mirror of
https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
synced 2025-01-19 21:00:14 +08:00
325 lines
15 KiB
Python
325 lines
15 KiB
Python
from collections import deque
|
|
import torch
|
|
import inspect
|
|
import k_diffusion.sampling
|
|
from modules import devices, sd_samplers_common, sd_samplers_extra, sd_samplers_cfg_denoiser
|
|
|
|
from modules.processing import StableDiffusionProcessing
|
|
from modules.shared import opts, state
|
|
import modules.shared as shared
|
|
|
|
samplers_k_diffusion = [
|
|
('Euler a', 'sample_euler_ancestral', ['k_euler_a', 'k_euler_ancestral'], {"uses_ensd": True}),
|
|
('Euler', 'sample_euler', ['k_euler'], {}),
|
|
('LMS', 'sample_lms', ['k_lms'], {}),
|
|
('Heun', 'sample_heun', ['k_heun'], {"second_order": True}),
|
|
('DPM2', 'sample_dpm_2', ['k_dpm_2'], {'discard_next_to_last_sigma': True}),
|
|
('DPM2 a', 'sample_dpm_2_ancestral', ['k_dpm_2_a'], {'discard_next_to_last_sigma': True, "uses_ensd": True}),
|
|
('DPM++ 2S a', 'sample_dpmpp_2s_ancestral', ['k_dpmpp_2s_a'], {"uses_ensd": True, "second_order": True}),
|
|
('DPM++ 2M', 'sample_dpmpp_2m', ['k_dpmpp_2m'], {}),
|
|
('DPM++ SDE', 'sample_dpmpp_sde', ['k_dpmpp_sde'], {"second_order": True, "brownian_noise": True}),
|
|
('DPM++ 2M SDE', 'sample_dpmpp_2m_sde', ['k_dpmpp_2m_sde_ka'], {"brownian_noise": True}),
|
|
('DPM fast', 'sample_dpm_fast', ['k_dpm_fast'], {"uses_ensd": True}),
|
|
('DPM adaptive', 'sample_dpm_adaptive', ['k_dpm_ad'], {"uses_ensd": True}),
|
|
('LMS Karras', 'sample_lms', ['k_lms_ka'], {'scheduler': 'karras'}),
|
|
('DPM2 Karras', 'sample_dpm_2', ['k_dpm_2_ka'], {'scheduler': 'karras', 'discard_next_to_last_sigma': True, "uses_ensd": True, "second_order": True}),
|
|
('DPM2 a Karras', 'sample_dpm_2_ancestral', ['k_dpm_2_a_ka'], {'scheduler': 'karras', 'discard_next_to_last_sigma': True, "uses_ensd": True, "second_order": True}),
|
|
('DPM++ 2S a Karras', 'sample_dpmpp_2s_ancestral', ['k_dpmpp_2s_a_ka'], {'scheduler': 'karras', "uses_ensd": True, "second_order": True}),
|
|
('DPM++ 2M Karras', 'sample_dpmpp_2m', ['k_dpmpp_2m_ka'], {'scheduler': 'karras'}),
|
|
('DPM++ SDE Karras', 'sample_dpmpp_sde', ['k_dpmpp_sde_ka'], {'scheduler': 'karras', "second_order": True, "brownian_noise": True}),
|
|
('DPM++ 2M SDE Karras', 'sample_dpmpp_2m_sde', ['k_dpmpp_2m_sde_ka'], {'scheduler': 'karras', "brownian_noise": True}),
|
|
('DPM++ 2M SDE Exponential', 'sample_dpmpp_2m_sde', ['k_dpmpp_2m_sde_exp'], {'scheduler': 'exponential', "brownian_noise": True}),
|
|
('Restart', sd_samplers_extra.restart_sampler, ['restart'], {'scheduler': 'karras'}),
|
|
]
|
|
|
|
|
|
samplers_data_k_diffusion = [
|
|
sd_samplers_common.SamplerData(label, lambda model, funcname=funcname: KDiffusionSampler(funcname, model), aliases, options)
|
|
for label, funcname, aliases, options in samplers_k_diffusion
|
|
if callable(funcname) or hasattr(k_diffusion.sampling, funcname)
|
|
]
|
|
|
|
sampler_extra_params = {
|
|
'sample_euler': ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
|
'sample_heun': ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
|
'sample_dpm_2': ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
|
}
|
|
|
|
k_diffusion_samplers_map = {x.name: x for x in samplers_data_k_diffusion}
|
|
k_diffusion_scheduler = {
|
|
'Automatic': None,
|
|
'karras': k_diffusion.sampling.get_sigmas_karras,
|
|
'exponential': k_diffusion.sampling.get_sigmas_exponential,
|
|
'polyexponential': k_diffusion.sampling.get_sigmas_polyexponential
|
|
}
|
|
|
|
|
|
class TorchHijack:
|
|
def __init__(self, sampler_noises):
|
|
# Using a deque to efficiently receive the sampler_noises in the same order as the previous index-based
|
|
# implementation.
|
|
self.sampler_noises = deque(sampler_noises)
|
|
|
|
def __getattr__(self, item):
|
|
if item == 'randn_like':
|
|
return self.randn_like
|
|
|
|
if hasattr(torch, item):
|
|
return getattr(torch, item)
|
|
|
|
raise AttributeError(f"'{type(self).__name__}' object has no attribute '{item}'")
|
|
|
|
def randn_like(self, x):
|
|
if self.sampler_noises:
|
|
noise = self.sampler_noises.popleft()
|
|
if noise.shape == x.shape:
|
|
return noise
|
|
|
|
return devices.randn_like(x)
|
|
|
|
|
|
class KDiffusionSampler:
|
|
def __init__(self, funcname, sd_model):
|
|
denoiser = k_diffusion.external.CompVisVDenoiser if sd_model.parameterization == "v" else k_diffusion.external.CompVisDenoiser
|
|
|
|
self.model_wrap = denoiser(sd_model, quantize=shared.opts.enable_quantization)
|
|
self.funcname = funcname
|
|
self.func = funcname if callable(funcname) else getattr(k_diffusion.sampling, self.funcname)
|
|
self.extra_params = sampler_extra_params.get(funcname, [])
|
|
self.model_wrap_cfg = sd_samplers_cfg_denoiser.CFGDenoiser(self.model_wrap)
|
|
self.sampler_noises = None
|
|
self.stop_at = None
|
|
self.eta = None
|
|
self.config = None # set by the function calling the constructor
|
|
self.last_latent = None
|
|
self.s_min_uncond = None
|
|
|
|
# NOTE: These are also defined in the StableDiffusionProcessing class.
|
|
# They should have been here to begin with but we're going to
|
|
# leave that class __init__ signature alone.
|
|
self.s_churn = 0.0
|
|
self.s_tmin = 0.0
|
|
self.s_tmax = float('inf')
|
|
self.s_noise = 1.0
|
|
|
|
self.conditioning_key = sd_model.model.conditioning_key
|
|
|
|
def callback_state(self, d):
|
|
step = d['i']
|
|
latent = d["denoised"]
|
|
if opts.live_preview_content == "Combined":
|
|
sd_samplers_common.store_latent(latent)
|
|
self.last_latent = latent
|
|
|
|
if self.stop_at is not None and step > self.stop_at:
|
|
raise sd_samplers_common.InterruptedException
|
|
|
|
state.sampling_step = step
|
|
shared.total_tqdm.update()
|
|
|
|
def launch_sampling(self, steps, func):
|
|
state.sampling_steps = steps
|
|
state.sampling_step = 0
|
|
|
|
try:
|
|
return func()
|
|
except RecursionError:
|
|
print(
|
|
'Encountered RecursionError during sampling, returning last latent. '
|
|
'rho >5 with a polyexponential scheduler may cause this error. '
|
|
'You should try to use a smaller rho value instead.'
|
|
)
|
|
return self.last_latent
|
|
except sd_samplers_common.InterruptedException:
|
|
return self.last_latent
|
|
|
|
def number_of_needed_noises(self, p):
|
|
return p.steps
|
|
|
|
def initialize(self, p: StableDiffusionProcessing):
|
|
self.model_wrap_cfg.mask = p.mask if hasattr(p, 'mask') else None
|
|
self.model_wrap_cfg.nmask = p.nmask if hasattr(p, 'nmask') else None
|
|
self.model_wrap_cfg.step = 0
|
|
self.model_wrap_cfg.image_cfg_scale = getattr(p, 'image_cfg_scale', None)
|
|
self.eta = p.eta if p.eta is not None else opts.eta_ancestral
|
|
self.s_min_uncond = getattr(p, 's_min_uncond', 0.0)
|
|
|
|
k_diffusion.sampling.torch = TorchHijack(self.sampler_noises if self.sampler_noises is not None else [])
|
|
|
|
extra_params_kwargs = {}
|
|
for param_name in self.extra_params:
|
|
if hasattr(p, param_name) and param_name in inspect.signature(self.func).parameters:
|
|
extra_params_kwargs[param_name] = getattr(p, param_name)
|
|
|
|
if 'eta' in inspect.signature(self.func).parameters:
|
|
if self.eta != 1.0:
|
|
p.extra_generation_params["Eta"] = self.eta
|
|
|
|
extra_params_kwargs['eta'] = self.eta
|
|
|
|
if len(self.extra_params) > 0:
|
|
s_churn = getattr(opts, 's_churn', p.s_churn)
|
|
s_tmin = getattr(opts, 's_tmin', p.s_tmin)
|
|
s_tmax = getattr(opts, 's_tmax', p.s_tmax) or self.s_tmax # 0 = inf
|
|
s_noise = getattr(opts, 's_noise', p.s_noise)
|
|
|
|
if s_churn != self.s_churn:
|
|
extra_params_kwargs['s_churn'] = s_churn
|
|
p.s_churn = s_churn
|
|
p.extra_generation_params['Sigma churn'] = s_churn
|
|
if s_tmin != self.s_tmin:
|
|
extra_params_kwargs['s_tmin'] = s_tmin
|
|
p.s_tmin = s_tmin
|
|
p.extra_generation_params['Sigma tmin'] = s_tmin
|
|
if s_tmax != self.s_tmax:
|
|
extra_params_kwargs['s_tmax'] = s_tmax
|
|
p.s_tmax = s_tmax
|
|
p.extra_generation_params['Sigma tmax'] = s_tmax
|
|
if s_noise != self.s_noise:
|
|
extra_params_kwargs['s_noise'] = s_noise
|
|
p.s_noise = s_noise
|
|
p.extra_generation_params['Sigma noise'] = s_noise
|
|
|
|
return extra_params_kwargs
|
|
|
|
def get_sigmas(self, p, steps):
|
|
discard_next_to_last_sigma = self.config is not None and self.config.options.get('discard_next_to_last_sigma', False)
|
|
if opts.always_discard_next_to_last_sigma and not discard_next_to_last_sigma:
|
|
discard_next_to_last_sigma = True
|
|
p.extra_generation_params["Discard penultimate sigma"] = True
|
|
|
|
steps += 1 if discard_next_to_last_sigma else 0
|
|
|
|
if p.sampler_noise_scheduler_override:
|
|
sigmas = p.sampler_noise_scheduler_override(steps)
|
|
elif opts.k_sched_type != "Automatic":
|
|
m_sigma_min, m_sigma_max = (self.model_wrap.sigmas[0].item(), self.model_wrap.sigmas[-1].item())
|
|
sigma_min, sigma_max = (0.1, 10) if opts.use_old_karras_scheduler_sigmas else (m_sigma_min, m_sigma_max)
|
|
sigmas_kwargs = {
|
|
'sigma_min': sigma_min,
|
|
'sigma_max': sigma_max,
|
|
}
|
|
|
|
sigmas_func = k_diffusion_scheduler[opts.k_sched_type]
|
|
p.extra_generation_params["Schedule type"] = opts.k_sched_type
|
|
|
|
if opts.sigma_min != m_sigma_min and opts.sigma_min != 0:
|
|
sigmas_kwargs['sigma_min'] = opts.sigma_min
|
|
p.extra_generation_params["Schedule min sigma"] = opts.sigma_min
|
|
if opts.sigma_max != m_sigma_max and opts.sigma_max != 0:
|
|
sigmas_kwargs['sigma_max'] = opts.sigma_max
|
|
p.extra_generation_params["Schedule max sigma"] = opts.sigma_max
|
|
|
|
default_rho = 1. if opts.k_sched_type == "polyexponential" else 7.
|
|
|
|
if opts.k_sched_type != 'exponential' and opts.rho != 0 and opts.rho != default_rho:
|
|
sigmas_kwargs['rho'] = opts.rho
|
|
p.extra_generation_params["Schedule rho"] = opts.rho
|
|
|
|
sigmas = sigmas_func(n=steps, **sigmas_kwargs, device=shared.device)
|
|
elif self.config is not None and self.config.options.get('scheduler', None) == 'karras':
|
|
sigma_min, sigma_max = (0.1, 10) if opts.use_old_karras_scheduler_sigmas else (self.model_wrap.sigmas[0].item(), self.model_wrap.sigmas[-1].item())
|
|
|
|
sigmas = k_diffusion.sampling.get_sigmas_karras(n=steps, sigma_min=sigma_min, sigma_max=sigma_max, device=shared.device)
|
|
elif self.config is not None and self.config.options.get('scheduler', None) == 'exponential':
|
|
m_sigma_min, m_sigma_max = (self.model_wrap.sigmas[0].item(), self.model_wrap.sigmas[-1].item())
|
|
sigmas = k_diffusion.sampling.get_sigmas_exponential(n=steps, sigma_min=m_sigma_min, sigma_max=m_sigma_max, device=shared.device)
|
|
else:
|
|
sigmas = self.model_wrap.get_sigmas(steps)
|
|
|
|
if discard_next_to_last_sigma:
|
|
sigmas = torch.cat([sigmas[:-2], sigmas[-1:]])
|
|
|
|
return sigmas
|
|
|
|
def create_noise_sampler(self, x, sigmas, p):
|
|
"""For DPM++ SDE: manually create noise sampler to enable deterministic results across different batch sizes"""
|
|
if shared.opts.no_dpmpp_sde_batch_determinism:
|
|
return None
|
|
|
|
from k_diffusion.sampling import BrownianTreeNoiseSampler
|
|
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
|
|
current_iter_seeds = p.all_seeds[p.iteration * p.batch_size:(p.iteration + 1) * p.batch_size]
|
|
return BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=current_iter_seeds)
|
|
|
|
def sample_img2img(self, p, x, noise, conditioning, unconditional_conditioning, steps=None, image_conditioning=None):
|
|
steps, t_enc = sd_samplers_common.setup_img2img_steps(p, steps)
|
|
|
|
sigmas = self.get_sigmas(p, steps)
|
|
|
|
sigma_sched = sigmas[steps - t_enc - 1:]
|
|
xi = x + noise * sigma_sched[0]
|
|
|
|
extra_params_kwargs = self.initialize(p)
|
|
parameters = inspect.signature(self.func).parameters
|
|
|
|
if 'sigma_min' in parameters:
|
|
## last sigma is zero which isn't allowed by DPM Fast & Adaptive so taking value before last
|
|
extra_params_kwargs['sigma_min'] = sigma_sched[-2]
|
|
if 'sigma_max' in parameters:
|
|
extra_params_kwargs['sigma_max'] = sigma_sched[0]
|
|
if 'n' in parameters:
|
|
extra_params_kwargs['n'] = len(sigma_sched) - 1
|
|
if 'sigma_sched' in parameters:
|
|
extra_params_kwargs['sigma_sched'] = sigma_sched
|
|
if 'sigmas' in parameters:
|
|
extra_params_kwargs['sigmas'] = sigma_sched
|
|
|
|
if self.config.options.get('brownian_noise', False):
|
|
noise_sampler = self.create_noise_sampler(x, sigmas, p)
|
|
extra_params_kwargs['noise_sampler'] = noise_sampler
|
|
|
|
self.model_wrap_cfg.init_latent = x
|
|
self.last_latent = x
|
|
extra_args = {
|
|
'cond': conditioning,
|
|
'image_cond': image_conditioning,
|
|
'uncond': unconditional_conditioning,
|
|
'cond_scale': p.cfg_scale,
|
|
's_min_uncond': self.s_min_uncond
|
|
}
|
|
|
|
samples = self.launch_sampling(t_enc + 1, lambda: self.func(self.model_wrap_cfg, xi, extra_args=extra_args, disable=False, callback=self.callback_state, **extra_params_kwargs))
|
|
|
|
if self.model_wrap_cfg.padded_cond_uncond:
|
|
p.extra_generation_params["Pad conds"] = True
|
|
|
|
return samples
|
|
|
|
def sample(self, p, x, conditioning, unconditional_conditioning, steps=None, image_conditioning=None):
|
|
steps = steps or p.steps
|
|
|
|
sigmas = self.get_sigmas(p, steps)
|
|
|
|
x = x * sigmas[0]
|
|
|
|
extra_params_kwargs = self.initialize(p)
|
|
parameters = inspect.signature(self.func).parameters
|
|
|
|
if 'sigma_min' in parameters:
|
|
extra_params_kwargs['sigma_min'] = self.model_wrap.sigmas[0].item()
|
|
extra_params_kwargs['sigma_max'] = self.model_wrap.sigmas[-1].item()
|
|
if 'n' in parameters:
|
|
extra_params_kwargs['n'] = steps
|
|
else:
|
|
extra_params_kwargs['sigmas'] = sigmas
|
|
|
|
if self.config.options.get('brownian_noise', False):
|
|
noise_sampler = self.create_noise_sampler(x, sigmas, p)
|
|
extra_params_kwargs['noise_sampler'] = noise_sampler
|
|
|
|
self.last_latent = x
|
|
samples = self.launch_sampling(steps, lambda: self.func(self.model_wrap_cfg, x, extra_args={
|
|
'cond': conditioning,
|
|
'image_cond': image_conditioning,
|
|
'uncond': unconditional_conditioning,
|
|
'cond_scale': p.cfg_scale,
|
|
's_min_uncond': self.s_min_uncond
|
|
}, disable=False, callback=self.callback_state, **extra_params_kwargs))
|
|
|
|
if self.model_wrap_cfg.padded_cond_uncond:
|
|
p.extra_generation_params["Pad conds"] = True
|
|
|
|
return samples
|
|
|