import os from PIL import Image from modules import shared, images, devices, scripts, scripts_postprocessing, ui_common, infotext from modules.shared import opts def run_postprocessing(extras_mode, image, image_folder, input_dir, output_dir, show_extras_results, *args, save_output: bool = True): devices.torch_gc() shared.state.begin(job="extras") outputs = [] def get_images(extras_mode, image, image_folder, input_dir): if extras_mode == 1: for img in image_folder: if isinstance(img, Image.Image): image = img fn = '' else: image = Image.open(os.path.abspath(img.name)) fn = os.path.splitext(img.orig_name)[0] yield image, fn elif extras_mode == 2: assert not shared.cmd_opts.hide_ui_dir_config, '--hide-ui-dir-config option must be disabled' assert input_dir, 'input directory not selected' image_list = shared.listfiles(input_dir) for filename in image_list: yield filename, filename else: assert image, 'image not selected' yield image, None if extras_mode == 2 and output_dir != '': outpath = output_dir else: outpath = opts.outdir_samples or opts.outdir_extras_samples infotext = '' data_to_process = list(get_images(extras_mode, image, image_folder, input_dir)) shared.state.job_count = len(data_to_process) for image_placeholder, name in data_to_process: image_data: Image.Image shared.state.nextjob() shared.state.textinfo = name shared.state.skipped = False if shared.state.interrupted: break if isinstance(image_placeholder, str): try: image_data = Image.open(image_placeholder) except Exception: continue else: image_data = image_placeholder shared.state.assign_current_image(image_data) parameters, existing_pnginfo = images.read_info_from_image(image_data) if parameters: existing_pnginfo["parameters"] = parameters initial_pp = scripts_postprocessing.PostprocessedImage(image_data.convert("RGB")) scripts.scripts_postproc.run(initial_pp, args) if shared.state.skipped: continue used_suffixes = {} for pp in [initial_pp, *initial_pp.extra_images]: suffix = pp.get_suffix(used_suffixes) if opts.use_original_name_batch and name is not None: basename = os.path.splitext(os.path.basename(name))[0] forced_filename = basename + suffix else: basename = '' forced_filename = None infotext = ", ".join([k if k == v else f'{k}: {infotext.quote(v)}' for k, v in pp.info.items() if v is not None]) if opts.enable_pnginfo: pp.image.info = existing_pnginfo pp.image.info["postprocessing"] = infotext if save_output: fullfn, _ = images.save_image(pp.image, path=outpath, basename=basename, extension=opts.samples_format, info=infotext, short_filename=True, no_prompt=True, grid=False, pnginfo_section_name="extras", existing_info=existing_pnginfo, forced_filename=forced_filename, suffix=suffix) if pp.caption: caption_filename = os.path.splitext(fullfn)[0] + ".txt" if os.path.isfile(caption_filename): with open(caption_filename, encoding="utf8") as file: existing_caption = file.read().strip() else: existing_caption = "" action = shared.opts.postprocessing_existing_caption_action if action == 'Prepend' and existing_caption: caption = f"{existing_caption} {pp.caption}" elif action == 'Append' and existing_caption: caption = f"{pp.caption} {existing_caption}" elif action == 'Keep' and existing_caption: caption = existing_caption else: caption = pp.caption caption = caption.strip() if caption: with open(caption_filename, "w", encoding="utf8") as file: file.write(caption) if extras_mode != 2 or show_extras_results: outputs.append(pp.image) image_data.close() devices.torch_gc() shared.state.end() return outputs, ui_common.plaintext_to_html(infotext), '' def run_postprocessing_webui(id_task, *args, **kwargs): return run_postprocessing(*args, **kwargs) def run_extras(extras_mode, resize_mode, image, image_folder, input_dir, output_dir, show_extras_results, gfpgan_visibility, codeformer_visibility, codeformer_weight, upscaling_resize, upscaling_resize_w, upscaling_resize_h, upscaling_crop, extras_upscaler_1, extras_upscaler_2, extras_upscaler_2_visibility, upscale_first: bool, save_output: bool = True): """old handler for API""" args = scripts.scripts_postproc.create_args_for_run({ "Upscale": { "upscale_mode": resize_mode, "upscale_by": upscaling_resize, "upscale_to_width": upscaling_resize_w, "upscale_to_height": upscaling_resize_h, "upscale_crop": upscaling_crop, "upscaler_1_name": extras_upscaler_1, "upscaler_2_name": extras_upscaler_2, "upscaler_2_visibility": extras_upscaler_2_visibility, }, "GFPGAN": { "enable": True, "gfpgan_visibility": gfpgan_visibility, }, "CodeFormer": { "enable": True, "codeformer_visibility": codeformer_visibility, "codeformer_weight": codeformer_weight, }, }) return run_postprocessing(extras_mode, image, image_folder, input_dir, output_dir, show_extras_results, *args, save_output=save_output)