mirror of
https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
synced 2025-01-17 03:40:14 +08:00
300 lines
14 KiB
Python
300 lines
14 KiB
Python
import torch
|
|
from modules import prompt_parser, devices, sd_samplers_common
|
|
|
|
from modules.shared import opts, state
|
|
import modules.shared as shared
|
|
from modules.script_callbacks import CFGDenoiserParams, cfg_denoiser_callback
|
|
from modules.script_callbacks import CFGDenoisedParams, cfg_denoised_callback
|
|
from modules.script_callbacks import AfterCFGCallbackParams, cfg_after_cfg_callback
|
|
|
|
|
|
def catenate_conds(conds):
|
|
if not isinstance(conds[0], dict):
|
|
return torch.cat(conds)
|
|
|
|
return {key: torch.cat([x[key] for x in conds]) for key in conds[0].keys()}
|
|
|
|
|
|
def subscript_cond(cond, a, b):
|
|
if not isinstance(cond, dict):
|
|
return cond[a:b]
|
|
|
|
return {key: vec[a:b] for key, vec in cond.items()}
|
|
|
|
|
|
def pad_cond(tensor, repeats, empty):
|
|
if not isinstance(tensor, dict):
|
|
return torch.cat([tensor, empty.repeat((tensor.shape[0], repeats, 1))], axis=1)
|
|
|
|
tensor['crossattn'] = pad_cond(tensor['crossattn'], repeats, empty)
|
|
return tensor
|
|
|
|
|
|
class CFGDenoiser(torch.nn.Module):
|
|
"""
|
|
Classifier free guidance denoiser. A wrapper for stable diffusion model (specifically for unet)
|
|
that can take a noisy picture and produce a noise-free picture using two guidances (prompts)
|
|
instead of one. Originally, the second prompt is just an empty string, but we use non-empty
|
|
negative prompt.
|
|
"""
|
|
|
|
def __init__(self, sampler):
|
|
super().__init__()
|
|
self.model_wrap = None
|
|
self.mask = None
|
|
self.nmask = None
|
|
self.init_latent = None
|
|
self.steps = None
|
|
"""number of steps as specified by user in UI"""
|
|
|
|
self.total_steps = None
|
|
"""expected number of calls to denoiser calculated from self.steps and specifics of the selected sampler"""
|
|
|
|
self.step = 0
|
|
self.image_cfg_scale = None
|
|
self.padded_cond_uncond = False
|
|
self.padded_cond_uncond_v0 = False
|
|
self.sampler = sampler
|
|
self.model_wrap = None
|
|
self.p = None
|
|
|
|
# NOTE: masking before denoising can cause the original latents to be oversmoothed
|
|
# as the original latents do not have noise
|
|
self.mask_before_denoising = False
|
|
|
|
@property
|
|
def inner_model(self):
|
|
raise NotImplementedError()
|
|
|
|
def combine_denoised(self, x_out, conds_list, uncond, cond_scale):
|
|
denoised_uncond = x_out[-uncond.shape[0]:]
|
|
denoised = torch.clone(denoised_uncond)
|
|
|
|
for i, conds in enumerate(conds_list):
|
|
for cond_index, weight in conds:
|
|
denoised[i] += (x_out[cond_index] - denoised_uncond[i]) * (weight * cond_scale)
|
|
|
|
return denoised
|
|
|
|
def combine_denoised_for_edit_model(self, x_out, cond_scale):
|
|
out_cond, out_img_cond, out_uncond = x_out.chunk(3)
|
|
denoised = out_uncond + cond_scale * (out_cond - out_img_cond) + self.image_cfg_scale * (out_img_cond - out_uncond)
|
|
|
|
return denoised
|
|
|
|
def get_pred_x0(self, x_in, x_out, sigma):
|
|
return x_out
|
|
|
|
def update_inner_model(self):
|
|
self.model_wrap = None
|
|
|
|
c, uc = self.p.get_conds()
|
|
self.sampler.sampler_extra_args['cond'] = c
|
|
self.sampler.sampler_extra_args['uncond'] = uc
|
|
|
|
def pad_cond_uncond(self, cond, uncond):
|
|
empty = shared.sd_model.cond_stage_model_empty_prompt
|
|
num_repeats = (cond.shape[1] - uncond.shape[1]) // empty.shape[1]
|
|
|
|
if num_repeats < 0:
|
|
cond = pad_cond(cond, -num_repeats, empty)
|
|
self.padded_cond_uncond = True
|
|
elif num_repeats > 0:
|
|
uncond = pad_cond(uncond, num_repeats, empty)
|
|
self.padded_cond_uncond = True
|
|
|
|
return cond, uncond
|
|
|
|
def pad_cond_uncond_v0(self, cond, uncond):
|
|
"""
|
|
Pads the 'uncond' tensor to match the shape of the 'cond' tensor.
|
|
|
|
If 'uncond' is a dictionary, it is assumed that the 'crossattn' key holds the tensor to be padded.
|
|
If 'uncond' is a tensor, it is padded directly.
|
|
|
|
If the number of columns in 'uncond' is less than the number of columns in 'cond', the last column of 'uncond'
|
|
is repeated to match the number of columns in 'cond'.
|
|
|
|
If the number of columns in 'uncond' is greater than the number of columns in 'cond', 'uncond' is truncated
|
|
to match the number of columns in 'cond'.
|
|
|
|
Args:
|
|
cond (torch.Tensor or DictWithShape): The condition tensor to match the shape of 'uncond'.
|
|
uncond (torch.Tensor or DictWithShape): The tensor to be padded, or a dictionary containing the tensor to be padded.
|
|
|
|
Returns:
|
|
tuple: A tuple containing the 'cond' tensor and the padded 'uncond' tensor.
|
|
|
|
Note:
|
|
This is the padding that was always used in DDIM before version 1.6.0
|
|
"""
|
|
|
|
is_dict_cond = isinstance(uncond, dict)
|
|
uncond_vec = uncond['crossattn'] if is_dict_cond else uncond
|
|
|
|
if uncond_vec.shape[1] < cond.shape[1]:
|
|
last_vector = uncond_vec[:, -1:]
|
|
last_vector_repeated = last_vector.repeat([1, cond.shape[1] - uncond_vec.shape[1], 1])
|
|
uncond_vec = torch.hstack([uncond_vec, last_vector_repeated])
|
|
self.padded_cond_uncond_v0 = True
|
|
elif uncond_vec.shape[1] > cond.shape[1]:
|
|
uncond_vec = uncond_vec[:, :cond.shape[1]]
|
|
self.padded_cond_uncond_v0 = True
|
|
|
|
if is_dict_cond:
|
|
uncond['crossattn'] = uncond_vec
|
|
else:
|
|
uncond = uncond_vec
|
|
|
|
return cond, uncond
|
|
|
|
def forward(self, x, sigma, uncond, cond, cond_scale, s_min_uncond, image_cond):
|
|
if state.interrupted or state.skipped:
|
|
raise sd_samplers_common.InterruptedException
|
|
|
|
if sd_samplers_common.apply_refiner(self, sigma):
|
|
cond = self.sampler.sampler_extra_args['cond']
|
|
uncond = self.sampler.sampler_extra_args['uncond']
|
|
|
|
# at self.image_cfg_scale == 1.0 produced results for edit model are the same as with normal sampling,
|
|
# so is_edit_model is set to False to support AND composition.
|
|
is_edit_model = shared.sd_model.cond_stage_key == "edit" and self.image_cfg_scale is not None and self.image_cfg_scale != 1.0
|
|
|
|
conds_list, tensor = prompt_parser.reconstruct_multicond_batch(cond, self.step)
|
|
uncond = prompt_parser.reconstruct_cond_batch(uncond, self.step)
|
|
|
|
assert not is_edit_model or all(len(conds) == 1 for conds in conds_list), "AND is not supported for InstructPix2Pix checkpoint (unless using Image CFG scale = 1.0)"
|
|
|
|
# If we use masks, blending between the denoised and original latent images occurs here.
|
|
def apply_blend(current_latent):
|
|
blended_latent = current_latent * self.nmask + self.init_latent * self.mask
|
|
|
|
if self.p.scripts is not None:
|
|
from modules import scripts
|
|
mba = scripts.MaskBlendArgs(current_latent, self.nmask, self.init_latent, self.mask, blended_latent, denoiser=self, sigma=sigma)
|
|
self.p.scripts.on_mask_blend(self.p, mba)
|
|
blended_latent = mba.blended_latent
|
|
|
|
return blended_latent
|
|
|
|
# Blend in the original latents (before)
|
|
if self.mask_before_denoising and self.mask is not None:
|
|
x = apply_blend(x)
|
|
|
|
batch_size = len(conds_list)
|
|
repeats = [len(conds_list[i]) for i in range(batch_size)]
|
|
|
|
if shared.sd_model.model.conditioning_key == "crossattn-adm":
|
|
image_uncond = torch.zeros_like(image_cond)
|
|
make_condition_dict = lambda c_crossattn, c_adm: {"c_crossattn": [c_crossattn], "c_adm": c_adm}
|
|
else:
|
|
image_uncond = image_cond
|
|
if isinstance(uncond, dict):
|
|
make_condition_dict = lambda c_crossattn, c_concat: {**c_crossattn, "c_concat": [c_concat]}
|
|
else:
|
|
make_condition_dict = lambda c_crossattn, c_concat: {"c_crossattn": [c_crossattn], "c_concat": [c_concat]}
|
|
|
|
if not is_edit_model:
|
|
x_in = torch.cat([torch.stack([x[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [x])
|
|
sigma_in = torch.cat([torch.stack([sigma[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [sigma])
|
|
image_cond_in = torch.cat([torch.stack([image_cond[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [image_uncond])
|
|
else:
|
|
x_in = torch.cat([torch.stack([x[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [x] + [x])
|
|
sigma_in = torch.cat([torch.stack([sigma[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [sigma] + [sigma])
|
|
image_cond_in = torch.cat([torch.stack([image_cond[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [image_uncond] + [torch.zeros_like(self.init_latent)])
|
|
|
|
denoiser_params = CFGDenoiserParams(x_in, image_cond_in, sigma_in, state.sampling_step, state.sampling_steps, tensor, uncond, self)
|
|
cfg_denoiser_callback(denoiser_params)
|
|
x_in = denoiser_params.x
|
|
image_cond_in = denoiser_params.image_cond
|
|
sigma_in = denoiser_params.sigma
|
|
tensor = denoiser_params.text_cond
|
|
uncond = denoiser_params.text_uncond
|
|
skip_uncond = False
|
|
|
|
# alternating uncond allows for higher thresholds without the quality loss normally expected from raising it
|
|
if self.step % 2 and s_min_uncond > 0 and sigma[0] < s_min_uncond and not is_edit_model:
|
|
skip_uncond = True
|
|
x_in = x_in[:-batch_size]
|
|
sigma_in = sigma_in[:-batch_size]
|
|
|
|
self.padded_cond_uncond = False
|
|
self.padded_cond_uncond_v0 = False
|
|
if shared.opts.pad_cond_uncond_v0 and tensor.shape[1] != uncond.shape[1]:
|
|
tensor, uncond = self.pad_cond_uncond_v0(tensor, uncond)
|
|
elif shared.opts.pad_cond_uncond and tensor.shape[1] != uncond.shape[1]:
|
|
tensor, uncond = self.pad_cond_uncond(tensor, uncond)
|
|
|
|
if tensor.shape[1] == uncond.shape[1] or skip_uncond:
|
|
if is_edit_model:
|
|
cond_in = catenate_conds([tensor, uncond, uncond])
|
|
elif skip_uncond:
|
|
cond_in = tensor
|
|
else:
|
|
cond_in = catenate_conds([tensor, uncond])
|
|
|
|
if shared.opts.batch_cond_uncond:
|
|
x_out = self.inner_model(x_in, sigma_in, cond=make_condition_dict(cond_in, image_cond_in))
|
|
else:
|
|
x_out = torch.zeros_like(x_in)
|
|
for batch_offset in range(0, x_out.shape[0], batch_size):
|
|
a = batch_offset
|
|
b = a + batch_size
|
|
x_out[a:b] = self.inner_model(x_in[a:b], sigma_in[a:b], cond=make_condition_dict(subscript_cond(cond_in, a, b), image_cond_in[a:b]))
|
|
else:
|
|
x_out = torch.zeros_like(x_in)
|
|
batch_size = batch_size*2 if shared.opts.batch_cond_uncond else batch_size
|
|
for batch_offset in range(0, tensor.shape[0], batch_size):
|
|
a = batch_offset
|
|
b = min(a + batch_size, tensor.shape[0])
|
|
|
|
if not is_edit_model:
|
|
c_crossattn = subscript_cond(tensor, a, b)
|
|
else:
|
|
c_crossattn = torch.cat([tensor[a:b]], uncond)
|
|
|
|
x_out[a:b] = self.inner_model(x_in[a:b], sigma_in[a:b], cond=make_condition_dict(c_crossattn, image_cond_in[a:b]))
|
|
|
|
if not skip_uncond:
|
|
x_out[-uncond.shape[0]:] = self.inner_model(x_in[-uncond.shape[0]:], sigma_in[-uncond.shape[0]:], cond=make_condition_dict(uncond, image_cond_in[-uncond.shape[0]:]))
|
|
|
|
denoised_image_indexes = [x[0][0] for x in conds_list]
|
|
if skip_uncond:
|
|
fake_uncond = torch.cat([x_out[i:i+1] for i in denoised_image_indexes])
|
|
x_out = torch.cat([x_out, fake_uncond]) # we skipped uncond denoising, so we put cond-denoised image to where the uncond-denoised image should be
|
|
|
|
denoised_params = CFGDenoisedParams(x_out, state.sampling_step, state.sampling_steps, self.inner_model)
|
|
cfg_denoised_callback(denoised_params)
|
|
|
|
devices.test_for_nans(x_out, "unet")
|
|
|
|
if is_edit_model:
|
|
denoised = self.combine_denoised_for_edit_model(x_out, cond_scale)
|
|
elif skip_uncond:
|
|
denoised = self.combine_denoised(x_out, conds_list, uncond, 1.0)
|
|
else:
|
|
denoised = self.combine_denoised(x_out, conds_list, uncond, cond_scale)
|
|
|
|
# Blend in the original latents (after)
|
|
if not self.mask_before_denoising and self.mask is not None:
|
|
denoised = apply_blend(denoised)
|
|
|
|
self.sampler.last_latent = self.get_pred_x0(torch.cat([x_in[i:i + 1] for i in denoised_image_indexes]), torch.cat([x_out[i:i + 1] for i in denoised_image_indexes]), sigma)
|
|
|
|
if opts.live_preview_content == "Prompt":
|
|
preview = self.sampler.last_latent
|
|
elif opts.live_preview_content == "Negative prompt":
|
|
preview = self.get_pred_x0(x_in[-uncond.shape[0]:], x_out[-uncond.shape[0]:], sigma)
|
|
else:
|
|
preview = self.get_pred_x0(torch.cat([x_in[i:i+1] for i in denoised_image_indexes]), torch.cat([denoised[i:i+1] for i in denoised_image_indexes]), sigma)
|
|
|
|
sd_samplers_common.store_latent(preview)
|
|
|
|
after_cfg_callback_params = AfterCFGCallbackParams(denoised, state.sampling_step, state.sampling_steps)
|
|
cfg_after_cfg_callback(after_cfg_callback_params)
|
|
denoised = after_cfg_callback_params.x
|
|
|
|
self.step += 1
|
|
return denoised
|
|
|