import torch import network class ModuleTypeOFT(network.ModuleType): def create_module(self, net: network.Network, weights: network.NetworkWeights): if all(x in weights.w for x in ["oft_blocks"]): return NetworkModuleOFT(net, weights) return None # adapted from https://github.com/kohya-ss/sd-scripts/blob/main/networks/oft.py class NetworkModuleOFT(network.NetworkModule): def __init__(self, net: network.Network, weights: network.NetworkWeights): super().__init__(net, weights) self.oft_blocks = weights.w["oft_blocks"] self.alpha = weights.w["alpha"] self.dim = self.oft_blocks.shape[0] self.num_blocks = self.dim if "Linear" in self.sd_module.__class__.__name__: self.out_dim = self.sd_module.out_features elif "Conv" in self.sd_module.__class__.__name__: self.out_dim = self.sd_module.out_channels self.constraint = self.alpha #self.constraint = self.alpha * self.out_dim self.block_size = self.out_dim // self.num_blocks self.org_module: list[torch.Module] = [self.sd_module] self.R = self.get_weight() self.apply_to() # replace forward method of original linear rather than replacing the module def apply_to(self): self.org_forward = self.org_module[0].forward self.org_module[0].forward = self.forward def get_weight(self, multiplier=None): if not multiplier: multiplier = self.multiplier() block_Q = self.oft_blocks - self.oft_blocks.transpose(1, 2) norm_Q = torch.norm(block_Q.flatten()) new_norm_Q = torch.clamp(norm_Q, max=self.constraint) block_Q = block_Q * ((new_norm_Q + 1e-8) / (norm_Q + 1e-8)) I = torch.eye(self.block_size, device=self.oft_blocks.device).unsqueeze(0).repeat(self.num_blocks, 1, 1) block_R = torch.matmul(I + block_Q, (I - block_Q).inverse()) block_R_weighted = multiplier * block_R + (1 - multiplier) * I R = torch.block_diag(*block_R_weighted) return R def calc_updown(self, orig_weight): # this works # R = self.R self.R = self.get_weight(self.multiplier()) # sending R to device causes major deepfrying i.e. just doesn't work # R = self.R.to(orig_weight.device, dtype=orig_weight.dtype) # if orig_weight.dim() == 4: # weight = torch.einsum("oihw, op -> pihw", orig_weight, R) # else: # weight = torch.einsum("oi, op -> pi", orig_weight, R) updown = orig_weight @ self.R output_shape = self.oft_blocks.shape ## this works # updown = orig_weight @ R # output_shape = [orig_weight.size(0), R.size(1)] return self.finalize_updown(updown, orig_weight, output_shape) def forward(self, x, y=None): x = self.org_forward(x) if self.multiplier() == 0.0: return x #R = self.get_weight().to(x.device, dtype=x.dtype) R = self.R.to(x.device, dtype=x.dtype) if x.dim() == 4: x = x.permute(0, 2, 3, 1) x = torch.matmul(x, R) x = x.permute(0, 3, 1, 2) else: x = torch.matmul(x, R) return x