import importlib import logging import sys import warnings from threading import Thread from modules.timer import startup_timer def imports(): logging.getLogger("torch.distributed.nn").setLevel(logging.ERROR) # sshh... logging.getLogger("xformers").addFilter(lambda record: 'A matching Triton is not available' not in record.getMessage()) import torch # noqa: F401 startup_timer.record("import torch") import pytorch_lightning # noqa: F401 startup_timer.record("import torch") warnings.filterwarnings(action="ignore", category=DeprecationWarning, module="pytorch_lightning") warnings.filterwarnings(action="ignore", category=UserWarning, module="torchvision") import gradio # noqa: F401 startup_timer.record("import gradio") from modules import paths, timer, import_hook, errors # noqa: F401 startup_timer.record("setup paths") import ldm.modules.encoders.modules # noqa: F401 startup_timer.record("import ldm") import sgm.modules.encoders.modules # noqa: F401 startup_timer.record("import sgm") from modules import shared_init shared_init.initialize() startup_timer.record("initialize shared") from modules import processing, gradio_extensons, ui # noqa: F401 startup_timer.record("other imports") def check_versions(): from modules.shared_cmd_options import cmd_opts if not cmd_opts.skip_version_check: from modules import errors errors.check_versions() def initialize(): from modules import initialize_util initialize_util.fix_torch_version() initialize_util.fix_asyncio_event_loop_policy() initialize_util.validate_tls_options() initialize_util.configure_sigint_handler() initialize_util.configure_opts_onchange() from modules import modelloader modelloader.cleanup_models() from modules import sd_models sd_models.setup_model() startup_timer.record("setup SD model") from modules.shared_cmd_options import cmd_opts from modules import codeformer_model warnings.filterwarnings(action="ignore", category=UserWarning, module="torchvision.transforms.functional_tensor") codeformer_model.setup_model(cmd_opts.codeformer_models_path) startup_timer.record("setup codeformer") from modules import gfpgan_model gfpgan_model.setup_model(cmd_opts.gfpgan_models_path) startup_timer.record("setup gfpgan") initialize_rest(reload_script_modules=False) def initialize_rest(*, reload_script_modules=False): """ Called both from initialize() and when reloading the webui. """ from modules.shared_cmd_options import cmd_opts from modules import sd_samplers sd_samplers.set_samplers() startup_timer.record("set samplers") from modules import extensions extensions.list_extensions() startup_timer.record("list extensions") from modules import initialize_util initialize_util.restore_config_state_file() startup_timer.record("restore config state file") from modules import shared, upscaler, scripts if cmd_opts.ui_debug_mode: shared.sd_upscalers = upscaler.UpscalerLanczos().scalers scripts.load_scripts() return from modules import sd_models sd_models.list_models() startup_timer.record("list SD models") from modules import localization localization.list_localizations(cmd_opts.localizations_dir) startup_timer.record("list localizations") with startup_timer.subcategory("load scripts"): scripts.load_scripts() if reload_script_modules: for module in [module for name, module in sys.modules.items() if name.startswith("modules.ui")]: importlib.reload(module) startup_timer.record("reload script modules") from modules import modelloader modelloader.load_upscalers() startup_timer.record("load upscalers") from modules import sd_vae sd_vae.refresh_vae_list() startup_timer.record("refresh VAE") from modules import textual_inversion textual_inversion.textual_inversion.list_textual_inversion_templates() startup_timer.record("refresh textual inversion templates") from modules import script_callbacks, sd_hijack_optimizations, sd_hijack script_callbacks.on_list_optimizers(sd_hijack_optimizations.list_optimizers) sd_hijack.list_optimizers() startup_timer.record("scripts list_optimizers") from modules import sd_unet sd_unet.list_unets() startup_timer.record("scripts list_unets") def load_model(): """ Accesses shared.sd_model property to load model. After it's available, if it has been loaded before this access by some extension, its optimization may be None because the list of optimizaers has neet been filled by that time, so we apply optimization again. """ from modules import devices # Work around due to bug in torch_npu, revert me after fixed, @see https://gitee.com/ascend/pytorch/issues/I8KECW?from=project-issue if devices.npu_specific.has_npu: import torch torch.npu.set_device(0) shared.sd_model # noqa: B018 if sd_hijack.current_optimizer is None: sd_hijack.apply_optimizations() devices.first_time_calculation() if not shared.cmd_opts.skip_load_model_at_start: Thread(target=load_model).start() from modules import shared_items shared_items.reload_hypernetworks() startup_timer.record("reload hypernetworks") from modules import ui_extra_networks ui_extra_networks.initialize() ui_extra_networks.register_default_pages() from modules import extra_networks extra_networks.initialize() extra_networks.register_default_extra_networks() startup_timer.record("initialize extra networks")