mirror of
https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
synced 2025-01-06 15:15:05 +08:00
0dce0df1ee
Yep. Fix gfpgan_model_arch requirement(s). Add Upscaler base class, move from images. Add a lot of methods to Upscaler. Re-work all the child upscalers to be proper classes. Add BSRGAN scaler. Add ldsr_model_arch class, removing the dependency for another repo that just uses regular latent-diffusion stuff. Add one universal method that will always find and load new upscaler models without having to add new "setup_model" calls. Still need to add command line params, but that could probably be automated. Add a "self.scale" property to all Upscalers so the scalers themselves can do "things" in response to the requested upscaling size. Ensure LDSR doesn't get stuck in a longer loop of "upscale/downscale/upscale" as we try to reach the target upscale size. Add typehints for IDE sanity. PEP-8 improvements. Moar.
163 lines
5.1 KiB
Python
163 lines
5.1 KiB
Python
import glob
|
|
import os.path
|
|
import sys
|
|
from collections import namedtuple
|
|
import torch
|
|
from omegaconf import OmegaConf
|
|
|
|
|
|
from ldm.util import instantiate_from_config
|
|
|
|
from modules import shared, modelloader
|
|
from modules.paths import models_path
|
|
|
|
model_dir = "Stable-diffusion"
|
|
model_path = os.path.join(models_path, model_dir)
|
|
model_name = "sd-v1-4.ckpt"
|
|
model_url = "https://drive.yerf.org/wl/?id=EBfTrmcCCUAGaQBXVIj5lJmEhjoP1tgl&mode=grid&download=1"
|
|
|
|
CheckpointInfo = namedtuple("CheckpointInfo", ['filename', 'title', 'hash'])
|
|
checkpoints_list = {}
|
|
|
|
try:
|
|
# this silences the annoying "Some weights of the model checkpoint were not used when initializing..." message at start.
|
|
|
|
from transformers import logging
|
|
|
|
logging.set_verbosity_error()
|
|
except Exception:
|
|
pass
|
|
|
|
|
|
def modeltitle(path, h):
|
|
abspath = os.path.abspath(path)
|
|
|
|
if abspath.startswith(model_dir):
|
|
name = abspath.replace(model_dir, '')
|
|
else:
|
|
name = os.path.basename(path)
|
|
|
|
if name.startswith("\\") or name.startswith("/"):
|
|
name = name[1:]
|
|
|
|
return f'{name} [{h}]'
|
|
|
|
|
|
def setup_model(dirname):
|
|
global model_path
|
|
global model_name
|
|
global model_url
|
|
if not os.path.exists(model_path):
|
|
os.makedirs(model_path)
|
|
checkpoints_list.clear()
|
|
model_list = modelloader.load_models(model_path=model_path, model_url=model_url, command_path=dirname, download_name=model_name, ext_filter=".ckpt")
|
|
|
|
cmd_ckpt = shared.cmd_opts.ckpt
|
|
if os.path.exists(cmd_ckpt):
|
|
h = model_hash(cmd_ckpt)
|
|
title = modeltitle(cmd_ckpt, h)
|
|
checkpoints_list[title] = CheckpointInfo(cmd_ckpt, title, h)
|
|
elif cmd_ckpt is not None and cmd_ckpt != shared.default_sd_model_file:
|
|
print(f"Checkpoint in --ckpt argument not found (Possible it was moved to {model_path}: {cmd_ckpt}", file=sys.stderr)
|
|
|
|
for filename in model_list:
|
|
h = model_hash(filename)
|
|
title = modeltitle(filename, h)
|
|
checkpoints_list[title] = CheckpointInfo(filename, title, h)
|
|
|
|
|
|
def model_hash(filename):
|
|
try:
|
|
print(f"Opening: {filename}")
|
|
with open(filename, "rb") as file:
|
|
import hashlib
|
|
m = hashlib.sha256()
|
|
|
|
file.seek(0x100000)
|
|
m.update(file.read(0x10000))
|
|
return m.hexdigest()[0:8]
|
|
except FileNotFoundError:
|
|
return 'NOFILE'
|
|
|
|
|
|
def select_checkpoint():
|
|
model_checkpoint = shared.opts.sd_model_checkpoint
|
|
checkpoint_info = checkpoints_list.get(model_checkpoint, None)
|
|
if checkpoint_info is not None:
|
|
return checkpoint_info
|
|
|
|
if len(checkpoints_list) == 0:
|
|
print(f"No checkpoints found. When searching for checkpoints, looked at:", file=sys.stderr)
|
|
print(f" - file {os.path.abspath(shared.cmd_opts.ckpt)}", file=sys.stderr)
|
|
print(f" - directory {os.path.abspath(shared.cmd_opts.ckpt_dir)}", file=sys.stderr)
|
|
print(f"Can't run without a checkpoint. Find and place a .ckpt file into any of those locations. The program will exit.", file=sys.stderr)
|
|
exit(1)
|
|
|
|
checkpoint_info = next(iter(checkpoints_list.values()))
|
|
if model_checkpoint is not None:
|
|
print(f"Checkpoint {model_checkpoint} not found; loading fallback {checkpoint_info.title}", file=sys.stderr)
|
|
|
|
return checkpoint_info
|
|
|
|
|
|
def load_model_weights(model, checkpoint_file, sd_model_hash):
|
|
print(f"Loading weights [{sd_model_hash}] from {checkpoint_file}")
|
|
|
|
pl_sd = torch.load(checkpoint_file, map_location="cpu")
|
|
if "global_step" in pl_sd:
|
|
print(f"Global Step: {pl_sd['global_step']}")
|
|
sd = pl_sd["state_dict"]
|
|
|
|
model.load_state_dict(sd, strict=False)
|
|
|
|
if shared.cmd_opts.opt_channelslast:
|
|
model.to(memory_format=torch.channels_last)
|
|
|
|
if not shared.cmd_opts.no_half:
|
|
model.half()
|
|
|
|
model.sd_model_hash = sd_model_hash
|
|
model.sd_model_checkpint = checkpoint_file
|
|
|
|
|
|
def load_model():
|
|
from modules import lowvram, sd_hijack
|
|
checkpoint_info = select_checkpoint()
|
|
|
|
sd_config = OmegaConf.load(shared.cmd_opts.config)
|
|
sd_model = instantiate_from_config(sd_config.model)
|
|
load_model_weights(sd_model, checkpoint_info.filename, checkpoint_info.hash)
|
|
|
|
if shared.cmd_opts.lowvram or shared.cmd_opts.medvram:
|
|
lowvram.setup_for_low_vram(sd_model, shared.cmd_opts.medvram)
|
|
else:
|
|
sd_model.to(shared.device)
|
|
|
|
sd_hijack.model_hijack.hijack(sd_model)
|
|
|
|
sd_model.eval()
|
|
|
|
print(f"Model loaded.")
|
|
return sd_model
|
|
|
|
|
|
def reload_model_weights(sd_model, info=None):
|
|
from modules import lowvram, devices
|
|
checkpoint_info = info or select_checkpoint()
|
|
|
|
if sd_model.sd_model_checkpint == checkpoint_info.filename:
|
|
return
|
|
|
|
if shared.cmd_opts.lowvram or shared.cmd_opts.medvram:
|
|
lowvram.send_everything_to_cpu()
|
|
else:
|
|
sd_model.to(devices.cpu)
|
|
|
|
load_model_weights(sd_model, checkpoint_info.filename, checkpoint_info.hash)
|
|
|
|
if not shared.cmd_opts.lowvram and not shared.cmd_opts.medvram:
|
|
sd_model.to(devices.device)
|
|
|
|
print(f"Weights loaded.")
|
|
return sd_model
|