mirror of
https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
synced 2025-01-18 20:30:13 +08:00
2582a0fd3b
add UI selection for cross attention optimization
433 lines
14 KiB
Python
433 lines
14 KiB
Python
import sys
|
|
import traceback
|
|
from collections import namedtuple
|
|
import inspect
|
|
from typing import Optional, Dict, Any
|
|
|
|
from fastapi import FastAPI
|
|
from gradio import Blocks
|
|
|
|
|
|
def report_exception(c, job):
|
|
print(f"Error executing callback {job} for {c.script}", file=sys.stderr)
|
|
print(traceback.format_exc(), file=sys.stderr)
|
|
|
|
|
|
class ImageSaveParams:
|
|
def __init__(self, image, p, filename, pnginfo):
|
|
self.image = image
|
|
"""the PIL image itself"""
|
|
|
|
self.p = p
|
|
"""p object with processing parameters; either StableDiffusionProcessing or an object with same fields"""
|
|
|
|
self.filename = filename
|
|
"""name of file that the image would be saved to"""
|
|
|
|
self.pnginfo = pnginfo
|
|
"""dictionary with parameters for image's PNG info data; infotext will have the key 'parameters'"""
|
|
|
|
|
|
class CFGDenoiserParams:
|
|
def __init__(self, x, image_cond, sigma, sampling_step, total_sampling_steps, text_cond, text_uncond):
|
|
self.x = x
|
|
"""Latent image representation in the process of being denoised"""
|
|
|
|
self.image_cond = image_cond
|
|
"""Conditioning image"""
|
|
|
|
self.sigma = sigma
|
|
"""Current sigma noise step value"""
|
|
|
|
self.sampling_step = sampling_step
|
|
"""Current Sampling step number"""
|
|
|
|
self.total_sampling_steps = total_sampling_steps
|
|
"""Total number of sampling steps planned"""
|
|
|
|
self.text_cond = text_cond
|
|
""" Encoder hidden states of text conditioning from prompt"""
|
|
|
|
self.text_uncond = text_uncond
|
|
""" Encoder hidden states of text conditioning from negative prompt"""
|
|
|
|
|
|
class CFGDenoisedParams:
|
|
def __init__(self, x, sampling_step, total_sampling_steps, inner_model):
|
|
self.x = x
|
|
"""Latent image representation in the process of being denoised"""
|
|
|
|
self.sampling_step = sampling_step
|
|
"""Current Sampling step number"""
|
|
|
|
self.total_sampling_steps = total_sampling_steps
|
|
"""Total number of sampling steps planned"""
|
|
|
|
self.inner_model = inner_model
|
|
"""Inner model reference used for denoising"""
|
|
|
|
|
|
class AfterCFGCallbackParams:
|
|
def __init__(self, x, sampling_step, total_sampling_steps):
|
|
self.x = x
|
|
"""Latent image representation in the process of being denoised"""
|
|
|
|
self.sampling_step = sampling_step
|
|
"""Current Sampling step number"""
|
|
|
|
self.total_sampling_steps = total_sampling_steps
|
|
"""Total number of sampling steps planned"""
|
|
|
|
|
|
class UiTrainTabParams:
|
|
def __init__(self, txt2img_preview_params):
|
|
self.txt2img_preview_params = txt2img_preview_params
|
|
|
|
|
|
class ImageGridLoopParams:
|
|
def __init__(self, imgs, cols, rows):
|
|
self.imgs = imgs
|
|
self.cols = cols
|
|
self.rows = rows
|
|
|
|
|
|
ScriptCallback = namedtuple("ScriptCallback", ["script", "callback"])
|
|
callback_map = dict(
|
|
callbacks_app_started=[],
|
|
callbacks_model_loaded=[],
|
|
callbacks_ui_tabs=[],
|
|
callbacks_ui_train_tabs=[],
|
|
callbacks_ui_settings=[],
|
|
callbacks_before_image_saved=[],
|
|
callbacks_image_saved=[],
|
|
callbacks_cfg_denoiser=[],
|
|
callbacks_cfg_denoised=[],
|
|
callbacks_cfg_after_cfg=[],
|
|
callbacks_before_component=[],
|
|
callbacks_after_component=[],
|
|
callbacks_image_grid=[],
|
|
callbacks_infotext_pasted=[],
|
|
callbacks_script_unloaded=[],
|
|
callbacks_before_ui=[],
|
|
callbacks_on_reload=[],
|
|
callbacks_list_optimizers=[],
|
|
)
|
|
|
|
|
|
def clear_callbacks():
|
|
for callback_list in callback_map.values():
|
|
callback_list.clear()
|
|
|
|
|
|
def app_started_callback(demo: Optional[Blocks], app: FastAPI):
|
|
for c in callback_map['callbacks_app_started']:
|
|
try:
|
|
c.callback(demo, app)
|
|
except Exception:
|
|
report_exception(c, 'app_started_callback')
|
|
|
|
|
|
def app_reload_callback():
|
|
for c in callback_map['callbacks_on_reload']:
|
|
try:
|
|
c.callback()
|
|
except Exception:
|
|
report_exception(c, 'callbacks_on_reload')
|
|
|
|
|
|
def model_loaded_callback(sd_model):
|
|
for c in callback_map['callbacks_model_loaded']:
|
|
try:
|
|
c.callback(sd_model)
|
|
except Exception:
|
|
report_exception(c, 'model_loaded_callback')
|
|
|
|
|
|
def ui_tabs_callback():
|
|
res = []
|
|
|
|
for c in callback_map['callbacks_ui_tabs']:
|
|
try:
|
|
res += c.callback() or []
|
|
except Exception:
|
|
report_exception(c, 'ui_tabs_callback')
|
|
|
|
return res
|
|
|
|
|
|
def ui_train_tabs_callback(params: UiTrainTabParams):
|
|
for c in callback_map['callbacks_ui_train_tabs']:
|
|
try:
|
|
c.callback(params)
|
|
except Exception:
|
|
report_exception(c, 'callbacks_ui_train_tabs')
|
|
|
|
|
|
def ui_settings_callback():
|
|
for c in callback_map['callbacks_ui_settings']:
|
|
try:
|
|
c.callback()
|
|
except Exception:
|
|
report_exception(c, 'ui_settings_callback')
|
|
|
|
|
|
def before_image_saved_callback(params: ImageSaveParams):
|
|
for c in callback_map['callbacks_before_image_saved']:
|
|
try:
|
|
c.callback(params)
|
|
except Exception:
|
|
report_exception(c, 'before_image_saved_callback')
|
|
|
|
|
|
def image_saved_callback(params: ImageSaveParams):
|
|
for c in callback_map['callbacks_image_saved']:
|
|
try:
|
|
c.callback(params)
|
|
except Exception:
|
|
report_exception(c, 'image_saved_callback')
|
|
|
|
|
|
def cfg_denoiser_callback(params: CFGDenoiserParams):
|
|
for c in callback_map['callbacks_cfg_denoiser']:
|
|
try:
|
|
c.callback(params)
|
|
except Exception:
|
|
report_exception(c, 'cfg_denoiser_callback')
|
|
|
|
|
|
def cfg_denoised_callback(params: CFGDenoisedParams):
|
|
for c in callback_map['callbacks_cfg_denoised']:
|
|
try:
|
|
c.callback(params)
|
|
except Exception:
|
|
report_exception(c, 'cfg_denoised_callback')
|
|
|
|
|
|
def cfg_after_cfg_callback(params: AfterCFGCallbackParams):
|
|
for c in callback_map['callbacks_cfg_after_cfg']:
|
|
try:
|
|
c.callback(params)
|
|
except Exception:
|
|
report_exception(c, 'cfg_after_cfg_callback')
|
|
|
|
|
|
def before_component_callback(component, **kwargs):
|
|
for c in callback_map['callbacks_before_component']:
|
|
try:
|
|
c.callback(component, **kwargs)
|
|
except Exception:
|
|
report_exception(c, 'before_component_callback')
|
|
|
|
|
|
def after_component_callback(component, **kwargs):
|
|
for c in callback_map['callbacks_after_component']:
|
|
try:
|
|
c.callback(component, **kwargs)
|
|
except Exception:
|
|
report_exception(c, 'after_component_callback')
|
|
|
|
|
|
def image_grid_callback(params: ImageGridLoopParams):
|
|
for c in callback_map['callbacks_image_grid']:
|
|
try:
|
|
c.callback(params)
|
|
except Exception:
|
|
report_exception(c, 'image_grid')
|
|
|
|
|
|
def infotext_pasted_callback(infotext: str, params: Dict[str, Any]):
|
|
for c in callback_map['callbacks_infotext_pasted']:
|
|
try:
|
|
c.callback(infotext, params)
|
|
except Exception:
|
|
report_exception(c, 'infotext_pasted')
|
|
|
|
|
|
def script_unloaded_callback():
|
|
for c in reversed(callback_map['callbacks_script_unloaded']):
|
|
try:
|
|
c.callback()
|
|
except Exception:
|
|
report_exception(c, 'script_unloaded')
|
|
|
|
|
|
def before_ui_callback():
|
|
for c in reversed(callback_map['callbacks_before_ui']):
|
|
try:
|
|
c.callback()
|
|
except Exception:
|
|
report_exception(c, 'before_ui')
|
|
|
|
|
|
def list_optimizers_callback():
|
|
res = []
|
|
|
|
for c in callback_map['callbacks_list_optimizers']:
|
|
try:
|
|
c.callback(res)
|
|
except Exception:
|
|
report_exception(c, 'list_optimizers')
|
|
|
|
return res
|
|
|
|
|
|
def add_callback(callbacks, fun):
|
|
stack = [x for x in inspect.stack() if x.filename != __file__]
|
|
filename = stack[0].filename if len(stack) > 0 else 'unknown file'
|
|
|
|
callbacks.append(ScriptCallback(filename, fun))
|
|
|
|
|
|
def remove_current_script_callbacks():
|
|
stack = [x for x in inspect.stack() if x.filename != __file__]
|
|
filename = stack[0].filename if len(stack) > 0 else 'unknown file'
|
|
if filename == 'unknown file':
|
|
return
|
|
for callback_list in callback_map.values():
|
|
for callback_to_remove in [cb for cb in callback_list if cb.script == filename]:
|
|
callback_list.remove(callback_to_remove)
|
|
|
|
|
|
def remove_callbacks_for_function(callback_func):
|
|
for callback_list in callback_map.values():
|
|
for callback_to_remove in [cb for cb in callback_list if cb.callback == callback_func]:
|
|
callback_list.remove(callback_to_remove)
|
|
|
|
|
|
def on_app_started(callback):
|
|
"""register a function to be called when the webui started, the gradio `Block` component and
|
|
fastapi `FastAPI` object are passed as the arguments"""
|
|
add_callback(callback_map['callbacks_app_started'], callback)
|
|
|
|
|
|
def on_before_reload(callback):
|
|
"""register a function to be called just before the server reloads."""
|
|
add_callback(callback_map['callbacks_on_reload'], callback)
|
|
|
|
|
|
def on_model_loaded(callback):
|
|
"""register a function to be called when the stable diffusion model is created; the model is
|
|
passed as an argument; this function is also called when the script is reloaded. """
|
|
add_callback(callback_map['callbacks_model_loaded'], callback)
|
|
|
|
|
|
def on_ui_tabs(callback):
|
|
"""register a function to be called when the UI is creating new tabs.
|
|
The function must either return a None, which means no new tabs to be added, or a list, where
|
|
each element is a tuple:
|
|
(gradio_component, title, elem_id)
|
|
|
|
gradio_component is a gradio component to be used for contents of the tab (usually gr.Blocks)
|
|
title is tab text displayed to user in the UI
|
|
elem_id is HTML id for the tab
|
|
"""
|
|
add_callback(callback_map['callbacks_ui_tabs'], callback)
|
|
|
|
|
|
def on_ui_train_tabs(callback):
|
|
"""register a function to be called when the UI is creating new tabs for the train tab.
|
|
Create your new tabs with gr.Tab.
|
|
"""
|
|
add_callback(callback_map['callbacks_ui_train_tabs'], callback)
|
|
|
|
|
|
def on_ui_settings(callback):
|
|
"""register a function to be called before UI settings are populated; add your settings
|
|
by using shared.opts.add_option(shared.OptionInfo(...)) """
|
|
add_callback(callback_map['callbacks_ui_settings'], callback)
|
|
|
|
|
|
def on_before_image_saved(callback):
|
|
"""register a function to be called before an image is saved to a file.
|
|
The callback is called with one argument:
|
|
- params: ImageSaveParams - parameters the image is to be saved with. You can change fields in this object.
|
|
"""
|
|
add_callback(callback_map['callbacks_before_image_saved'], callback)
|
|
|
|
|
|
def on_image_saved(callback):
|
|
"""register a function to be called after an image is saved to a file.
|
|
The callback is called with one argument:
|
|
- params: ImageSaveParams - parameters the image was saved with. Changing fields in this object does nothing.
|
|
"""
|
|
add_callback(callback_map['callbacks_image_saved'], callback)
|
|
|
|
|
|
def on_cfg_denoiser(callback):
|
|
"""register a function to be called in the kdiffussion cfg_denoiser method after building the inner model inputs.
|
|
The callback is called with one argument:
|
|
- params: CFGDenoiserParams - parameters to be passed to the inner model and sampling state details.
|
|
"""
|
|
add_callback(callback_map['callbacks_cfg_denoiser'], callback)
|
|
|
|
|
|
def on_cfg_denoised(callback):
|
|
"""register a function to be called in the kdiffussion cfg_denoiser method after building the inner model inputs.
|
|
The callback is called with one argument:
|
|
- params: CFGDenoisedParams - parameters to be passed to the inner model and sampling state details.
|
|
"""
|
|
add_callback(callback_map['callbacks_cfg_denoised'], callback)
|
|
|
|
|
|
def on_cfg_after_cfg(callback):
|
|
"""register a function to be called in the kdiffussion cfg_denoiser method after cfg calculations are completed.
|
|
The callback is called with one argument:
|
|
- params: AfterCFGCallbackParams - parameters to be passed to the script for post-processing after cfg calculation.
|
|
"""
|
|
add_callback(callback_map['callbacks_cfg_after_cfg'], callback)
|
|
|
|
|
|
def on_before_component(callback):
|
|
"""register a function to be called before a component is created.
|
|
The callback is called with arguments:
|
|
- component - gradio component that is about to be created.
|
|
- **kwargs - args to gradio.components.IOComponent.__init__ function
|
|
|
|
Use elem_id/label fields of kwargs to figure out which component it is.
|
|
This can be useful to inject your own components somewhere in the middle of vanilla UI.
|
|
"""
|
|
add_callback(callback_map['callbacks_before_component'], callback)
|
|
|
|
|
|
def on_after_component(callback):
|
|
"""register a function to be called after a component is created. See on_before_component for more."""
|
|
add_callback(callback_map['callbacks_after_component'], callback)
|
|
|
|
|
|
def on_image_grid(callback):
|
|
"""register a function to be called before making an image grid.
|
|
The callback is called with one argument:
|
|
- params: ImageGridLoopParams - parameters to be used for grid creation. Can be modified.
|
|
"""
|
|
add_callback(callback_map['callbacks_image_grid'], callback)
|
|
|
|
|
|
def on_infotext_pasted(callback):
|
|
"""register a function to be called before applying an infotext.
|
|
The callback is called with two arguments:
|
|
- infotext: str - raw infotext.
|
|
- result: Dict[str, any] - parsed infotext parameters.
|
|
"""
|
|
add_callback(callback_map['callbacks_infotext_pasted'], callback)
|
|
|
|
|
|
def on_script_unloaded(callback):
|
|
"""register a function to be called before the script is unloaded. Any hooks/hijacks/monkeying about that
|
|
the script did should be reverted here"""
|
|
|
|
add_callback(callback_map['callbacks_script_unloaded'], callback)
|
|
|
|
|
|
def on_before_ui(callback):
|
|
"""register a function to be called before the UI is created."""
|
|
|
|
add_callback(callback_map['callbacks_before_ui'], callback)
|
|
|
|
|
|
def on_list_optimizers(callback):
|
|
"""register a function to be called when UI is making a list of cross attention optimization options.
|
|
The function will be called with one argument, a list, and shall add objects of type modules.sd_hijack_optimizations.SdOptimization
|
|
to it."""
|
|
|
|
add_callback(callback_map['callbacks_list_optimizers'], callback)
|