### This file contains impls for MM-DiT, the core model component of SD3 import math from typing import Dict, Optional import numpy as np import torch import torch.nn as nn from einops import rearrange, repeat from modules.models.sd3.other_impls import attention, Mlp class PatchEmbed(nn.Module): """ 2D Image to Patch Embedding""" def __init__( self, img_size: Optional[int] = 224, patch_size: int = 16, in_chans: int = 3, embed_dim: int = 768, flatten: bool = True, bias: bool = True, strict_img_size: bool = True, dynamic_img_pad: bool = False, dtype=None, device=None, ): super().__init__() self.patch_size = (patch_size, patch_size) if img_size is not None: self.img_size = (img_size, img_size) self.grid_size = tuple([s // p for s, p in zip(self.img_size, self.patch_size)]) self.num_patches = self.grid_size[0] * self.grid_size[1] else: self.img_size = None self.grid_size = None self.num_patches = None # flatten spatial dim and transpose to channels last, kept for bwd compat self.flatten = flatten self.strict_img_size = strict_img_size self.dynamic_img_pad = dynamic_img_pad self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size, bias=bias, dtype=dtype, device=device) def forward(self, x): B, C, H, W = x.shape x = self.proj(x) if self.flatten: x = x.flatten(2).transpose(1, 2) # NCHW -> NLC return x def modulate(x, shift, scale): if shift is None: shift = torch.zeros_like(scale) return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1) ################################################################################# # Sine/Cosine Positional Embedding Functions # ################################################################################# def get_2d_sincos_pos_embed(embed_dim, grid_size, cls_token=False, extra_tokens=0, scaling_factor=None, offset=None): """ grid_size: int of the grid height and width return: pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token) """ grid_h = np.arange(grid_size, dtype=np.float32) grid_w = np.arange(grid_size, dtype=np.float32) grid = np.meshgrid(grid_w, grid_h) # here w goes first grid = np.stack(grid, axis=0) if scaling_factor is not None: grid = grid / scaling_factor if offset is not None: grid = grid - offset grid = grid.reshape([2, 1, grid_size, grid_size]) pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid) if cls_token and extra_tokens > 0: pos_embed = np.concatenate([np.zeros([extra_tokens, embed_dim]), pos_embed], axis=0) return pos_embed def get_2d_sincos_pos_embed_from_grid(embed_dim, grid): assert embed_dim % 2 == 0 # use half of dimensions to encode grid_h emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) # (H*W, D/2) emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) # (H*W, D/2) emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D) return emb def get_1d_sincos_pos_embed_from_grid(embed_dim, pos): """ embed_dim: output dimension for each position pos: a list of positions to be encoded: size (M,) out: (M, D) """ assert embed_dim % 2 == 0 omega = np.arange(embed_dim // 2, dtype=np.float64) omega /= embed_dim / 2.0 omega = 1.0 / 10000**omega # (D/2,) pos = pos.reshape(-1) # (M,) out = np.einsum("m,d->md", pos, omega) # (M, D/2), outer product emb_sin = np.sin(out) # (M, D/2) emb_cos = np.cos(out) # (M, D/2) return np.concatenate([emb_sin, emb_cos], axis=1) # (M, D) ################################################################################# # Embedding Layers for Timesteps and Class Labels # ################################################################################# class TimestepEmbedder(nn.Module): """Embeds scalar timesteps into vector representations.""" def __init__(self, hidden_size, frequency_embedding_size=256, dtype=None, device=None): super().__init__() self.mlp = nn.Sequential( nn.Linear(frequency_embedding_size, hidden_size, bias=True, dtype=dtype, device=device), nn.SiLU(), nn.Linear(hidden_size, hidden_size, bias=True, dtype=dtype, device=device), ) self.frequency_embedding_size = frequency_embedding_size @staticmethod def timestep_embedding(t, dim, max_period=10000): """ Create sinusoidal timestep embeddings. :param t: a 1-D Tensor of N indices, one per batch element. These may be fractional. :param dim: the dimension of the output. :param max_period: controls the minimum frequency of the embeddings. :return: an (N, D) Tensor of positional embeddings. """ half = dim // 2 freqs = torch.exp( -math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half ).to(device=t.device) args = t[:, None].float() * freqs[None] embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) if dim % 2: embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1) if torch.is_floating_point(t): embedding = embedding.to(dtype=t.dtype) return embedding def forward(self, t, dtype, **kwargs): t_freq = self.timestep_embedding(t, self.frequency_embedding_size).to(dtype) t_emb = self.mlp(t_freq) return t_emb class VectorEmbedder(nn.Module): """Embeds a flat vector of dimension input_dim""" def __init__(self, input_dim: int, hidden_size: int, dtype=None, device=None): super().__init__() self.mlp = nn.Sequential( nn.Linear(input_dim, hidden_size, bias=True, dtype=dtype, device=device), nn.SiLU(), nn.Linear(hidden_size, hidden_size, bias=True, dtype=dtype, device=device), ) def forward(self, x: torch.Tensor) -> torch.Tensor: return self.mlp(x) ################################################################################# # Core DiT Model # ################################################################################# class QkvLinear(torch.nn.Linear): pass def split_qkv(qkv, head_dim): qkv = qkv.reshape(qkv.shape[0], qkv.shape[1], 3, -1, head_dim).movedim(2, 0) return qkv[0], qkv[1], qkv[2] def optimized_attention(qkv, num_heads): return attention(qkv[0], qkv[1], qkv[2], num_heads) class SelfAttention(nn.Module): ATTENTION_MODES = ("xformers", "torch", "torch-hb", "math", "debug") def __init__( self, dim: int, num_heads: int = 8, qkv_bias: bool = False, qk_scale: Optional[float] = None, attn_mode: str = "xformers", pre_only: bool = False, qk_norm: Optional[str] = None, rmsnorm: bool = False, dtype=None, device=None, ): super().__init__() self.num_heads = num_heads self.head_dim = dim // num_heads self.qkv = QkvLinear(dim, dim * 3, bias=qkv_bias, dtype=dtype, device=device) if not pre_only: self.proj = nn.Linear(dim, dim, dtype=dtype, device=device) assert attn_mode in self.ATTENTION_MODES self.attn_mode = attn_mode self.pre_only = pre_only if qk_norm == "rms": self.ln_q = RMSNorm(self.head_dim, elementwise_affine=True, eps=1.0e-6, dtype=dtype, device=device) self.ln_k = RMSNorm(self.head_dim, elementwise_affine=True, eps=1.0e-6, dtype=dtype, device=device) elif qk_norm == "ln": self.ln_q = nn.LayerNorm(self.head_dim, elementwise_affine=True, eps=1.0e-6, dtype=dtype, device=device) self.ln_k = nn.LayerNorm(self.head_dim, elementwise_affine=True, eps=1.0e-6, dtype=dtype, device=device) elif qk_norm is None: self.ln_q = nn.Identity() self.ln_k = nn.Identity() else: raise ValueError(qk_norm) def pre_attention(self, x: torch.Tensor): B, L, C = x.shape qkv = self.qkv(x) q, k, v = split_qkv(qkv, self.head_dim) q = self.ln_q(q).reshape(q.shape[0], q.shape[1], -1) k = self.ln_k(k).reshape(q.shape[0], q.shape[1], -1) return (q, k, v) def post_attention(self, x: torch.Tensor) -> torch.Tensor: assert not self.pre_only x = self.proj(x) return x def forward(self, x: torch.Tensor) -> torch.Tensor: (q, k, v) = self.pre_attention(x) x = attention(q, k, v, self.num_heads) x = self.post_attention(x) return x class RMSNorm(torch.nn.Module): def __init__( self, dim: int, elementwise_affine: bool = False, eps: float = 1e-6, device=None, dtype=None ): """ Initialize the RMSNorm normalization layer. Args: dim (int): The dimension of the input tensor. eps (float, optional): A small value added to the denominator for numerical stability. Default is 1e-6. Attributes: eps (float): A small value added to the denominator for numerical stability. weight (nn.Parameter): Learnable scaling parameter. """ super().__init__() self.eps = eps self.learnable_scale = elementwise_affine if self.learnable_scale: self.weight = nn.Parameter(torch.empty(dim, device=device, dtype=dtype)) else: self.register_parameter("weight", None) def _norm(self, x): """ Apply the RMSNorm normalization to the input tensor. Args: x (torch.Tensor): The input tensor. Returns: torch.Tensor: The normalized tensor. """ return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps) def forward(self, x): """ Forward pass through the RMSNorm layer. Args: x (torch.Tensor): The input tensor. Returns: torch.Tensor: The output tensor after applying RMSNorm. """ x = self._norm(x) if self.learnable_scale: return x * self.weight.to(device=x.device, dtype=x.dtype) else: return x class SwiGLUFeedForward(nn.Module): def __init__( self, dim: int, hidden_dim: int, multiple_of: int, ffn_dim_multiplier: Optional[float] = None, ): """ Initialize the FeedForward module. Args: dim (int): Input dimension. hidden_dim (int): Hidden dimension of the feedforward layer. multiple_of (int): Value to ensure hidden dimension is a multiple of this value. ffn_dim_multiplier (float, optional): Custom multiplier for hidden dimension. Defaults to None. Attributes: w1 (ColumnParallelLinear): Linear transformation for the first layer. w2 (RowParallelLinear): Linear transformation for the second layer. w3 (ColumnParallelLinear): Linear transformation for the third layer. """ super().__init__() hidden_dim = int(2 * hidden_dim / 3) # custom dim factor multiplier if ffn_dim_multiplier is not None: hidden_dim = int(ffn_dim_multiplier * hidden_dim) hidden_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of) self.w1 = nn.Linear(dim, hidden_dim, bias=False) self.w2 = nn.Linear(hidden_dim, dim, bias=False) self.w3 = nn.Linear(dim, hidden_dim, bias=False) def forward(self, x): return self.w2(nn.functional.silu(self.w1(x)) * self.w3(x)) class DismantledBlock(nn.Module): """A DiT block with gated adaptive layer norm (adaLN) conditioning.""" ATTENTION_MODES = ("xformers", "torch", "torch-hb", "math", "debug") def __init__( self, hidden_size: int, num_heads: int, mlp_ratio: float = 4.0, attn_mode: str = "xformers", qkv_bias: bool = False, pre_only: bool = False, rmsnorm: bool = False, scale_mod_only: bool = False, swiglu: bool = False, qk_norm: Optional[str] = None, dtype=None, device=None, **block_kwargs, ): super().__init__() assert attn_mode in self.ATTENTION_MODES if not rmsnorm: self.norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device) else: self.norm1 = RMSNorm(hidden_size, elementwise_affine=False, eps=1e-6) self.attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias, attn_mode=attn_mode, pre_only=pre_only, qk_norm=qk_norm, rmsnorm=rmsnorm, dtype=dtype, device=device) if not pre_only: if not rmsnorm: self.norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device) else: self.norm2 = RMSNorm(hidden_size, elementwise_affine=False, eps=1e-6) mlp_hidden_dim = int(hidden_size * mlp_ratio) if not pre_only: if not swiglu: self.mlp = Mlp(in_features=hidden_size, hidden_features=mlp_hidden_dim, act_layer=nn.GELU(approximate="tanh"), dtype=dtype, device=device) else: self.mlp = SwiGLUFeedForward(dim=hidden_size, hidden_dim=mlp_hidden_dim, multiple_of=256) self.scale_mod_only = scale_mod_only if not scale_mod_only: n_mods = 6 if not pre_only else 2 else: n_mods = 4 if not pre_only else 1 self.adaLN_modulation = nn.Sequential(nn.SiLU(), nn.Linear(hidden_size, n_mods * hidden_size, bias=True, dtype=dtype, device=device)) self.pre_only = pre_only def pre_attention(self, x: torch.Tensor, c: torch.Tensor): assert x is not None, "pre_attention called with None input" if not self.pre_only: if not self.scale_mod_only: shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.adaLN_modulation(c).chunk(6, dim=1) else: shift_msa = None shift_mlp = None scale_msa, gate_msa, scale_mlp, gate_mlp = self.adaLN_modulation(c).chunk(4, dim=1) qkv = self.attn.pre_attention(modulate(self.norm1(x), shift_msa, scale_msa)) return qkv, (x, gate_msa, shift_mlp, scale_mlp, gate_mlp) else: if not self.scale_mod_only: shift_msa, scale_msa = self.adaLN_modulation(c).chunk(2, dim=1) else: shift_msa = None scale_msa = self.adaLN_modulation(c) qkv = self.attn.pre_attention(modulate(self.norm1(x), shift_msa, scale_msa)) return qkv, None def post_attention(self, attn, x, gate_msa, shift_mlp, scale_mlp, gate_mlp): assert not self.pre_only x = x + gate_msa.unsqueeze(1) * self.attn.post_attention(attn) x = x + gate_mlp.unsqueeze(1) * self.mlp(modulate(self.norm2(x), shift_mlp, scale_mlp)) return x def forward(self, x: torch.Tensor, c: torch.Tensor) -> torch.Tensor: assert not self.pre_only (q, k, v), intermediates = self.pre_attention(x, c) attn = attention(q, k, v, self.attn.num_heads) return self.post_attention(attn, *intermediates) def block_mixing(context, x, context_block, x_block, c): assert context is not None, "block_mixing called with None context" context_qkv, context_intermediates = context_block.pre_attention(context, c) x_qkv, x_intermediates = x_block.pre_attention(x, c) o = [] for t in range(3): o.append(torch.cat((context_qkv[t], x_qkv[t]), dim=1)) q, k, v = tuple(o) attn = attention(q, k, v, x_block.attn.num_heads) context_attn, x_attn = (attn[:, : context_qkv[0].shape[1]], attn[:, context_qkv[0].shape[1] :]) if not context_block.pre_only: context = context_block.post_attention(context_attn, *context_intermediates) else: context = None x = x_block.post_attention(x_attn, *x_intermediates) return context, x class JointBlock(nn.Module): """just a small wrapper to serve as a fsdp unit""" def __init__(self, *args, **kwargs): super().__init__() pre_only = kwargs.pop("pre_only") qk_norm = kwargs.pop("qk_norm", None) self.context_block = DismantledBlock(*args, pre_only=pre_only, qk_norm=qk_norm, **kwargs) self.x_block = DismantledBlock(*args, pre_only=False, qk_norm=qk_norm, **kwargs) def forward(self, *args, **kwargs): return block_mixing(*args, context_block=self.context_block, x_block=self.x_block, **kwargs) class FinalLayer(nn.Module): """ The final layer of DiT. """ def __init__(self, hidden_size: int, patch_size: int, out_channels: int, total_out_channels: Optional[int] = None, dtype=None, device=None): super().__init__() self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device) self.linear = ( nn.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True, dtype=dtype, device=device) if (total_out_channels is None) else nn.Linear(hidden_size, total_out_channels, bias=True, dtype=dtype, device=device) ) self.adaLN_modulation = nn.Sequential(nn.SiLU(), nn.Linear(hidden_size, 2 * hidden_size, bias=True, dtype=dtype, device=device)) def forward(self, x: torch.Tensor, c: torch.Tensor) -> torch.Tensor: shift, scale = self.adaLN_modulation(c).chunk(2, dim=1) x = modulate(self.norm_final(x), shift, scale) x = self.linear(x) return x class MMDiT(nn.Module): """Diffusion model with a Transformer backbone.""" def __init__( self, input_size: int = 32, patch_size: int = 2, in_channels: int = 4, depth: int = 28, mlp_ratio: float = 4.0, learn_sigma: bool = False, adm_in_channels: Optional[int] = None, context_embedder_config: Optional[Dict] = None, register_length: int = 0, attn_mode: str = "torch", rmsnorm: bool = False, scale_mod_only: bool = False, swiglu: bool = False, out_channels: Optional[int] = None, pos_embed_scaling_factor: Optional[float] = None, pos_embed_offset: Optional[float] = None, pos_embed_max_size: Optional[int] = None, num_patches = None, qk_norm: Optional[str] = None, qkv_bias: bool = True, dtype = None, device = None, ): super().__init__() self.dtype = dtype self.learn_sigma = learn_sigma self.in_channels = in_channels default_out_channels = in_channels * 2 if learn_sigma else in_channels self.out_channels = out_channels if out_channels is not None else default_out_channels self.patch_size = patch_size self.pos_embed_scaling_factor = pos_embed_scaling_factor self.pos_embed_offset = pos_embed_offset self.pos_embed_max_size = pos_embed_max_size # apply magic --> this defines a head_size of 64 hidden_size = 64 * depth num_heads = depth self.num_heads = num_heads self.x_embedder = PatchEmbed(input_size, patch_size, in_channels, hidden_size, bias=True, strict_img_size=self.pos_embed_max_size is None, dtype=dtype, device=device) self.t_embedder = TimestepEmbedder(hidden_size, dtype=dtype, device=device) if adm_in_channels is not None: assert isinstance(adm_in_channels, int) self.y_embedder = VectorEmbedder(adm_in_channels, hidden_size, dtype=dtype, device=device) self.context_embedder = nn.Identity() if context_embedder_config is not None: if context_embedder_config["target"] == "torch.nn.Linear": self.context_embedder = nn.Linear(**context_embedder_config["params"], dtype=dtype, device=device) self.register_length = register_length if self.register_length > 0: self.register = nn.Parameter(torch.randn(1, register_length, hidden_size, dtype=dtype, device=device)) # num_patches = self.x_embedder.num_patches # Will use fixed sin-cos embedding: # just use a buffer already if num_patches is not None: self.register_buffer( "pos_embed", torch.zeros(1, num_patches, hidden_size, dtype=dtype, device=device), ) else: self.pos_embed = None self.joint_blocks = nn.ModuleList( [ JointBlock(hidden_size, num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, attn_mode=attn_mode, pre_only=i == depth - 1, rmsnorm=rmsnorm, scale_mod_only=scale_mod_only, swiglu=swiglu, qk_norm=qk_norm, dtype=dtype, device=device) for i in range(depth) ] ) self.final_layer = FinalLayer(hidden_size, patch_size, self.out_channels, dtype=dtype, device=device) def cropped_pos_embed(self, hw): assert self.pos_embed_max_size is not None p = self.x_embedder.patch_size[0] h, w = hw # patched size h = h // p w = w // p assert h <= self.pos_embed_max_size, (h, self.pos_embed_max_size) assert w <= self.pos_embed_max_size, (w, self.pos_embed_max_size) top = (self.pos_embed_max_size - h) // 2 left = (self.pos_embed_max_size - w) // 2 spatial_pos_embed = rearrange( self.pos_embed, "1 (h w) c -> 1 h w c", h=self.pos_embed_max_size, w=self.pos_embed_max_size, ) spatial_pos_embed = spatial_pos_embed[:, top : top + h, left : left + w, :] spatial_pos_embed = rearrange(spatial_pos_embed, "1 h w c -> 1 (h w) c") return spatial_pos_embed def unpatchify(self, x, hw=None): """ x: (N, T, patch_size**2 * C) imgs: (N, H, W, C) """ c = self.out_channels p = self.x_embedder.patch_size[0] if hw is None: h = w = int(x.shape[1] ** 0.5) else: h, w = hw h = h // p w = w // p assert h * w == x.shape[1] x = x.reshape(shape=(x.shape[0], h, w, p, p, c)) x = torch.einsum("nhwpqc->nchpwq", x) imgs = x.reshape(shape=(x.shape[0], c, h * p, w * p)) return imgs def forward_core_with_concat(self, x: torch.Tensor, c_mod: torch.Tensor, context: Optional[torch.Tensor] = None) -> torch.Tensor: if self.register_length > 0: context = torch.cat((repeat(self.register, "1 ... -> b ...", b=x.shape[0]), context if context is not None else torch.Tensor([]).type_as(x)), 1) # context is B, L', D # x is B, L, D for block in self.joint_blocks: context, x = block(context, x, c=c_mod) x = self.final_layer(x, c_mod) # (N, T, patch_size ** 2 * out_channels) return x def forward(self, x: torch.Tensor, t: torch.Tensor, y: Optional[torch.Tensor] = None, context: Optional[torch.Tensor] = None) -> torch.Tensor: """ Forward pass of DiT. x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images) t: (N,) tensor of diffusion timesteps y: (N,) tensor of class labels """ hw = x.shape[-2:] x = self.x_embedder(x) + self.cropped_pos_embed(hw) c = self.t_embedder(t, dtype=x.dtype) # (N, D) if y is not None: y = self.y_embedder(y) # (N, D) c = c + y # (N, D) context = self.context_embedder(context) x = self.forward_core_with_concat(x, c, context) x = self.unpatchify(x, hw=hw) # (N, out_channels, H, W) return x