mirror of
https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
synced 2025-01-22 06:10:10 +08:00
253 lines
9.6 KiB
Python
253 lines
9.6 KiB
Python
import os
|
|
import gc
|
|
import time
|
|
|
|
import numpy as np
|
|
import torch
|
|
import torchvision
|
|
from PIL import Image
|
|
from einops import rearrange, repeat
|
|
from omegaconf import OmegaConf
|
|
import safetensors.torch
|
|
|
|
from ldm.models.diffusion.ddim import DDIMSampler
|
|
from ldm.util import instantiate_from_config, ismap
|
|
from modules import shared, sd_hijack
|
|
|
|
cached_ldsr_model: torch.nn.Module = None
|
|
|
|
|
|
# Create LDSR Class
|
|
class LDSR:
|
|
def load_model_from_config(self, half_attention):
|
|
global cached_ldsr_model
|
|
|
|
if shared.opts.ldsr_cached and cached_ldsr_model is not None:
|
|
print("Loading model from cache")
|
|
model: torch.nn.Module = cached_ldsr_model
|
|
else:
|
|
print(f"Loading model from {self.modelPath}")
|
|
_, extension = os.path.splitext(self.modelPath)
|
|
if extension.lower() == ".safetensors":
|
|
pl_sd = safetensors.torch.load_file(self.modelPath, device="cpu")
|
|
else:
|
|
pl_sd = torch.load(self.modelPath, map_location="cpu")
|
|
sd = pl_sd["state_dict"] if "state_dict" in pl_sd else pl_sd
|
|
config = OmegaConf.load(self.yamlPath)
|
|
config.model.target = "ldm.models.diffusion.ddpm.LatentDiffusionV1"
|
|
model: torch.nn.Module = instantiate_from_config(config.model)
|
|
model.load_state_dict(sd, strict=False)
|
|
model = model.to(shared.device)
|
|
if half_attention:
|
|
model = model.half()
|
|
if shared.cmd_opts.opt_channelslast:
|
|
model = model.to(memory_format=torch.channels_last)
|
|
|
|
sd_hijack.model_hijack.hijack(model) # apply optimization
|
|
model.eval()
|
|
|
|
if shared.opts.ldsr_cached:
|
|
cached_ldsr_model = model
|
|
|
|
return {"model": model}
|
|
|
|
def __init__(self, model_path, yaml_path):
|
|
self.modelPath = model_path
|
|
self.yamlPath = yaml_path
|
|
|
|
@staticmethod
|
|
def run(model, selected_path, custom_steps, eta):
|
|
example = get_cond(selected_path)
|
|
|
|
n_runs = 1
|
|
guider = None
|
|
ckwargs = None
|
|
ddim_use_x0_pred = False
|
|
temperature = 1.
|
|
eta = eta
|
|
custom_shape = None
|
|
|
|
height, width = example["image"].shape[1:3]
|
|
split_input = height >= 128 and width >= 128
|
|
|
|
if split_input:
|
|
ks = 128
|
|
stride = 64
|
|
vqf = 4 #
|
|
model.split_input_params = {"ks": (ks, ks), "stride": (stride, stride),
|
|
"vqf": vqf,
|
|
"patch_distributed_vq": True,
|
|
"tie_braker": False,
|
|
"clip_max_weight": 0.5,
|
|
"clip_min_weight": 0.01,
|
|
"clip_max_tie_weight": 0.5,
|
|
"clip_min_tie_weight": 0.01}
|
|
else:
|
|
if hasattr(model, "split_input_params"):
|
|
delattr(model, "split_input_params")
|
|
|
|
x_t = None
|
|
logs = None
|
|
for _ in range(n_runs):
|
|
if custom_shape is not None:
|
|
x_t = torch.randn(1, custom_shape[1], custom_shape[2], custom_shape[3]).to(model.device)
|
|
x_t = repeat(x_t, '1 c h w -> b c h w', b=custom_shape[0])
|
|
|
|
logs = make_convolutional_sample(example, model,
|
|
custom_steps=custom_steps,
|
|
eta=eta, quantize_x0=False,
|
|
custom_shape=custom_shape,
|
|
temperature=temperature, noise_dropout=0.,
|
|
corrector=guider, corrector_kwargs=ckwargs, x_T=x_t,
|
|
ddim_use_x0_pred=ddim_use_x0_pred
|
|
)
|
|
return logs
|
|
|
|
def super_resolution(self, image, steps=100, target_scale=2, half_attention=False):
|
|
model = self.load_model_from_config(half_attention)
|
|
|
|
# Run settings
|
|
diffusion_steps = int(steps)
|
|
eta = 1.0
|
|
|
|
|
|
gc.collect()
|
|
if torch.cuda.is_available:
|
|
torch.cuda.empty_cache()
|
|
|
|
im_og = image
|
|
width_og, height_og = im_og.size
|
|
# If we can adjust the max upscale size, then the 4 below should be our variable
|
|
down_sample_rate = target_scale / 4
|
|
wd = width_og * down_sample_rate
|
|
hd = height_og * down_sample_rate
|
|
width_downsampled_pre = int(np.ceil(wd))
|
|
height_downsampled_pre = int(np.ceil(hd))
|
|
|
|
if down_sample_rate != 1:
|
|
print(
|
|
f'Downsampling from [{width_og}, {height_og}] to [{width_downsampled_pre}, {height_downsampled_pre}]')
|
|
im_og = im_og.resize((width_downsampled_pre, height_downsampled_pre), Image.LANCZOS)
|
|
else:
|
|
print(f"Down sample rate is 1 from {target_scale} / 4 (Not downsampling)")
|
|
|
|
# pad width and height to multiples of 64, pads with the edge values of image to avoid artifacts
|
|
pad_w, pad_h = np.max(((2, 2), np.ceil(np.array(im_og.size) / 64).astype(int)), axis=0) * 64 - im_og.size
|
|
im_padded = Image.fromarray(np.pad(np.array(im_og), ((0, pad_h), (0, pad_w), (0, 0)), mode='edge'))
|
|
|
|
logs = self.run(model["model"], im_padded, diffusion_steps, eta)
|
|
|
|
sample = logs["sample"]
|
|
sample = sample.detach().cpu()
|
|
sample = torch.clamp(sample, -1., 1.)
|
|
sample = (sample + 1.) / 2. * 255
|
|
sample = sample.numpy().astype(np.uint8)
|
|
sample = np.transpose(sample, (0, 2, 3, 1))
|
|
a = Image.fromarray(sample[0])
|
|
|
|
# remove padding
|
|
a = a.crop((0, 0) + tuple(np.array(im_og.size) * 4))
|
|
|
|
del model
|
|
gc.collect()
|
|
if torch.cuda.is_available:
|
|
torch.cuda.empty_cache()
|
|
|
|
return a
|
|
|
|
|
|
def get_cond(selected_path):
|
|
example = {}
|
|
up_f = 4
|
|
c = selected_path.convert('RGB')
|
|
c = torch.unsqueeze(torchvision.transforms.ToTensor()(c), 0)
|
|
c_up = torchvision.transforms.functional.resize(c, size=[up_f * c.shape[2], up_f * c.shape[3]],
|
|
antialias=True)
|
|
c_up = rearrange(c_up, '1 c h w -> 1 h w c')
|
|
c = rearrange(c, '1 c h w -> 1 h w c')
|
|
c = 2. * c - 1.
|
|
|
|
c = c.to(shared.device)
|
|
example["LR_image"] = c
|
|
example["image"] = c_up
|
|
|
|
return example
|
|
|
|
|
|
@torch.no_grad()
|
|
def convsample_ddim(model, cond, steps, shape, eta=1.0, callback=None, normals_sequence=None,
|
|
mask=None, x0=None, quantize_x0=False, temperature=1., score_corrector=None,
|
|
corrector_kwargs=None, x_t=None
|
|
):
|
|
ddim = DDIMSampler(model)
|
|
bs = shape[0]
|
|
shape = shape[1:]
|
|
print(f"Sampling with eta = {eta}; steps: {steps}")
|
|
samples, intermediates = ddim.sample(steps, batch_size=bs, shape=shape, conditioning=cond, callback=callback,
|
|
normals_sequence=normals_sequence, quantize_x0=quantize_x0, eta=eta,
|
|
mask=mask, x0=x0, temperature=temperature, verbose=False,
|
|
score_corrector=score_corrector,
|
|
corrector_kwargs=corrector_kwargs, x_t=x_t)
|
|
|
|
return samples, intermediates
|
|
|
|
|
|
@torch.no_grad()
|
|
def make_convolutional_sample(batch, model, custom_steps=None, eta=1.0, quantize_x0=False, custom_shape=None, temperature=1., noise_dropout=0., corrector=None,
|
|
corrector_kwargs=None, x_T=None, ddim_use_x0_pred=False):
|
|
log = {}
|
|
|
|
z, c, x, xrec, xc = model.get_input(batch, model.first_stage_key,
|
|
return_first_stage_outputs=True,
|
|
force_c_encode=not (hasattr(model, 'split_input_params')
|
|
and model.cond_stage_key == 'coordinates_bbox'),
|
|
return_original_cond=True)
|
|
|
|
if custom_shape is not None:
|
|
z = torch.randn(custom_shape)
|
|
print(f"Generating {custom_shape[0]} samples of shape {custom_shape[1:]}")
|
|
|
|
z0 = None
|
|
|
|
log["input"] = x
|
|
log["reconstruction"] = xrec
|
|
|
|
if ismap(xc):
|
|
log["original_conditioning"] = model.to_rgb(xc)
|
|
if hasattr(model, 'cond_stage_key'):
|
|
log[model.cond_stage_key] = model.to_rgb(xc)
|
|
|
|
else:
|
|
log["original_conditioning"] = xc if xc is not None else torch.zeros_like(x)
|
|
if model.cond_stage_model:
|
|
log[model.cond_stage_key] = xc if xc is not None else torch.zeros_like(x)
|
|
if model.cond_stage_key == 'class_label':
|
|
log[model.cond_stage_key] = xc[model.cond_stage_key]
|
|
|
|
with model.ema_scope("Plotting"):
|
|
t0 = time.time()
|
|
|
|
sample, intermediates = convsample_ddim(model, c, steps=custom_steps, shape=z.shape,
|
|
eta=eta,
|
|
quantize_x0=quantize_x0, mask=None, x0=z0,
|
|
temperature=temperature, score_corrector=corrector, corrector_kwargs=corrector_kwargs,
|
|
x_t=x_T)
|
|
t1 = time.time()
|
|
|
|
if ddim_use_x0_pred:
|
|
sample = intermediates['pred_x0'][-1]
|
|
|
|
x_sample = model.decode_first_stage(sample)
|
|
|
|
try:
|
|
x_sample_noquant = model.decode_first_stage(sample, force_not_quantize=True)
|
|
log["sample_noquant"] = x_sample_noquant
|
|
log["sample_diff"] = torch.abs(x_sample_noquant - x_sample)
|
|
except Exception:
|
|
pass
|
|
|
|
log["sample"] = x_sample
|
|
log["time"] = t1 - t0
|
|
|
|
return log
|