from __future__ import annotations import json import logging import math import os import sys import hashlib from dataclasses import dataclass, field import torch import numpy as np from PIL import Image, ImageOps import random import cv2 from skimage import exposure from typing import Any import modules.sd_hijack from modules import devices, prompt_parser, masking, sd_samplers, lowvram, infotext_utils, extra_networks, sd_vae_approx, scripts, sd_samplers_common, sd_unet, errors, rng from modules.rng import slerp # noqa: F401 from modules.sd_hijack import model_hijack from modules.sd_samplers_common import images_tensor_to_samples, decode_first_stage, approximation_indexes from modules.shared import opts, cmd_opts, state import modules.shared as shared import modules.paths as paths import modules.face_restoration import modules.images as images import modules.styles import modules.sd_models as sd_models import modules.sd_vae as sd_vae from ldm.data.util import AddMiDaS from ldm.models.diffusion.ddpm import LatentDepth2ImageDiffusion from einops import repeat, rearrange from blendmodes.blend import blendLayers, BlendType # some of those options should not be changed at all because they would break the model, so I removed them from options. opt_C = 4 opt_f = 8 def setup_color_correction(image): logging.info("Calibrating color correction.") correction_target = cv2.cvtColor(np.asarray(image.copy()), cv2.COLOR_RGB2LAB) return correction_target def apply_color_correction(correction, original_image): logging.info("Applying color correction.") image = Image.fromarray(cv2.cvtColor(exposure.match_histograms( cv2.cvtColor( np.asarray(original_image), cv2.COLOR_RGB2LAB ), correction, channel_axis=2 ), cv2.COLOR_LAB2RGB).astype("uint8")) image = blendLayers(image, original_image, BlendType.LUMINOSITY) return image.convert('RGB') def uncrop(image, dest_size, paste_loc): x, y, w, h = paste_loc base_image = Image.new('RGBA', dest_size) image = images.resize_image(1, image, w, h) base_image.paste(image, (x, y)) image = base_image return image def apply_overlay(image, paste_loc, overlay): if overlay is None: return image, image.copy() if paste_loc is not None: image = uncrop(image, (overlay.width, overlay.height), paste_loc) original_denoised_image = image.copy() image = image.convert('RGBA') image.alpha_composite(overlay) image = image.convert('RGB') return image, original_denoised_image def create_binary_mask(image, round=True): if image.mode == 'RGBA' and image.getextrema()[-1] != (255, 255): if round: image = image.split()[-1].convert("L").point(lambda x: 255 if x > 128 else 0) else: image = image.split()[-1].convert("L") else: image = image.convert('L') return image def txt2img_image_conditioning(sd_model, x, width, height): if sd_model.model.conditioning_key in {'hybrid', 'concat'}: # Inpainting models # The "masked-image" in this case will just be all 0.5 since the entire image is masked. image_conditioning = torch.ones(x.shape[0], 3, height, width, device=x.device) * 0.5 image_conditioning = images_tensor_to_samples(image_conditioning, approximation_indexes.get(opts.sd_vae_encode_method)) # Add the fake full 1s mask to the first dimension. image_conditioning = torch.nn.functional.pad(image_conditioning, (0, 0, 0, 0, 1, 0), value=1.0) image_conditioning = image_conditioning.to(x.dtype) return image_conditioning elif sd_model.model.conditioning_key == "crossattn-adm": # UnCLIP models return x.new_zeros(x.shape[0], 2*sd_model.noise_augmentor.time_embed.dim, dtype=x.dtype, device=x.device) else: sd = sd_model.model.state_dict() diffusion_model_input = sd.get('diffusion_model.input_blocks.0.0.weight', None) if diffusion_model_input is not None: if diffusion_model_input.shape[1] == 9: # The "masked-image" in this case will just be all 0.5 since the entire image is masked. image_conditioning = torch.ones(x.shape[0], 3, height, width, device=x.device) * 0.5 image_conditioning = images_tensor_to_samples(image_conditioning, approximation_indexes.get(opts.sd_vae_encode_method)) # Add the fake full 1s mask to the first dimension. image_conditioning = torch.nn.functional.pad(image_conditioning, (0, 0, 0, 0, 1, 0), value=1.0) image_conditioning = image_conditioning.to(x.dtype) return image_conditioning # Dummy zero conditioning if we're not using inpainting or unclip models. # Still takes up a bit of memory, but no encoder call. # Pretty sure we can just make this a 1x1 image since its not going to be used besides its batch size. return x.new_zeros(x.shape[0], 5, 1, 1, dtype=x.dtype, device=x.device) @dataclass(repr=False) class StableDiffusionProcessing: sd_model: object = None outpath_samples: str = None outpath_grids: str = None prompt: str = "" prompt_for_display: str = None negative_prompt: str = "" styles: list[str] = None seed: int = -1 subseed: int = -1 subseed_strength: float = 0 seed_resize_from_h: int = -1 seed_resize_from_w: int = -1 seed_enable_extras: bool = True sampler_name: str = None scheduler: str = None batch_size: int = 1 n_iter: int = 1 steps: int = 50 cfg_scale: float = 7.0 width: int = 512 height: int = 512 restore_faces: bool = None tiling: bool = None do_not_save_samples: bool = False do_not_save_grid: bool = False extra_generation_params: dict[str, Any] = None overlay_images: list = None eta: float = None do_not_reload_embeddings: bool = False denoising_strength: float = None ddim_discretize: str = None s_min_uncond: float = None s_churn: float = None s_tmax: float = None s_tmin: float = None s_noise: float = None override_settings: dict[str, Any] = None override_settings_restore_afterwards: bool = True sampler_index: int = None refiner_checkpoint: str = None refiner_switch_at: float = None token_merging_ratio = 0 token_merging_ratio_hr = 0 disable_extra_networks: bool = False firstpass_image: Image = None scripts_value: scripts.ScriptRunner = field(default=None, init=False) script_args_value: list = field(default=None, init=False) scripts_setup_complete: bool = field(default=False, init=False) cached_uc = [None, None] cached_c = [None, None] comments: dict = None sampler: sd_samplers_common.Sampler | None = field(default=None, init=False) is_using_inpainting_conditioning: bool = field(default=False, init=False) paste_to: tuple | None = field(default=None, init=False) is_hr_pass: bool = field(default=False, init=False) c: tuple = field(default=None, init=False) uc: tuple = field(default=None, init=False) rng: rng.ImageRNG | None = field(default=None, init=False) step_multiplier: int = field(default=1, init=False) color_corrections: list = field(default=None, init=False) all_prompts: list = field(default=None, init=False) all_negative_prompts: list = field(default=None, init=False) all_seeds: list = field(default=None, init=False) all_subseeds: list = field(default=None, init=False) iteration: int = field(default=0, init=False) main_prompt: str = field(default=None, init=False) main_negative_prompt: str = field(default=None, init=False) prompts: list = field(default=None, init=False) negative_prompts: list = field(default=None, init=False) seeds: list = field(default=None, init=False) subseeds: list = field(default=None, init=False) extra_network_data: dict = field(default=None, init=False) user: str = field(default=None, init=False) sd_model_name: str = field(default=None, init=False) sd_model_hash: str = field(default=None, init=False) sd_vae_name: str = field(default=None, init=False) sd_vae_hash: str = field(default=None, init=False) is_api: bool = field(default=False, init=False) def __post_init__(self): if self.sampler_index is not None: print("sampler_index argument for StableDiffusionProcessing does not do anything; use sampler_name", file=sys.stderr) self.comments = {} if self.styles is None: self.styles = [] self.sampler_noise_scheduler_override = None self.s_min_uncond = self.s_min_uncond if self.s_min_uncond is not None else opts.s_min_uncond self.s_churn = self.s_churn if self.s_churn is not None else opts.s_churn self.s_tmin = self.s_tmin if self.s_tmin is not None else opts.s_tmin self.s_tmax = (self.s_tmax if self.s_tmax is not None else opts.s_tmax) or float('inf') self.s_noise = self.s_noise if self.s_noise is not None else opts.s_noise self.extra_generation_params = self.extra_generation_params or {} self.override_settings = self.override_settings or {} self.script_args = self.script_args or {} self.refiner_checkpoint_info = None if not self.seed_enable_extras: self.subseed = -1 self.subseed_strength = 0 self.seed_resize_from_h = 0 self.seed_resize_from_w = 0 self.cached_uc = StableDiffusionProcessing.cached_uc self.cached_c = StableDiffusionProcessing.cached_c @property def sd_model(self): return shared.sd_model @sd_model.setter def sd_model(self, value): pass @property def scripts(self): return self.scripts_value @scripts.setter def scripts(self, value): self.scripts_value = value if self.scripts_value and self.script_args_value and not self.scripts_setup_complete: self.setup_scripts() @property def script_args(self): return self.script_args_value @script_args.setter def script_args(self, value): self.script_args_value = value if self.scripts_value and self.script_args_value and not self.scripts_setup_complete: self.setup_scripts() def setup_scripts(self): self.scripts_setup_complete = True self.scripts.setup_scrips(self, is_ui=not self.is_api) def comment(self, text): self.comments[text] = 1 def txt2img_image_conditioning(self, x, width=None, height=None): self.is_using_inpainting_conditioning = self.sd_model.model.conditioning_key in {'hybrid', 'concat'} return txt2img_image_conditioning(self.sd_model, x, width or self.width, height or self.height) def depth2img_image_conditioning(self, source_image): # Use the AddMiDaS helper to Format our source image to suit the MiDaS model transformer = AddMiDaS(model_type="dpt_hybrid") transformed = transformer({"jpg": rearrange(source_image[0], "c h w -> h w c")}) midas_in = torch.from_numpy(transformed["midas_in"][None, ...]).to(device=shared.device) midas_in = repeat(midas_in, "1 ... -> n ...", n=self.batch_size) conditioning_image = images_tensor_to_samples(source_image*0.5+0.5, approximation_indexes.get(opts.sd_vae_encode_method)) conditioning = torch.nn.functional.interpolate( self.sd_model.depth_model(midas_in), size=conditioning_image.shape[2:], mode="bicubic", align_corners=False, ) (depth_min, depth_max) = torch.aminmax(conditioning) conditioning = 2. * (conditioning - depth_min) / (depth_max - depth_min) - 1. return conditioning def edit_image_conditioning(self, source_image): conditioning_image = shared.sd_model.encode_first_stage(source_image).mode() return conditioning_image def unclip_image_conditioning(self, source_image): c_adm = self.sd_model.embedder(source_image) if self.sd_model.noise_augmentor is not None: noise_level = 0 # TODO: Allow other noise levels? c_adm, noise_level_emb = self.sd_model.noise_augmentor(c_adm, noise_level=repeat(torch.tensor([noise_level]).to(c_adm.device), '1 -> b', b=c_adm.shape[0])) c_adm = torch.cat((c_adm, noise_level_emb), 1) return c_adm def inpainting_image_conditioning(self, source_image, latent_image, image_mask=None, round_image_mask=True): self.is_using_inpainting_conditioning = True # Handle the different mask inputs if image_mask is not None: if torch.is_tensor(image_mask): conditioning_mask = image_mask else: conditioning_mask = np.array(image_mask.convert("L")) conditioning_mask = conditioning_mask.astype(np.float32) / 255.0 conditioning_mask = torch.from_numpy(conditioning_mask[None, None]) if round_image_mask: # Caller is requesting a discretized mask as input, so we round to either 1.0 or 0.0 conditioning_mask = torch.round(conditioning_mask) else: conditioning_mask = source_image.new_ones(1, 1, *source_image.shape[-2:]) # Create another latent image, this time with a masked version of the original input. # Smoothly interpolate between the masked and unmasked latent conditioning image using a parameter. conditioning_mask = conditioning_mask.to(device=source_image.device, dtype=source_image.dtype) conditioning_image = torch.lerp( source_image, source_image * (1.0 - conditioning_mask), getattr(self, "inpainting_mask_weight", shared.opts.inpainting_mask_weight) ) # Encode the new masked image using first stage of network. conditioning_image = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(conditioning_image)) # Create the concatenated conditioning tensor to be fed to `c_concat` conditioning_mask = torch.nn.functional.interpolate(conditioning_mask, size=latent_image.shape[-2:]) conditioning_mask = conditioning_mask.expand(conditioning_image.shape[0], -1, -1, -1) image_conditioning = torch.cat([conditioning_mask, conditioning_image], dim=1) image_conditioning = image_conditioning.to(shared.device).type(self.sd_model.dtype) return image_conditioning def img2img_image_conditioning(self, source_image, latent_image, image_mask=None, round_image_mask=True): source_image = devices.cond_cast_float(source_image) # HACK: Using introspection as the Depth2Image model doesn't appear to uniquely # identify itself with a field common to all models. The conditioning_key is also hybrid. if isinstance(self.sd_model, LatentDepth2ImageDiffusion): return self.depth2img_image_conditioning(source_image) if self.sd_model.cond_stage_key == "edit": return self.edit_image_conditioning(source_image) if self.sampler.conditioning_key in {'hybrid', 'concat'}: return self.inpainting_image_conditioning(source_image, latent_image, image_mask=image_mask, round_image_mask=round_image_mask) if self.sampler.conditioning_key == "crossattn-adm": return self.unclip_image_conditioning(source_image) sd = self.sampler.model_wrap.inner_model.model.state_dict() diffusion_model_input = sd.get('diffusion_model.input_blocks.0.0.weight', None) if diffusion_model_input is not None: if diffusion_model_input.shape[1] == 9: return self.inpainting_image_conditioning(source_image, latent_image, image_mask=image_mask) # Dummy zero conditioning if we're not using inpainting or depth model. return latent_image.new_zeros(latent_image.shape[0], 5, 1, 1) def init(self, all_prompts, all_seeds, all_subseeds): pass def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength, prompts): raise NotImplementedError() def close(self): self.sampler = None self.c = None self.uc = None if not opts.persistent_cond_cache: StableDiffusionProcessing.cached_c = [None, None] StableDiffusionProcessing.cached_uc = [None, None] def get_token_merging_ratio(self, for_hr=False): if for_hr: return self.token_merging_ratio_hr or opts.token_merging_ratio_hr or self.token_merging_ratio or opts.token_merging_ratio return self.token_merging_ratio or opts.token_merging_ratio def setup_prompts(self): if isinstance(self.prompt,list): self.all_prompts = self.prompt elif isinstance(self.negative_prompt, list): self.all_prompts = [self.prompt] * len(self.negative_prompt) else: self.all_prompts = self.batch_size * self.n_iter * [self.prompt] if isinstance(self.negative_prompt, list): self.all_negative_prompts = self.negative_prompt else: self.all_negative_prompts = [self.negative_prompt] * len(self.all_prompts) if len(self.all_prompts) != len(self.all_negative_prompts): raise RuntimeError(f"Received a different number of prompts ({len(self.all_prompts)}) and negative prompts ({len(self.all_negative_prompts)})") self.all_prompts = [shared.prompt_styles.apply_styles_to_prompt(x, self.styles) for x in self.all_prompts] self.all_negative_prompts = [shared.prompt_styles.apply_negative_styles_to_prompt(x, self.styles) for x in self.all_negative_prompts] self.main_prompt = self.all_prompts[0] self.main_negative_prompt = self.all_negative_prompts[0] def cached_params(self, required_prompts, steps, extra_network_data, hires_steps=None, use_old_scheduling=False): """Returns parameters that invalidate the cond cache if changed""" return ( required_prompts, steps, hires_steps, use_old_scheduling, opts.CLIP_stop_at_last_layers, shared.sd_model.sd_checkpoint_info, extra_network_data, opts.sdxl_crop_left, opts.sdxl_crop_top, self.width, self.height, opts.fp8_storage, opts.cache_fp16_weight, opts.emphasis, ) def get_conds_with_caching(self, function, required_prompts, steps, caches, extra_network_data, hires_steps=None): """ Returns the result of calling function(shared.sd_model, required_prompts, steps) using a cache to store the result if the same arguments have been used before. cache is an array containing two elements. The first element is a tuple representing the previously used arguments, or None if no arguments have been used before. The second element is where the previously computed result is stored. caches is a list with items described above. """ if shared.opts.use_old_scheduling: old_schedules = prompt_parser.get_learned_conditioning_prompt_schedules(required_prompts, steps, hires_steps, False) new_schedules = prompt_parser.get_learned_conditioning_prompt_schedules(required_prompts, steps, hires_steps, True) if old_schedules != new_schedules: self.extra_generation_params["Old prompt editing timelines"] = True cached_params = self.cached_params(required_prompts, steps, extra_network_data, hires_steps, shared.opts.use_old_scheduling) for cache in caches: if cache[0] is not None and cached_params == cache[0]: return cache[1] cache = caches[0] with devices.autocast(): cache[1] = function(shared.sd_model, required_prompts, steps, hires_steps, shared.opts.use_old_scheduling) cache[0] = cached_params return cache[1] def setup_conds(self): prompts = prompt_parser.SdConditioning(self.prompts, width=self.width, height=self.height) negative_prompts = prompt_parser.SdConditioning(self.negative_prompts, width=self.width, height=self.height, is_negative_prompt=True) sampler_config = sd_samplers.find_sampler_config(self.sampler_name) total_steps = sampler_config.total_steps(self.steps) if sampler_config else self.steps self.step_multiplier = total_steps // self.steps self.firstpass_steps = total_steps self.uc = self.get_conds_with_caching(prompt_parser.get_learned_conditioning, negative_prompts, total_steps, [self.cached_uc], self.extra_network_data) self.c = self.get_conds_with_caching(prompt_parser.get_multicond_learned_conditioning, prompts, total_steps, [self.cached_c], self.extra_network_data) def get_conds(self): return self.c, self.uc def parse_extra_network_prompts(self): self.prompts, self.extra_network_data = extra_networks.parse_prompts(self.prompts) def save_samples(self) -> bool: """Returns whether generated images need to be written to disk""" return opts.samples_save and not self.do_not_save_samples and (opts.save_incomplete_images or not state.interrupted and not state.skipped) class Processed: def __init__(self, p: StableDiffusionProcessing, images_list, seed=-1, info="", subseed=None, all_prompts=None, all_negative_prompts=None, all_seeds=None, all_subseeds=None, index_of_first_image=0, infotexts=None, comments=""): self.images = images_list self.prompt = p.prompt self.negative_prompt = p.negative_prompt self.seed = seed self.subseed = subseed self.subseed_strength = p.subseed_strength self.info = info self.comments = "".join(f"{comment}\n" for comment in p.comments) self.width = p.width self.height = p.height self.sampler_name = p.sampler_name self.cfg_scale = p.cfg_scale self.image_cfg_scale = getattr(p, 'image_cfg_scale', None) self.steps = p.steps self.batch_size = p.batch_size self.restore_faces = p.restore_faces self.face_restoration_model = opts.face_restoration_model if p.restore_faces else None self.sd_model_name = p.sd_model_name self.sd_model_hash = p.sd_model_hash self.sd_vae_name = p.sd_vae_name self.sd_vae_hash = p.sd_vae_hash self.seed_resize_from_w = p.seed_resize_from_w self.seed_resize_from_h = p.seed_resize_from_h self.denoising_strength = getattr(p, 'denoising_strength', None) self.extra_generation_params = p.extra_generation_params self.index_of_first_image = index_of_first_image self.styles = p.styles self.job_timestamp = state.job_timestamp self.clip_skip = opts.CLIP_stop_at_last_layers self.token_merging_ratio = p.token_merging_ratio self.token_merging_ratio_hr = p.token_merging_ratio_hr self.eta = p.eta self.ddim_discretize = p.ddim_discretize self.s_churn = p.s_churn self.s_tmin = p.s_tmin self.s_tmax = p.s_tmax self.s_noise = p.s_noise self.s_min_uncond = p.s_min_uncond self.sampler_noise_scheduler_override = p.sampler_noise_scheduler_override self.prompt = self.prompt if not isinstance(self.prompt, list) else self.prompt[0] self.negative_prompt = self.negative_prompt if not isinstance(self.negative_prompt, list) else self.negative_prompt[0] self.seed = int(self.seed if not isinstance(self.seed, list) else self.seed[0]) if self.seed is not None else -1 self.subseed = int(self.subseed if not isinstance(self.subseed, list) else self.subseed[0]) if self.subseed is not None else -1 self.is_using_inpainting_conditioning = p.is_using_inpainting_conditioning self.all_prompts = all_prompts or p.all_prompts or [self.prompt] self.all_negative_prompts = all_negative_prompts or p.all_negative_prompts or [self.negative_prompt] self.all_seeds = all_seeds or p.all_seeds or [self.seed] self.all_subseeds = all_subseeds or p.all_subseeds or [self.subseed] self.infotexts = infotexts or [info] * len(images_list) self.version = program_version() def js(self): obj = { "prompt": self.all_prompts[0], "all_prompts": self.all_prompts, "negative_prompt": self.all_negative_prompts[0], "all_negative_prompts": self.all_negative_prompts, "seed": self.seed, "all_seeds": self.all_seeds, "subseed": self.subseed, "all_subseeds": self.all_subseeds, "subseed_strength": self.subseed_strength, "width": self.width, "height": self.height, "sampler_name": self.sampler_name, "cfg_scale": self.cfg_scale, "steps": self.steps, "batch_size": self.batch_size, "restore_faces": self.restore_faces, "face_restoration_model": self.face_restoration_model, "sd_model_name": self.sd_model_name, "sd_model_hash": self.sd_model_hash, "sd_vae_name": self.sd_vae_name, "sd_vae_hash": self.sd_vae_hash, "seed_resize_from_w": self.seed_resize_from_w, "seed_resize_from_h": self.seed_resize_from_h, "denoising_strength": self.denoising_strength, "extra_generation_params": self.extra_generation_params, "index_of_first_image": self.index_of_first_image, "infotexts": self.infotexts, "styles": self.styles, "job_timestamp": self.job_timestamp, "clip_skip": self.clip_skip, "is_using_inpainting_conditioning": self.is_using_inpainting_conditioning, "version": self.version, } return json.dumps(obj, default=lambda o: None) def infotext(self, p: StableDiffusionProcessing, index): return create_infotext(p, self.all_prompts, self.all_seeds, self.all_subseeds, comments=[], position_in_batch=index % self.batch_size, iteration=index // self.batch_size) def get_token_merging_ratio(self, for_hr=False): return self.token_merging_ratio_hr if for_hr else self.token_merging_ratio def create_random_tensors(shape, seeds, subseeds=None, subseed_strength=0.0, seed_resize_from_h=0, seed_resize_from_w=0, p=None): g = rng.ImageRNG(shape, seeds, subseeds=subseeds, subseed_strength=subseed_strength, seed_resize_from_h=seed_resize_from_h, seed_resize_from_w=seed_resize_from_w) return g.next() class DecodedSamples(list): already_decoded = True def decode_latent_batch(model, batch, target_device=None, check_for_nans=False): samples = DecodedSamples() for i in range(batch.shape[0]): sample = decode_first_stage(model, batch[i:i + 1])[0] if check_for_nans: try: devices.test_for_nans(sample, "vae") except devices.NansException as e: if shared.opts.auto_vae_precision_bfloat16: autofix_dtype = torch.bfloat16 autofix_dtype_text = "bfloat16" autofix_dtype_setting = "Automatically convert VAE to bfloat16" autofix_dtype_comment = "" elif shared.opts.auto_vae_precision: autofix_dtype = torch.float32 autofix_dtype_text = "32-bit float" autofix_dtype_setting = "Automatically revert VAE to 32-bit floats" autofix_dtype_comment = "\nTo always start with 32-bit VAE, use --no-half-vae commandline flag." else: raise e if devices.dtype_vae == autofix_dtype: raise e errors.print_error_explanation( "A tensor with all NaNs was produced in VAE.\n" f"Web UI will now convert VAE into {autofix_dtype_text} and retry.\n" f"To disable this behavior, disable the '{autofix_dtype_setting}' setting.{autofix_dtype_comment}" ) devices.dtype_vae = autofix_dtype model.first_stage_model.to(devices.dtype_vae) batch = batch.to(devices.dtype_vae) sample = decode_first_stage(model, batch[i:i + 1])[0] if target_device is not None: sample = sample.to(target_device) samples.append(sample) return samples def get_fixed_seed(seed): if seed == '' or seed is None: seed = -1 elif isinstance(seed, str): try: seed = int(seed) except Exception: seed = -1 if seed == -1: return int(random.randrange(4294967294)) return seed def fix_seed(p): p.seed = get_fixed_seed(p.seed) p.subseed = get_fixed_seed(p.subseed) def program_version(): import launch res = launch.git_tag() if res == "": res = None return res def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments=None, iteration=0, position_in_batch=0, use_main_prompt=False, index=None, all_negative_prompts=None): """ this function is used to generate the infotext that is stored in the generated images, it's contains the parameters that are required to generate the imagee Args: p: StableDiffusionProcessing all_prompts: list[str] all_seeds: list[int] all_subseeds: list[int] comments: list[str] iteration: int position_in_batch: int use_main_prompt: bool index: int all_negative_prompts: list[str] Returns: str Extra generation params p.extra_generation_params dictionary allows for additional parameters to be added to the infotext this can be use by the base webui or extensions. To add a new entry, add a new key value pair, the dictionary key will be used as the key of the parameter in the infotext the value generation_params can be defined as: - str | None - List[str|None] - callable func(**kwargs) -> str | None When defined as a string, it will be used as without extra processing; this is this most common use case. Defining as a list allows for parameter that changes across images in the job, for example, the 'Seed' parameter. The list should have the same length as the total number of images in the entire job. Defining as a callable function allows parameter cannot be generated earlier or when extra logic is required. For example 'Hires prompt', due to reasons the hr_prompt might be changed by process in the pipeline or extensions and may vary across different images, defining as a static string or list would not work. The function takes locals() as **kwargs, as such will have access to variables like 'p' and 'index'. the base signature of the function should be: func(**kwargs) -> str | None optionally it can have additional arguments that will be used in the function: func(p, index, **kwargs) -> str | None note: for better future compatibility even though this function will have access to all variables in the locals(), it is recommended to only use the arguments present in the function signature of create_infotext. For actual implementation examples, see StableDiffusionProcessingTxt2Img.init > get_hr_prompt. """ if use_main_prompt: index = 0 elif index is None: index = position_in_batch + iteration * p.batch_size if all_negative_prompts is None: all_negative_prompts = p.all_negative_prompts clip_skip = getattr(p, 'clip_skip', opts.CLIP_stop_at_last_layers) enable_hr = getattr(p, 'enable_hr', False) token_merging_ratio = p.get_token_merging_ratio() token_merging_ratio_hr = p.get_token_merging_ratio(for_hr=True) prompt_text = p.main_prompt if use_main_prompt else all_prompts[index] negative_prompt = p.main_negative_prompt if use_main_prompt else all_negative_prompts[index] uses_ensd = opts.eta_noise_seed_delta != 0 if uses_ensd: uses_ensd = sd_samplers_common.is_sampler_using_eta_noise_seed_delta(p) generation_params = { "Steps": p.steps, "Sampler": p.sampler_name, "Schedule type": p.scheduler, "CFG scale": p.cfg_scale, "Image CFG scale": getattr(p, 'image_cfg_scale', None), "Seed": p.all_seeds[0] if use_main_prompt else all_seeds[index], "Face restoration": opts.face_restoration_model if p.restore_faces else None, "Size": f"{p.width}x{p.height}", "Model hash": p.sd_model_hash if opts.add_model_hash_to_info else None, "Model": p.sd_model_name if opts.add_model_name_to_info else None, "FP8 weight": opts.fp8_storage if devices.fp8 else None, "Cache FP16 weight for LoRA": opts.cache_fp16_weight if devices.fp8 else None, "VAE hash": p.sd_vae_hash if opts.add_vae_hash_to_info else None, "VAE": p.sd_vae_name if opts.add_vae_name_to_info else None, "Variation seed": (None if p.subseed_strength == 0 else (p.all_subseeds[0] if use_main_prompt else all_subseeds[index])), "Variation seed strength": (None if p.subseed_strength == 0 else p.subseed_strength), "Seed resize from": (None if p.seed_resize_from_w <= 0 or p.seed_resize_from_h <= 0 else f"{p.seed_resize_from_w}x{p.seed_resize_from_h}"), "Denoising strength": p.extra_generation_params.get("Denoising strength"), "Conditional mask weight": getattr(p, "inpainting_mask_weight", shared.opts.inpainting_mask_weight) if p.is_using_inpainting_conditioning else None, "Clip skip": None if clip_skip <= 1 else clip_skip, "ENSD": opts.eta_noise_seed_delta if uses_ensd else None, "Token merging ratio": None if token_merging_ratio == 0 else token_merging_ratio, "Token merging ratio hr": None if not enable_hr or token_merging_ratio_hr == 0 else token_merging_ratio_hr, "Init image hash": getattr(p, 'init_img_hash', None), "RNG": opts.randn_source if opts.randn_source != "GPU" else None, "NGMS": None if p.s_min_uncond == 0 else p.s_min_uncond, "Tiling": "True" if p.tiling else None, **p.extra_generation_params, "Version": program_version() if opts.add_version_to_infotext else None, "User": p.user if opts.add_user_name_to_info else None, } for key, value in generation_params.items(): try: if isinstance(value, list): generation_params[key] = value[index] elif callable(value): generation_params[key] = value(**locals()) except Exception: errors.report(f'Error creating infotext for key "{key}"', exc_info=True) generation_params[key] = None generation_params_text = ", ".join([k if k == v else f'{k}: {infotext_utils.quote(v)}' for k, v in generation_params.items() if v is not None]) negative_prompt_text = f"\nNegative prompt: {negative_prompt}" if negative_prompt else "" return f"{prompt_text}{negative_prompt_text}\n{generation_params_text}".strip() def process_images(p: StableDiffusionProcessing) -> Processed: if p.scripts is not None: p.scripts.before_process(p) stored_opts = {k: opts.data[k] if k in opts.data else opts.get_default(k) for k in p.override_settings.keys() if k in opts.data} try: # if no checkpoint override or the override checkpoint can't be found, remove override entry and load opts checkpoint # and if after running refiner, the refiner model is not unloaded - webui swaps back to main model here, if model over is present it will be reloaded afterwards if sd_models.checkpoint_aliases.get(p.override_settings.get('sd_model_checkpoint')) is None: p.override_settings.pop('sd_model_checkpoint', None) sd_models.reload_model_weights() for k, v in p.override_settings.items(): opts.set(k, v, is_api=True, run_callbacks=False) if k == 'sd_model_checkpoint': sd_models.reload_model_weights() if k == 'sd_vae': sd_vae.reload_vae_weights() sd_models.apply_token_merging(p.sd_model, p.get_token_merging_ratio()) res = process_images_inner(p) finally: sd_models.apply_token_merging(p.sd_model, 0) # restore opts to original state if p.override_settings_restore_afterwards: for k, v in stored_opts.items(): setattr(opts, k, v) if k == 'sd_vae': sd_vae.reload_vae_weights() return res def process_images_inner(p: StableDiffusionProcessing) -> Processed: """this is the main loop that both txt2img and img2img use; it calls func_init once inside all the scopes and func_sample once per batch""" if isinstance(p.prompt, list): assert(len(p.prompt) > 0) else: assert p.prompt is not None devices.torch_gc() seed = get_fixed_seed(p.seed) subseed = get_fixed_seed(p.subseed) if p.restore_faces is None: p.restore_faces = opts.face_restoration if p.tiling is None: p.tiling = opts.tiling if p.refiner_checkpoint not in (None, "", "None", "none"): p.refiner_checkpoint_info = sd_models.get_closet_checkpoint_match(p.refiner_checkpoint) if p.refiner_checkpoint_info is None: raise Exception(f'Could not find checkpoint with name {p.refiner_checkpoint}') p.sd_model_name = shared.sd_model.sd_checkpoint_info.name_for_extra p.sd_model_hash = shared.sd_model.sd_model_hash p.sd_vae_name = sd_vae.get_loaded_vae_name() p.sd_vae_hash = sd_vae.get_loaded_vae_hash() modules.sd_hijack.model_hijack.apply_circular(p.tiling) modules.sd_hijack.model_hijack.clear_comments() p.setup_prompts() if isinstance(seed, list): p.all_seeds = seed else: p.all_seeds = [int(seed) + (x if p.subseed_strength == 0 else 0) for x in range(len(p.all_prompts))] if isinstance(subseed, list): p.all_subseeds = subseed else: p.all_subseeds = [int(subseed) + x for x in range(len(p.all_prompts))] if os.path.exists(cmd_opts.embeddings_dir) and not p.do_not_reload_embeddings: model_hijack.embedding_db.load_textual_inversion_embeddings() if p.scripts is not None: p.scripts.process(p) infotexts = [] output_images = [] with torch.no_grad(), p.sd_model.ema_scope(): with devices.autocast(): p.init(p.all_prompts, p.all_seeds, p.all_subseeds) # for OSX, loading the model during sampling changes the generated picture, so it is loaded here if shared.opts.live_previews_enable and opts.show_progress_type == "Approx NN": sd_vae_approx.model() sd_unet.apply_unet() if state.job_count == -1: state.job_count = p.n_iter for n in range(p.n_iter): p.iteration = n if state.skipped: state.skipped = False if state.interrupted or state.stopping_generation: break sd_models.reload_model_weights() # model can be changed for example by refiner p.prompts = p.all_prompts[n * p.batch_size:(n + 1) * p.batch_size] p.negative_prompts = p.all_negative_prompts[n * p.batch_size:(n + 1) * p.batch_size] p.seeds = p.all_seeds[n * p.batch_size:(n + 1) * p.batch_size] p.subseeds = p.all_subseeds[n * p.batch_size:(n + 1) * p.batch_size] p.rng = rng.ImageRNG((opt_C, p.height // opt_f, p.width // opt_f), p.seeds, subseeds=p.subseeds, subseed_strength=p.subseed_strength, seed_resize_from_h=p.seed_resize_from_h, seed_resize_from_w=p.seed_resize_from_w) if p.scripts is not None: p.scripts.before_process_batch(p, batch_number=n, prompts=p.prompts, seeds=p.seeds, subseeds=p.subseeds) if len(p.prompts) == 0: break p.parse_extra_network_prompts() if not p.disable_extra_networks: with devices.autocast(): extra_networks.activate(p, p.extra_network_data) if p.scripts is not None: p.scripts.process_batch(p, batch_number=n, prompts=p.prompts, seeds=p.seeds, subseeds=p.subseeds) p.setup_conds() p.extra_generation_params.update(model_hijack.extra_generation_params) # params.txt should be saved after scripts.process_batch, since the # infotext could be modified by that callback # Example: a wildcard processed by process_batch sets an extra model # strength, which is saved as "Model Strength: 1.0" in the infotext if n == 0 and not cmd_opts.no_prompt_history: with open(os.path.join(paths.data_path, "params.txt"), "w", encoding="utf8") as file: processed = Processed(p, []) file.write(processed.infotext(p, 0)) for comment in model_hijack.comments: p.comment(comment) if p.n_iter > 1: shared.state.job = f"Batch {n+1} out of {p.n_iter}" sd_models.apply_alpha_schedule_override(p.sd_model, p) with devices.without_autocast() if devices.unet_needs_upcast else devices.autocast(): samples_ddim = p.sample(conditioning=p.c, unconditional_conditioning=p.uc, seeds=p.seeds, subseeds=p.subseeds, subseed_strength=p.subseed_strength, prompts=p.prompts) if p.scripts is not None: ps = scripts.PostSampleArgs(samples_ddim) p.scripts.post_sample(p, ps) samples_ddim = ps.samples if getattr(samples_ddim, 'already_decoded', False): x_samples_ddim = samples_ddim else: if opts.sd_vae_decode_method != 'Full': p.extra_generation_params['VAE Decoder'] = opts.sd_vae_decode_method x_samples_ddim = decode_latent_batch(p.sd_model, samples_ddim, target_device=devices.cpu, check_for_nans=True) x_samples_ddim = torch.stack(x_samples_ddim).float() x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0) del samples_ddim if lowvram.is_enabled(shared.sd_model): lowvram.send_everything_to_cpu() devices.torch_gc() state.nextjob() if p.scripts is not None: p.scripts.postprocess_batch(p, x_samples_ddim, batch_number=n) p.prompts = p.all_prompts[n * p.batch_size:(n + 1) * p.batch_size] p.negative_prompts = p.all_negative_prompts[n * p.batch_size:(n + 1) * p.batch_size] batch_params = scripts.PostprocessBatchListArgs(list(x_samples_ddim)) p.scripts.postprocess_batch_list(p, batch_params, batch_number=n) x_samples_ddim = batch_params.images def infotext(index=0, use_main_prompt=False): return create_infotext(p, p.prompts, p.seeds, p.subseeds, use_main_prompt=use_main_prompt, index=index, all_negative_prompts=p.negative_prompts) save_samples = p.save_samples() for i, x_sample in enumerate(x_samples_ddim): p.batch_index = i x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2) x_sample = x_sample.astype(np.uint8) if p.restore_faces: if save_samples and opts.save_images_before_face_restoration: images.save_image(Image.fromarray(x_sample), p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(i), p=p, suffix="-before-face-restoration") devices.torch_gc() x_sample = modules.face_restoration.restore_faces(x_sample) devices.torch_gc() image = Image.fromarray(x_sample) if p.scripts is not None: pp = scripts.PostprocessImageArgs(image) p.scripts.postprocess_image(p, pp) image = pp.image mask_for_overlay = getattr(p, "mask_for_overlay", None) if not shared.opts.overlay_inpaint: overlay_image = None elif getattr(p, "overlay_images", None) is not None and i < len(p.overlay_images): overlay_image = p.overlay_images[i] else: overlay_image = None if p.scripts is not None: ppmo = scripts.PostProcessMaskOverlayArgs(i, mask_for_overlay, overlay_image) p.scripts.postprocess_maskoverlay(p, ppmo) mask_for_overlay, overlay_image = ppmo.mask_for_overlay, ppmo.overlay_image if p.color_corrections is not None and i < len(p.color_corrections): if save_samples and opts.save_images_before_color_correction: image_without_cc, _ = apply_overlay(image, p.paste_to, overlay_image) images.save_image(image_without_cc, p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(i), p=p, suffix="-before-color-correction") image = apply_color_correction(p.color_corrections[i], image) # If the intention is to show the output from the model # that is being composited over the original image, # we need to keep the original image around # and use it in the composite step. image, original_denoised_image = apply_overlay(image, p.paste_to, overlay_image) if p.scripts is not None: pp = scripts.PostprocessImageArgs(image) p.scripts.postprocess_image_after_composite(p, pp) image = pp.image if save_samples: images.save_image(image, p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(i), p=p) text = infotext(i) infotexts.append(text) if opts.enable_pnginfo: image.info["parameters"] = text output_images.append(image) if mask_for_overlay is not None: if opts.return_mask or opts.save_mask: image_mask = mask_for_overlay.convert('RGB') if save_samples and opts.save_mask: images.save_image(image_mask, p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(i), p=p, suffix="-mask") if opts.return_mask: output_images.append(image_mask) if opts.return_mask_composite or opts.save_mask_composite: image_mask_composite = Image.composite(original_denoised_image.convert('RGBA').convert('RGBa'), Image.new('RGBa', image.size), images.resize_image(2, mask_for_overlay, image.width, image.height).convert('L')).convert('RGBA') if save_samples and opts.save_mask_composite: images.save_image(image_mask_composite, p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(i), p=p, suffix="-mask-composite") if opts.return_mask_composite: output_images.append(image_mask_composite) del x_samples_ddim devices.torch_gc() if not infotexts: infotexts.append(Processed(p, []).infotext(p, 0)) p.color_corrections = None index_of_first_image = 0 unwanted_grid_because_of_img_count = len(output_images) < 2 and opts.grid_only_if_multiple if (opts.return_grid or opts.grid_save) and not p.do_not_save_grid and not unwanted_grid_because_of_img_count: grid = images.image_grid(output_images, p.batch_size) if opts.return_grid: text = infotext(use_main_prompt=True) infotexts.insert(0, text) if opts.enable_pnginfo: grid.info["parameters"] = text output_images.insert(0, grid) index_of_first_image = 1 if opts.grid_save: images.save_image(grid, p.outpath_grids, "grid", p.all_seeds[0], p.all_prompts[0], opts.grid_format, info=infotext(use_main_prompt=True), short_filename=not opts.grid_extended_filename, p=p, grid=True) if not p.disable_extra_networks and p.extra_network_data: extra_networks.deactivate(p, p.extra_network_data) devices.torch_gc() res = Processed( p, images_list=output_images, seed=p.all_seeds[0], info=infotexts[0], subseed=p.all_subseeds[0], index_of_first_image=index_of_first_image, infotexts=infotexts, ) if p.scripts is not None: p.scripts.postprocess(p, res) return res def old_hires_fix_first_pass_dimensions(width, height): """old algorithm for auto-calculating first pass size""" desired_pixel_count = 512 * 512 actual_pixel_count = width * height scale = math.sqrt(desired_pixel_count / actual_pixel_count) width = math.ceil(scale * width / 64) * 64 height = math.ceil(scale * height / 64) * 64 return width, height @dataclass(repr=False) class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing): enable_hr: bool = False denoising_strength: float = 0.75 firstphase_width: int = 0 firstphase_height: int = 0 hr_scale: float = 2.0 hr_upscaler: str = None hr_second_pass_steps: int = 0 hr_resize_x: int = 0 hr_resize_y: int = 0 hr_checkpoint_name: str = None hr_sampler_name: str = None hr_scheduler: str = None hr_prompt: str = '' hr_negative_prompt: str = '' force_task_id: str = None cached_hr_uc = [None, None] cached_hr_c = [None, None] hr_checkpoint_info: dict = field(default=None, init=False) hr_upscale_to_x: int = field(default=0, init=False) hr_upscale_to_y: int = field(default=0, init=False) truncate_x: int = field(default=0, init=False) truncate_y: int = field(default=0, init=False) applied_old_hires_behavior_to: tuple = field(default=None, init=False) latent_scale_mode: dict = field(default=None, init=False) hr_c: tuple | None = field(default=None, init=False) hr_uc: tuple | None = field(default=None, init=False) all_hr_prompts: list = field(default=None, init=False) all_hr_negative_prompts: list = field(default=None, init=False) hr_prompts: list = field(default=None, init=False) hr_negative_prompts: list = field(default=None, init=False) hr_extra_network_data: list = field(default=None, init=False) def __post_init__(self): super().__post_init__() if self.firstphase_width != 0 or self.firstphase_height != 0: self.hr_upscale_to_x = self.width self.hr_upscale_to_y = self.height self.width = self.firstphase_width self.height = self.firstphase_height self.cached_hr_uc = StableDiffusionProcessingTxt2Img.cached_hr_uc self.cached_hr_c = StableDiffusionProcessingTxt2Img.cached_hr_c def calculate_target_resolution(self): if opts.use_old_hires_fix_width_height and self.applied_old_hires_behavior_to != (self.width, self.height): self.hr_resize_x = self.width self.hr_resize_y = self.height self.hr_upscale_to_x = self.width self.hr_upscale_to_y = self.height self.width, self.height = old_hires_fix_first_pass_dimensions(self.width, self.height) self.applied_old_hires_behavior_to = (self.width, self.height) if self.hr_resize_x == 0 and self.hr_resize_y == 0: self.extra_generation_params["Hires upscale"] = self.hr_scale self.hr_upscale_to_x = int(self.width * self.hr_scale) self.hr_upscale_to_y = int(self.height * self.hr_scale) else: self.extra_generation_params["Hires resize"] = f"{self.hr_resize_x}x{self.hr_resize_y}" if self.hr_resize_y == 0: self.hr_upscale_to_x = self.hr_resize_x self.hr_upscale_to_y = self.hr_resize_x * self.height // self.width elif self.hr_resize_x == 0: self.hr_upscale_to_x = self.hr_resize_y * self.width // self.height self.hr_upscale_to_y = self.hr_resize_y else: target_w = self.hr_resize_x target_h = self.hr_resize_y src_ratio = self.width / self.height dst_ratio = self.hr_resize_x / self.hr_resize_y if src_ratio < dst_ratio: self.hr_upscale_to_x = self.hr_resize_x self.hr_upscale_to_y = self.hr_resize_x * self.height // self.width else: self.hr_upscale_to_x = self.hr_resize_y * self.width // self.height self.hr_upscale_to_y = self.hr_resize_y self.truncate_x = (self.hr_upscale_to_x - target_w) // opt_f self.truncate_y = (self.hr_upscale_to_y - target_h) // opt_f def init(self, all_prompts, all_seeds, all_subseeds): if self.enable_hr: self.extra_generation_params["Denoising strength"] = self.denoising_strength if self.hr_checkpoint_name and self.hr_checkpoint_name != 'Use same checkpoint': self.hr_checkpoint_info = sd_models.get_closet_checkpoint_match(self.hr_checkpoint_name) if self.hr_checkpoint_info is None: raise Exception(f'Could not find checkpoint with name {self.hr_checkpoint_name}') self.extra_generation_params["Hires checkpoint"] = self.hr_checkpoint_info.short_title if self.hr_sampler_name is not None and self.hr_sampler_name != self.sampler_name: self.extra_generation_params["Hires sampler"] = self.hr_sampler_name def get_hr_prompt(p, index, prompt_text, **kwargs): hr_prompt = p.all_hr_prompts[index] return hr_prompt if hr_prompt != prompt_text else None def get_hr_negative_prompt(p, index, negative_prompt, **kwargs): hr_negative_prompt = p.all_hr_negative_prompts[index] return hr_negative_prompt if hr_negative_prompt != negative_prompt else None self.extra_generation_params["Hires prompt"] = get_hr_prompt self.extra_generation_params["Hires negative prompt"] = get_hr_negative_prompt self.extra_generation_params["Hires schedule type"] = None # to be set in sd_samplers_kdiffusion.py if self.hr_scheduler is None: self.hr_scheduler = self.scheduler self.latent_scale_mode = shared.latent_upscale_modes.get(self.hr_upscaler, None) if self.hr_upscaler is not None else shared.latent_upscale_modes.get(shared.latent_upscale_default_mode, "nearest") if self.enable_hr and self.latent_scale_mode is None: if not any(x.name == self.hr_upscaler for x in shared.sd_upscalers): raise Exception(f"could not find upscaler named {self.hr_upscaler}") self.calculate_target_resolution() if not state.processing_has_refined_job_count: if state.job_count == -1: state.job_count = self.n_iter if getattr(self, 'txt2img_upscale', False): total_steps = (self.hr_second_pass_steps or self.steps) * state.job_count else: total_steps = (self.steps + (self.hr_second_pass_steps or self.steps)) * state.job_count shared.total_tqdm.updateTotal(total_steps) state.job_count = state.job_count * 2 state.processing_has_refined_job_count = True if self.hr_second_pass_steps: self.extra_generation_params["Hires steps"] = self.hr_second_pass_steps if self.hr_upscaler is not None: self.extra_generation_params["Hires upscaler"] = self.hr_upscaler def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength, prompts): self.sampler = sd_samplers.create_sampler(self.sampler_name, self.sd_model) if self.firstpass_image is not None and self.enable_hr: # here we don't need to generate image, we just take self.firstpass_image and prepare it for hires fix if self.latent_scale_mode is None: image = np.array(self.firstpass_image).astype(np.float32) / 255.0 * 2.0 - 1.0 image = np.moveaxis(image, 2, 0) samples = None decoded_samples = torch.asarray(np.expand_dims(image, 0)) else: image = np.array(self.firstpass_image).astype(np.float32) / 255.0 image = np.moveaxis(image, 2, 0) image = torch.from_numpy(np.expand_dims(image, axis=0)) image = image.to(shared.device, dtype=devices.dtype_vae) if opts.sd_vae_encode_method != 'Full': self.extra_generation_params['VAE Encoder'] = opts.sd_vae_encode_method samples = images_tensor_to_samples(image, approximation_indexes.get(opts.sd_vae_encode_method), self.sd_model) decoded_samples = None devices.torch_gc() else: # here we generate an image normally x = self.rng.next() samples = self.sampler.sample(self, x, conditioning, unconditional_conditioning, image_conditioning=self.txt2img_image_conditioning(x)) del x if not self.enable_hr: return samples devices.torch_gc() if self.latent_scale_mode is None: decoded_samples = torch.stack(decode_latent_batch(self.sd_model, samples, target_device=devices.cpu, check_for_nans=True)).to(dtype=torch.float32) else: decoded_samples = None with sd_models.SkipWritingToConfig(): sd_models.reload_model_weights(info=self.hr_checkpoint_info) return self.sample_hr_pass(samples, decoded_samples, seeds, subseeds, subseed_strength, prompts) def sample_hr_pass(self, samples, decoded_samples, seeds, subseeds, subseed_strength, prompts): if shared.state.interrupted: return samples self.is_hr_pass = True target_width = self.hr_upscale_to_x target_height = self.hr_upscale_to_y def save_intermediate(image, index): """saves image before applying hires fix, if enabled in options; takes as an argument either an image or batch with latent space images""" if not self.save_samples() or not opts.save_images_before_highres_fix: return if not isinstance(image, Image.Image): image = sd_samplers.sample_to_image(image, index, approximation=0) info = create_infotext(self, self.all_prompts, self.all_seeds, self.all_subseeds, [], iteration=self.iteration, position_in_batch=index) images.save_image(image, self.outpath_samples, "", seeds[index], prompts[index], opts.samples_format, info=info, p=self, suffix="-before-highres-fix") img2img_sampler_name = self.hr_sampler_name or self.sampler_name self.sampler = sd_samplers.create_sampler(img2img_sampler_name, self.sd_model) if self.latent_scale_mode is not None: for i in range(samples.shape[0]): save_intermediate(samples, i) samples = torch.nn.functional.interpolate(samples, size=(target_height // opt_f, target_width // opt_f), mode=self.latent_scale_mode["mode"], antialias=self.latent_scale_mode["antialias"]) # Avoid making the inpainting conditioning unless necessary as # this does need some extra compute to decode / encode the image again. if getattr(self, "inpainting_mask_weight", shared.opts.inpainting_mask_weight) < 1.0: image_conditioning = self.img2img_image_conditioning(decode_first_stage(self.sd_model, samples), samples) else: image_conditioning = self.txt2img_image_conditioning(samples) else: lowres_samples = torch.clamp((decoded_samples + 1.0) / 2.0, min=0.0, max=1.0) batch_images = [] for i, x_sample in enumerate(lowres_samples): x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2) x_sample = x_sample.astype(np.uint8) image = Image.fromarray(x_sample) save_intermediate(image, i) image = images.resize_image(0, image, target_width, target_height, upscaler_name=self.hr_upscaler) image = np.array(image).astype(np.float32) / 255.0 image = np.moveaxis(image, 2, 0) batch_images.append(image) decoded_samples = torch.from_numpy(np.array(batch_images)) decoded_samples = decoded_samples.to(shared.device, dtype=devices.dtype_vae) if opts.sd_vae_encode_method != 'Full': self.extra_generation_params['VAE Encoder'] = opts.sd_vae_encode_method samples = images_tensor_to_samples(decoded_samples, approximation_indexes.get(opts.sd_vae_encode_method)) image_conditioning = self.img2img_image_conditioning(decoded_samples, samples) shared.state.nextjob() samples = samples[:, :, self.truncate_y//2:samples.shape[2]-(self.truncate_y+1)//2, self.truncate_x//2:samples.shape[3]-(self.truncate_x+1)//2] self.rng = rng.ImageRNG(samples.shape[1:], self.seeds, subseeds=self.subseeds, subseed_strength=self.subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w) noise = self.rng.next() # GC now before running the next img2img to prevent running out of memory devices.torch_gc() if not self.disable_extra_networks: with devices.autocast(): extra_networks.activate(self, self.hr_extra_network_data) with devices.autocast(): self.calculate_hr_conds() sd_models.apply_token_merging(self.sd_model, self.get_token_merging_ratio(for_hr=True)) if self.scripts is not None: self.scripts.before_hr(self) samples = self.sampler.sample_img2img(self, samples, noise, self.hr_c, self.hr_uc, steps=self.hr_second_pass_steps or self.steps, image_conditioning=image_conditioning) sd_models.apply_token_merging(self.sd_model, self.get_token_merging_ratio()) self.sampler = None devices.torch_gc() decoded_samples = decode_latent_batch(self.sd_model, samples, target_device=devices.cpu, check_for_nans=True) self.is_hr_pass = False return decoded_samples def close(self): super().close() self.hr_c = None self.hr_uc = None if not opts.persistent_cond_cache: StableDiffusionProcessingTxt2Img.cached_hr_uc = [None, None] StableDiffusionProcessingTxt2Img.cached_hr_c = [None, None] def setup_prompts(self): super().setup_prompts() if not self.enable_hr: return if self.hr_prompt == '': self.hr_prompt = self.prompt if self.hr_negative_prompt == '': self.hr_negative_prompt = self.negative_prompt if isinstance(self.hr_prompt, list): self.all_hr_prompts = self.hr_prompt else: self.all_hr_prompts = self.batch_size * self.n_iter * [self.hr_prompt] if isinstance(self.hr_negative_prompt, list): self.all_hr_negative_prompts = self.hr_negative_prompt else: self.all_hr_negative_prompts = self.batch_size * self.n_iter * [self.hr_negative_prompt] self.all_hr_prompts = [shared.prompt_styles.apply_styles_to_prompt(x, self.styles) for x in self.all_hr_prompts] self.all_hr_negative_prompts = [shared.prompt_styles.apply_negative_styles_to_prompt(x, self.styles) for x in self.all_hr_negative_prompts] def calculate_hr_conds(self): if self.hr_c is not None: return hr_prompts = prompt_parser.SdConditioning(self.hr_prompts, width=self.hr_upscale_to_x, height=self.hr_upscale_to_y) hr_negative_prompts = prompt_parser.SdConditioning(self.hr_negative_prompts, width=self.hr_upscale_to_x, height=self.hr_upscale_to_y, is_negative_prompt=True) sampler_config = sd_samplers.find_sampler_config(self.hr_sampler_name or self.sampler_name) steps = self.hr_second_pass_steps or self.steps total_steps = sampler_config.total_steps(steps) if sampler_config else steps self.hr_uc = self.get_conds_with_caching(prompt_parser.get_learned_conditioning, hr_negative_prompts, self.firstpass_steps, [self.cached_hr_uc, self.cached_uc], self.hr_extra_network_data, total_steps) self.hr_c = self.get_conds_with_caching(prompt_parser.get_multicond_learned_conditioning, hr_prompts, self.firstpass_steps, [self.cached_hr_c, self.cached_c], self.hr_extra_network_data, total_steps) def setup_conds(self): if self.is_hr_pass: # if we are in hr pass right now, the call is being made from the refiner, and we don't need to setup firstpass cons or switch model self.hr_c = None self.calculate_hr_conds() return super().setup_conds() self.hr_uc = None self.hr_c = None if self.enable_hr and self.hr_checkpoint_info is None: if shared.opts.hires_fix_use_firstpass_conds: self.calculate_hr_conds() elif lowvram.is_enabled(shared.sd_model) and shared.sd_model.sd_checkpoint_info == sd_models.select_checkpoint(): # if in lowvram mode, we need to calculate conds right away, before the cond NN is unloaded with devices.autocast(): extra_networks.activate(self, self.hr_extra_network_data) self.calculate_hr_conds() with devices.autocast(): extra_networks.activate(self, self.extra_network_data) def get_conds(self): if self.is_hr_pass: return self.hr_c, self.hr_uc return super().get_conds() def parse_extra_network_prompts(self): res = super().parse_extra_network_prompts() if self.enable_hr: self.hr_prompts = self.all_hr_prompts[self.iteration * self.batch_size:(self.iteration + 1) * self.batch_size] self.hr_negative_prompts = self.all_hr_negative_prompts[self.iteration * self.batch_size:(self.iteration + 1) * self.batch_size] self.hr_prompts, self.hr_extra_network_data = extra_networks.parse_prompts(self.hr_prompts) return res @dataclass(repr=False) class StableDiffusionProcessingImg2Img(StableDiffusionProcessing): init_images: list = None resize_mode: int = 0 denoising_strength: float = 0.75 image_cfg_scale: float = None mask: Any = None mask_blur_x: int = 4 mask_blur_y: int = 4 mask_blur: int = None mask_round: bool = True inpainting_fill: int = 0 inpaint_full_res: bool = True inpaint_full_res_padding: int = 0 inpainting_mask_invert: int = 0 initial_noise_multiplier: float = None latent_mask: Image = None force_task_id: str = None image_mask: Any = field(default=None, init=False) nmask: torch.Tensor = field(default=None, init=False) image_conditioning: torch.Tensor = field(default=None, init=False) init_img_hash: str = field(default=None, init=False) mask_for_overlay: Image = field(default=None, init=False) init_latent: torch.Tensor = field(default=None, init=False) def __post_init__(self): super().__post_init__() self.image_mask = self.mask self.mask = None self.initial_noise_multiplier = opts.initial_noise_multiplier if self.initial_noise_multiplier is None else self.initial_noise_multiplier @property def mask_blur(self): if self.mask_blur_x == self.mask_blur_y: return self.mask_blur_x return None @mask_blur.setter def mask_blur(self, value): if isinstance(value, int): self.mask_blur_x = value self.mask_blur_y = value def init(self, all_prompts, all_seeds, all_subseeds): self.extra_generation_params["Denoising strength"] = self.denoising_strength self.image_cfg_scale: float = self.image_cfg_scale if shared.sd_model.cond_stage_key == "edit" else None self.sampler = sd_samplers.create_sampler(self.sampler_name, self.sd_model) crop_region = None image_mask = self.image_mask if image_mask is not None: # image_mask is passed in as RGBA by Gradio to support alpha masks, # but we still want to support binary masks. image_mask = create_binary_mask(image_mask, round=self.mask_round) if self.inpainting_mask_invert: image_mask = ImageOps.invert(image_mask) self.extra_generation_params["Mask mode"] = "Inpaint not masked" if self.mask_blur_x > 0: np_mask = np.array(image_mask) kernel_size = 2 * int(2.5 * self.mask_blur_x + 0.5) + 1 np_mask = cv2.GaussianBlur(np_mask, (kernel_size, 1), self.mask_blur_x) image_mask = Image.fromarray(np_mask) if self.mask_blur_y > 0: np_mask = np.array(image_mask) kernel_size = 2 * int(2.5 * self.mask_blur_y + 0.5) + 1 np_mask = cv2.GaussianBlur(np_mask, (1, kernel_size), self.mask_blur_y) image_mask = Image.fromarray(np_mask) if self.mask_blur_x > 0 or self.mask_blur_y > 0: self.extra_generation_params["Mask blur"] = self.mask_blur if self.inpaint_full_res: self.mask_for_overlay = image_mask mask = image_mask.convert('L') crop_region = masking.get_crop_region_v2(mask, self.inpaint_full_res_padding) if crop_region: crop_region = masking.expand_crop_region(crop_region, self.width, self.height, mask.width, mask.height) x1, y1, x2, y2 = crop_region mask = mask.crop(crop_region) image_mask = images.resize_image(2, mask, self.width, self.height) self.paste_to = (x1, y1, x2-x1, y2-y1) self.extra_generation_params["Inpaint area"] = "Only masked" self.extra_generation_params["Masked area padding"] = self.inpaint_full_res_padding else: crop_region = None image_mask = None self.mask_for_overlay = None self.inpaint_full_res = False massage = 'Unable to perform "Inpaint Only mask" because mask is blank, switch to img2img mode.' model_hijack.comments.append(massage) logging.info(massage) else: image_mask = images.resize_image(self.resize_mode, image_mask, self.width, self.height) np_mask = np.array(image_mask) np_mask = np.clip((np_mask.astype(np.float32)) * 2, 0, 255).astype(np.uint8) self.mask_for_overlay = Image.fromarray(np_mask) self.overlay_images = [] latent_mask = self.latent_mask if self.latent_mask is not None else image_mask add_color_corrections = opts.img2img_color_correction and self.color_corrections is None if add_color_corrections: self.color_corrections = [] imgs = [] for img in self.init_images: # Save init image if opts.save_init_img: self.init_img_hash = hashlib.md5(img.tobytes()).hexdigest() images.save_image(img, path=opts.outdir_init_images, basename=None, forced_filename=self.init_img_hash, save_to_dirs=False, existing_info=img.info) image = images.flatten(img, opts.img2img_background_color) if crop_region is None and self.resize_mode != 3: image = images.resize_image(self.resize_mode, image, self.width, self.height) if image_mask is not None: if self.mask_for_overlay.size != (image.width, image.height): self.mask_for_overlay = images.resize_image(self.resize_mode, self.mask_for_overlay, image.width, image.height) image_masked = Image.new('RGBa', (image.width, image.height)) image_masked.paste(image.convert("RGBA").convert("RGBa"), mask=ImageOps.invert(self.mask_for_overlay.convert('L'))) self.overlay_images.append(image_masked.convert('RGBA')) # crop_region is not None if we are doing inpaint full res if crop_region is not None: image = image.crop(crop_region) image = images.resize_image(2, image, self.width, self.height) if image_mask is not None: if self.inpainting_fill != 1: image = masking.fill(image, latent_mask) if self.inpainting_fill == 0: self.extra_generation_params["Masked content"] = 'fill' if add_color_corrections: self.color_corrections.append(setup_color_correction(image)) image = np.array(image).astype(np.float32) / 255.0 image = np.moveaxis(image, 2, 0) imgs.append(image) if len(imgs) == 1: batch_images = np.expand_dims(imgs[0], axis=0).repeat(self.batch_size, axis=0) if self.overlay_images is not None: self.overlay_images = self.overlay_images * self.batch_size if self.color_corrections is not None and len(self.color_corrections) == 1: self.color_corrections = self.color_corrections * self.batch_size elif len(imgs) <= self.batch_size: self.batch_size = len(imgs) batch_images = np.array(imgs) else: raise RuntimeError(f"bad number of images passed: {len(imgs)}; expecting {self.batch_size} or less") image = torch.from_numpy(batch_images) image = image.to(shared.device, dtype=devices.dtype_vae) if opts.sd_vae_encode_method != 'Full': self.extra_generation_params['VAE Encoder'] = opts.sd_vae_encode_method self.init_latent = images_tensor_to_samples(image, approximation_indexes.get(opts.sd_vae_encode_method), self.sd_model) devices.torch_gc() if self.resize_mode == 3: self.init_latent = torch.nn.functional.interpolate(self.init_latent, size=(self.height // opt_f, self.width // opt_f), mode="bilinear") if image_mask is not None: init_mask = latent_mask latmask = init_mask.convert('RGB').resize((self.init_latent.shape[3], self.init_latent.shape[2])) latmask = np.moveaxis(np.array(latmask, dtype=np.float32), 2, 0) / 255 latmask = latmask[0] if self.mask_round: latmask = np.around(latmask) latmask = np.tile(latmask[None], (4, 1, 1)) self.mask = torch.asarray(1.0 - latmask).to(shared.device).type(self.sd_model.dtype) self.nmask = torch.asarray(latmask).to(shared.device).type(self.sd_model.dtype) # this needs to be fixed to be done in sample() using actual seeds for batches if self.inpainting_fill == 2: self.init_latent = self.init_latent * self.mask + create_random_tensors(self.init_latent.shape[1:], all_seeds[0:self.init_latent.shape[0]]) * self.nmask self.extra_generation_params["Masked content"] = 'latent noise' elif self.inpainting_fill == 3: self.init_latent = self.init_latent * self.mask self.extra_generation_params["Masked content"] = 'latent nothing' self.image_conditioning = self.img2img_image_conditioning(image * 2 - 1, self.init_latent, image_mask, self.mask_round) def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength, prompts): x = self.rng.next() if self.initial_noise_multiplier != 1.0: self.extra_generation_params["Noise multiplier"] = self.initial_noise_multiplier x *= self.initial_noise_multiplier samples = self.sampler.sample_img2img(self, self.init_latent, x, conditioning, unconditional_conditioning, image_conditioning=self.image_conditioning) if self.mask is not None: blended_samples = samples * self.nmask + self.init_latent * self.mask if self.scripts is not None: mba = scripts.MaskBlendArgs(samples, self.nmask, self.init_latent, self.mask, blended_samples) self.scripts.on_mask_blend(self, mba) blended_samples = mba.blended_latent samples = blended_samples del x devices.torch_gc() return samples def get_token_merging_ratio(self, for_hr=False): return self.token_merging_ratio or ("token_merging_ratio" in self.override_settings and opts.token_merging_ratio) or opts.token_merging_ratio_img2img or opts.token_merging_ratio