap_gradio_call(save_files), inputs=[ generation_info, img2img_gallery, ], outputs=[ html_info, html_info, html_info, ] ) send_to_img2img.click( fn=lambda x: image_from_url_text(x), _js="extract_image_from_gallery", inputs=[txt2img_gallery], outputs=[init_img], ) send_to_inpaint.click( fn=lambda x: image_from_url_text(x), _js="extract_image_from_gallery", inputs=[txt2img_gallery], outputs=[init_img_with_mask], ) img2img_send_to_img2img.click( fn=lambda x: image_from_url_text(x), _js="extract_image_from_gallery", inputs=[img2img_gallery], outputs=[init_img], ) img2img_send_to_inpaint.click( fn=lambda x: image_from_url_text(x), _js="extract_image_from_gallery", inputs=[img2img_gallery], outputs=[init_img_with_mask], ) with gr.Blocks(analytics_enabled=False) as extras_interface: with gr.Row().style(equal_height=False): with gr.Column(variant='panel'): with gr.Group(): image = gr.Image(label="Source", source="upload", interactive=True, type="pil") upscaling_resize = gr.Slider(minimum=1.0, maximum=4.0, step=0.05, label="Resize", value=2) with gr.Group(): extras_upscaler_1 = gr.Radio(label='Upscaler 1', choices=[x.name for x in shared.sd_upscalers], value=shared.sd_upscalers[0].name, type="index") with gr.Group(): extras_upscaler_2 = gr.Radio(label='Upscaler 2', choices=[x.name for x in shared.sd_upscalers], value=shared.sd_upscalers[0].name, type="index") extras_upscaler_2_visibility = gr.Slider(minimum=0.0, maximum=1.0, step=0.001, label="Upscaler 2 visibility", value=1) with gr.Group(): gfpgan_visibility = gr.Slider(minimum=0.0, maximum=1.0, step=0.001, label="GFPGAN visibility", value=0, interactive=modules.gfpgan_model.have_gfpgan) with gr.Group(): codeformer_visibility = gr.Slider(minimum=0.0, maximum=1.0, step=0.001, label="CodeFormer visibility", value=0, interactive=modules.codeformer_model.have_codeformer) codeformer_weight = gr.Slider(minimum=0.0, maximum=1.0, step=0.001, label="CodeFormer weight (0 = maximum effect, 1 = minimum effect)", value=0, interactive=modules.codeformer_model.have_codeformer) submit = gr.Button('Generate', elem_id="extras_generate", variant='primary') with gr.Column(variant='panel'): result_image = gr.Image(label="Result") html_info_x = gr.HTML() html_info = gr.HTML() extras_args = dict( fn=run_extras, inputs=[ image, gfpgan_visibility, codeformer_visibility, codeformer_weight, upscaling_resize, extras_upscaler_1, extras_upscaler_2, extras_upscaler_2_visibility, ], outputs=[ result_image, html_info_x, html_info, ] ) submit.click(**extras_args) send_to_extras.click( fn=lambda x: image_from_url_text(x), _js="extract_image_from_gallery", inputs=[txt2img_gallery], outputs=[image], ) img2img_send_to_extras.click( fn=lambda x: image_from_url_text(x), _js="extract_image_from_gallery", inputs=[img2img_gallery], outputs=[image], ) pnginfo_interface = gr.Interface( wrap_gradio_call(run_pnginfo), inputs=[ gr.Image(label="Source", source="upload", interactive=True, type="pil"), ], outputs=[ gr.HTML(), gr.HTML(), gr.HTML(), ], allow_flagging="never", analytics_enabled=False, ) def create_setting_component(key): def fun(): return opts.data[key] if key in opts.data else opts.data_labels[key].default info = opts.data_labels[key] t = type(info.default) if info.component is not None: args = info.component_args() if callable(info.component_args) else info.component_args item = info.component(label=info.label, value=fun, **(args or {})) elif t == str: item = gr.Textbox(label=info.label, value=fun, lines=1) elif t == int: item = gr.Number(label=info.label, value=fun) elif t == bool: item = gr.Checkbox(label=info.label, value=fun) else: raise Exception(f'bad options item type: {str(t)} for key {key}') return item def run_settings(*args): up = [] for key, value, comp in zip(opts.data_labels.keys(), args, settings_interface.input_components): opts.data[key] = value up.append(comp.update(value=value)) opts.save(shared.config_filename) return 'Settings saved.', '', '' settings_interface = gr.Interface( run_settings, inputs=[create_setting_component(key) for key in opts.data_labels.keys()], outputs=[ gr.Textbox(label='Result'), gr.HTML(), gr.HTML(), ], title=None, description=None, allow_flagging="never", analytics_enabled=False, ) interfaces = [ (txt2img_interface, "txt2img"), (img2img_interface, "img2img"), (extras_interface, "Extras"), (pnginfo_interface, "PNG Info"), (settings_interface, "Settings"), ] with open(os.path.join(script_path, "style.css"), "r", encoding="utf8") as file: css = file.read() if not cmd_opts.no_progressbar_hiding: css += css_hide_progressbar demo = gr.TabbedInterface( interface_list=[x[0] for x in interfaces], tab_names=[x[1] for x in interfaces], analytics_enabled=False, css=css, ) ui_config_file = os.path.join(modules.paths.script_path, 'ui-config.json') ui_settings = {} settings_count = len(ui_settings) error_loading = False try: if os.path.exists(ui_config_file): with open(ui_config_file, "r", encoding="utf8") as file: ui_settings = json.load(file) except Exception: error_loading = True print("Error loading settings:", file=sys.stderr) print(traceback.format_exc(), file=sys.stderr) def loadsave(path, x): def apply_field(obj, field, condition=None): key = path + "/" + field saved_value = ui_settings.get(key, None) if saved_value is None: ui_settings[key] = getattr(obj, field) elif condition is None or condition(saved_value): setattr(obj, field, saved_value) if type(x) == gr.Slider: apply_field(x, 'value') apply_field(x, 'minimum') apply_field(x, 'maximum') apply_field(x, 'step') if type(x) == gr.Radio: apply_field(x, 'value', lambda val: val in x.choices) visit(txt2img_interface, loadsave, "txt2img") visit(img2img_interface, loadsave, "img2img") if not error_loading and (not os.path.exists(ui_config_file) or settings_count != len(ui_settings)): with open(ui_config_file, "w", encoding="utf8") as file: json.dump(ui_settings, file, indent=4) return demo with open(os.path.join(script_path, "script.js"), "r", encoding="utf8") as jsfile: javascript = jsfile.read() def template_response(*args, **kwargs): res = gradio_routes_templates_response(*args, **kwargs) res.body = res.body.replace(b'', f''.encode("utf8")) res.init_headers() return res gradio_routes_templates_response = gradio.routes.templates.TemplateResponse gradio.routes.templates.TemplateResponse = template_response