mirror of
https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
synced 2025-01-06 15:15:05 +08:00
91bfc71261
SD upscale moved to scripts Batch processing script removed Batch processing added to main img2img and now works with scripts img2img page UI reworked to use tabs
622 lines
28 KiB
Python
622 lines
28 KiB
Python
import contextlib
|
|
import json
|
|
import math
|
|
import os
|
|
import sys
|
|
|
|
import torch
|
|
import numpy as np
|
|
from PIL import Image, ImageFilter, ImageOps
|
|
import random
|
|
import cv2
|
|
from skimage import exposure
|
|
|
|
import modules.sd_hijack
|
|
from modules import devices, prompt_parser, masking
|
|
from modules.sd_hijack import model_hijack
|
|
from modules.sd_samplers import samplers, samplers_for_img2img
|
|
from modules.shared import opts, cmd_opts, state
|
|
import modules.shared as shared
|
|
import modules.face_restoration
|
|
import modules.images as images
|
|
import modules.styles
|
|
|
|
|
|
# some of those options should not be changed at all because they would break the model, so I removed them from options.
|
|
opt_C = 4
|
|
opt_f = 8
|
|
|
|
|
|
def setup_color_correction(image):
|
|
correction_target = cv2.cvtColor(np.asarray(image.copy()), cv2.COLOR_RGB2LAB)
|
|
return correction_target
|
|
|
|
|
|
def apply_color_correction(correction, image):
|
|
image = Image.fromarray(cv2.cvtColor(exposure.match_histograms(
|
|
cv2.cvtColor(
|
|
np.asarray(image),
|
|
cv2.COLOR_RGB2LAB
|
|
),
|
|
correction,
|
|
channel_axis=2
|
|
), cv2.COLOR_LAB2RGB).astype("uint8"))
|
|
|
|
return image
|
|
|
|
|
|
class StableDiffusionProcessing:
|
|
def __init__(self, sd_model=None, outpath_samples=None, outpath_grids=None, prompt="", styles=None, seed=-1, subseed=-1, subseed_strength=0, seed_resize_from_h=-1, seed_resize_from_w=-1, seed_enable_extras=True, sampler_index=0, batch_size=1, n_iter=1, steps=50, cfg_scale=7.0, width=512, height=512, restore_faces=False, tiling=False, do_not_save_samples=False, do_not_save_grid=False, extra_generation_params=None, overlay_images=None, negative_prompt=None):
|
|
self.sd_model = sd_model
|
|
self.outpath_samples: str = outpath_samples
|
|
self.outpath_grids: str = outpath_grids
|
|
self.prompt: str = prompt
|
|
self.prompt_for_display: str = None
|
|
self.negative_prompt: str = (negative_prompt or "")
|
|
self.styles: str = styles
|
|
self.seed: int = seed
|
|
self.subseed: int = subseed
|
|
self.subseed_strength: float = subseed_strength
|
|
self.seed_resize_from_h: int = seed_resize_from_h
|
|
self.seed_resize_from_w: int = seed_resize_from_w
|
|
self.sampler_index: int = sampler_index
|
|
self.batch_size: int = batch_size
|
|
self.n_iter: int = n_iter
|
|
self.steps: int = steps
|
|
self.cfg_scale: float = cfg_scale
|
|
self.width: int = width
|
|
self.height: int = height
|
|
self.restore_faces: bool = restore_faces
|
|
self.tiling: bool = tiling
|
|
self.do_not_save_samples: bool = do_not_save_samples
|
|
self.do_not_save_grid: bool = do_not_save_grid
|
|
self.extra_generation_params: dict = extra_generation_params or {}
|
|
self.overlay_images = overlay_images
|
|
self.paste_to = None
|
|
self.color_corrections = None
|
|
self.denoising_strength: float = 0
|
|
|
|
if not seed_enable_extras:
|
|
self.subseed = -1
|
|
self.subseed_strength = 0
|
|
self.seed_resize_from_h = 0
|
|
self.seed_resize_from_w = 0
|
|
|
|
def init(self, all_prompts, all_seeds, all_subseeds):
|
|
pass
|
|
|
|
def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength):
|
|
raise NotImplementedError()
|
|
|
|
|
|
class Processed:
|
|
def __init__(self, p: StableDiffusionProcessing, images_list, seed=-1, info="", subseed=None, all_prompts=None, all_seeds=None, all_subseeds=None, index_of_first_image=0):
|
|
self.images = images_list
|
|
self.prompt = p.prompt
|
|
self.negative_prompt = p.negative_prompt
|
|
self.seed = seed
|
|
self.subseed = subseed
|
|
self.subseed_strength = p.subseed_strength
|
|
self.info = info
|
|
self.width = p.width
|
|
self.height = p.height
|
|
self.sampler_index = p.sampler_index
|
|
self.sampler = samplers[p.sampler_index].name
|
|
self.cfg_scale = p.cfg_scale
|
|
self.steps = p.steps
|
|
self.batch_size = p.batch_size
|
|
self.restore_faces = p.restore_faces
|
|
self.face_restoration_model = opts.face_restoration_model if p.restore_faces else None
|
|
self.sd_model_hash = shared.sd_model.sd_model_hash
|
|
self.seed_resize_from_w = p.seed_resize_from_w
|
|
self.seed_resize_from_h = p.seed_resize_from_h
|
|
self.denoising_strength = getattr(p, 'denoising_strength', None)
|
|
self.extra_generation_params = p.extra_generation_params
|
|
self.index_of_first_image = index_of_first_image
|
|
|
|
self.prompt = self.prompt if type(self.prompt) != list else self.prompt[0]
|
|
self.negative_prompt = self.negative_prompt if type(self.negative_prompt) != list else self.negative_prompt[0]
|
|
self.seed = int(self.seed if type(self.seed) != list else self.seed[0])
|
|
self.subseed = int(self.subseed if type(self.subseed) != list else self.subseed[0]) if self.subseed is not None else -1
|
|
|
|
self.all_prompts = all_prompts or [self.prompt]
|
|
self.all_seeds = all_seeds or [self.seed]
|
|
self.all_subseeds = all_subseeds or [self.subseed]
|
|
|
|
def js(self):
|
|
obj = {
|
|
"prompt": self.prompt,
|
|
"all_prompts": self.all_prompts,
|
|
"negative_prompt": self.negative_prompt,
|
|
"seed": self.seed,
|
|
"all_seeds": self.all_seeds,
|
|
"subseed": self.subseed,
|
|
"all_subseeds": self.all_subseeds,
|
|
"subseed_strength": self.subseed_strength,
|
|
"width": self.width,
|
|
"height": self.height,
|
|
"sampler_index": self.sampler_index,
|
|
"sampler": self.sampler,
|
|
"cfg_scale": self.cfg_scale,
|
|
"steps": self.steps,
|
|
"batch_size": self.batch_size,
|
|
"restore_faces": self.restore_faces,
|
|
"face_restoration_model": self.face_restoration_model,
|
|
"sd_model_hash": self.sd_model_hash,
|
|
"seed_resize_from_w": self.seed_resize_from_w,
|
|
"seed_resize_from_h": self.seed_resize_from_h,
|
|
"denoising_strength": self.denoising_strength,
|
|
"extra_generation_params": self.extra_generation_params,
|
|
"index_of_first_image": self.index_of_first_image,
|
|
}
|
|
|
|
return json.dumps(obj)
|
|
|
|
def infotext(self, p: StableDiffusionProcessing, index):
|
|
return create_infotext(p, self.all_prompts, self.all_seeds, self.all_subseeds, comments=[], position_in_batch=index % self.batch_size, iteration=index // self.batch_size)
|
|
|
|
|
|
# from https://discuss.pytorch.org/t/help-regarding-slerp-function-for-generative-model-sampling/32475/3
|
|
def slerp(val, low, high):
|
|
low_norm = low/torch.norm(low, dim=1, keepdim=True)
|
|
high_norm = high/torch.norm(high, dim=1, keepdim=True)
|
|
dot = (low_norm*high_norm).sum(1)
|
|
|
|
if dot.mean() > 0.9995:
|
|
return low * val + high * (1 - val)
|
|
|
|
omega = torch.acos(dot)
|
|
so = torch.sin(omega)
|
|
res = (torch.sin((1.0-val)*omega)/so).unsqueeze(1)*low + (torch.sin(val*omega)/so).unsqueeze(1) * high
|
|
return res
|
|
|
|
|
|
def create_random_tensors(shape, seeds, subseeds=None, subseed_strength=0.0, seed_resize_from_h=0, seed_resize_from_w=0, p=None):
|
|
xs = []
|
|
|
|
# if we have multiple seeds, this means we are working with batch size>1; this then
|
|
# enables the generation of additional tensors with noise that the sampler will use during its processing.
|
|
# Using those pre-generated tensors instead of simple torch.randn allows a batch with seeds [100, 101] to
|
|
# produce the same images as with two batches [100], [101].
|
|
if p is not None and p.sampler is not None and len(seeds) > 1 and opts.enable_batch_seeds:
|
|
sampler_noises = [[] for _ in range(p.sampler.number_of_needed_noises(p))]
|
|
else:
|
|
sampler_noises = None
|
|
|
|
for i, seed in enumerate(seeds):
|
|
noise_shape = shape if seed_resize_from_h <= 0 or seed_resize_from_w <= 0 else (shape[0], seed_resize_from_h//8, seed_resize_from_w//8)
|
|
|
|
subnoise = None
|
|
if subseeds is not None:
|
|
subseed = 0 if i >= len(subseeds) else subseeds[i]
|
|
|
|
subnoise = devices.randn(subseed, noise_shape)
|
|
|
|
# randn results depend on device; gpu and cpu get different results for same seed;
|
|
# the way I see it, it's better to do this on CPU, so that everyone gets same result;
|
|
# but the original script had it like this, so I do not dare change it for now because
|
|
# it will break everyone's seeds.
|
|
noise = devices.randn(seed, noise_shape)
|
|
|
|
if subnoise is not None:
|
|
noise = slerp(subseed_strength, noise, subnoise)
|
|
|
|
if noise_shape != shape:
|
|
x = devices.randn(seed, shape)
|
|
dx = (shape[2] - noise_shape[2]) // 2
|
|
dy = (shape[1] - noise_shape[1]) // 2
|
|
w = noise_shape[2] if dx >= 0 else noise_shape[2] + 2 * dx
|
|
h = noise_shape[1] if dy >= 0 else noise_shape[1] + 2 * dy
|
|
tx = 0 if dx < 0 else dx
|
|
ty = 0 if dy < 0 else dy
|
|
dx = max(-dx, 0)
|
|
dy = max(-dy, 0)
|
|
|
|
x[:, ty:ty+h, tx:tx+w] = noise[:, dy:dy+h, dx:dx+w]
|
|
noise = x
|
|
|
|
if sampler_noises is not None:
|
|
cnt = p.sampler.number_of_needed_noises(p)
|
|
|
|
for j in range(cnt):
|
|
sampler_noises[j].append(devices.randn_without_seed(tuple(noise_shape)))
|
|
|
|
xs.append(noise)
|
|
|
|
if sampler_noises is not None:
|
|
p.sampler.sampler_noises = [torch.stack(n).to(shared.device) for n in sampler_noises]
|
|
|
|
x = torch.stack(xs).to(shared.device)
|
|
return x
|
|
|
|
|
|
def fix_seed(p):
|
|
p.seed = int(random.randrange(4294967294)) if p.seed is None or p.seed == '' or p.seed == -1 else p.seed
|
|
p.subseed = int(random.randrange(4294967294)) if p.subseed is None or p.subseed == '' or p.subseed == -1 else p.subseed
|
|
|
|
|
|
def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments, iteration=0, position_in_batch=0):
|
|
index = position_in_batch + iteration * p.batch_size
|
|
|
|
generation_params = {
|
|
"Steps": p.steps,
|
|
"Sampler": samplers[p.sampler_index].name,
|
|
"CFG scale": p.cfg_scale,
|
|
"Seed": all_seeds[index],
|
|
"Face restoration": (opts.face_restoration_model if p.restore_faces else None),
|
|
"Size": f"{p.width}x{p.height}",
|
|
"Model hash": getattr(p, 'sd_model_hash', None if not opts.add_model_hash_to_info or not shared.sd_model.sd_model_hash else shared.sd_model.sd_model_hash),
|
|
"Batch size": (None if p.batch_size < 2 else p.batch_size),
|
|
"Batch pos": (None if p.batch_size < 2 else position_in_batch),
|
|
"Variation seed": (None if p.subseed_strength == 0 else all_subseeds[index]),
|
|
"Variation seed strength": (None if p.subseed_strength == 0 else p.subseed_strength),
|
|
"Seed resize from": (None if p.seed_resize_from_w == 0 or p.seed_resize_from_h == 0 else f"{p.seed_resize_from_w}x{p.seed_resize_from_h}"),
|
|
"Denoising strength": getattr(p, 'denoising_strength', None),
|
|
}
|
|
|
|
generation_params.update(p.extra_generation_params)
|
|
|
|
generation_params_text = ", ".join([k if k == v else f'{k}: {v}' for k, v in generation_params.items() if v is not None])
|
|
|
|
negative_prompt_text = "\nNegative prompt: " + p.negative_prompt if p.negative_prompt else ""
|
|
|
|
return f"{all_prompts[index]}{negative_prompt_text}\n{generation_params_text}".strip() + "".join(["\n\n" + x for x in comments])
|
|
|
|
|
|
def process_images(p: StableDiffusionProcessing) -> Processed:
|
|
"""this is the main loop that both txt2img and img2img use; it calls func_init once inside all the scopes and func_sample once per batch"""
|
|
|
|
if type(p.prompt) == list:
|
|
assert(len(p.prompt) > 0)
|
|
else:
|
|
assert p.prompt is not None
|
|
|
|
devices.torch_gc()
|
|
|
|
fix_seed(p)
|
|
|
|
os.makedirs(p.outpath_samples, exist_ok=True)
|
|
os.makedirs(p.outpath_grids, exist_ok=True)
|
|
|
|
modules.sd_hijack.model_hijack.apply_circular(p.tiling)
|
|
|
|
comments = {}
|
|
|
|
shared.prompt_styles.apply_styles(p)
|
|
|
|
if type(p.prompt) == list:
|
|
all_prompts = p.prompt
|
|
else:
|
|
all_prompts = p.batch_size * p.n_iter * [p.prompt]
|
|
|
|
if type(p.seed) == list:
|
|
all_seeds = p.seed
|
|
else:
|
|
all_seeds = [int(p.seed) + (x if p.subseed_strength == 0 else 0) for x in range(len(all_prompts))]
|
|
|
|
if type(p.subseed) == list:
|
|
all_subseeds = p.subseed
|
|
else:
|
|
all_subseeds = [int(p.subseed) + x for x in range(len(all_prompts))]
|
|
|
|
def infotext(iteration=0, position_in_batch=0):
|
|
return create_infotext(p, all_prompts, all_seeds, all_subseeds, comments, iteration, position_in_batch)
|
|
|
|
if os.path.exists(cmd_opts.embeddings_dir):
|
|
model_hijack.load_textual_inversion_embeddings(cmd_opts.embeddings_dir, p.sd_model)
|
|
|
|
output_images = []
|
|
precision_scope = torch.autocast if cmd_opts.precision == "autocast" else contextlib.nullcontext
|
|
ema_scope = (contextlib.nullcontext if cmd_opts.lowvram else p.sd_model.ema_scope)
|
|
with torch.no_grad(), precision_scope("cuda"), ema_scope():
|
|
p.init(all_prompts, all_seeds, all_subseeds)
|
|
|
|
if state.job_count == -1:
|
|
state.job_count = p.n_iter
|
|
|
|
for n in range(p.n_iter):
|
|
if state.interrupted:
|
|
break
|
|
|
|
prompts = all_prompts[n * p.batch_size:(n + 1) * p.batch_size]
|
|
seeds = all_seeds[n * p.batch_size:(n + 1) * p.batch_size]
|
|
subseeds = all_subseeds[n * p.batch_size:(n + 1) * p.batch_size]
|
|
|
|
if (len(prompts) == 0):
|
|
break
|
|
|
|
#uc = p.sd_model.get_learned_conditioning(len(prompts) * [p.negative_prompt])
|
|
#c = p.sd_model.get_learned_conditioning(prompts)
|
|
uc = prompt_parser.get_learned_conditioning(len(prompts) * [p.negative_prompt], p.steps)
|
|
c = prompt_parser.get_learned_conditioning(prompts, p.steps)
|
|
|
|
if len(model_hijack.comments) > 0:
|
|
for comment in model_hijack.comments:
|
|
comments[comment] = 1
|
|
|
|
if p.n_iter > 1:
|
|
shared.state.job = f"Batch {n+1} out of {p.n_iter}"
|
|
|
|
samples_ddim = p.sample(conditioning=c, unconditional_conditioning=uc, seeds=seeds, subseeds=subseeds, subseed_strength=p.subseed_strength)
|
|
if state.interrupted:
|
|
|
|
# if we are interruped, sample returns just noise
|
|
# use the image collected previously in sampler loop
|
|
samples_ddim = shared.state.current_latent
|
|
|
|
x_samples_ddim = p.sd_model.decode_first_stage(samples_ddim)
|
|
x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
|
|
|
|
if opts.filter_nsfw:
|
|
import modules.safety as safety
|
|
x_samples_ddim = modules.safety.censor_batch(x_samples_ddim)
|
|
|
|
for i, x_sample in enumerate(x_samples_ddim):
|
|
x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2)
|
|
x_sample = x_sample.astype(np.uint8)
|
|
|
|
if p.restore_faces:
|
|
if opts.save and not p.do_not_save_samples and opts.save_images_before_face_restoration:
|
|
images.save_image(Image.fromarray(x_sample), p.outpath_samples, "", seeds[i], prompts[i], opts.samples_format, info=infotext(n, i), p=p)
|
|
|
|
devices.torch_gc()
|
|
|
|
x_sample = modules.face_restoration.restore_faces(x_sample)
|
|
|
|
image = Image.fromarray(x_sample)
|
|
|
|
if p.color_corrections is not None and i < len(p.color_corrections):
|
|
image = apply_color_correction(p.color_corrections[i], image)
|
|
|
|
if p.overlay_images is not None and i < len(p.overlay_images):
|
|
overlay = p.overlay_images[i]
|
|
|
|
if p.paste_to is not None:
|
|
x, y, w, h = p.paste_to
|
|
base_image = Image.new('RGBA', (overlay.width, overlay.height))
|
|
image = images.resize_image(1, image, w, h)
|
|
base_image.paste(image, (x, y))
|
|
image = base_image
|
|
|
|
image = image.convert('RGBA')
|
|
image.alpha_composite(overlay)
|
|
image = image.convert('RGB')
|
|
|
|
if opts.samples_save and not p.do_not_save_samples:
|
|
images.save_image(image, p.outpath_samples, "", seeds[i], prompts[i], opts.samples_format, info=infotext(n, i), p=p)
|
|
|
|
output_images.append(image)
|
|
|
|
state.nextjob()
|
|
|
|
p.color_corrections = None
|
|
|
|
index_of_first_image = 0
|
|
unwanted_grid_because_of_img_count = len(output_images) < 2 and opts.grid_only_if_multiple
|
|
if (opts.return_grid or opts.grid_save) and not p.do_not_save_grid and not unwanted_grid_because_of_img_count:
|
|
grid = images.image_grid(output_images, p.batch_size)
|
|
|
|
if opts.return_grid:
|
|
output_images.insert(0, grid)
|
|
index_of_first_image = 1
|
|
|
|
if opts.grid_save:
|
|
images.save_image(grid, p.outpath_grids, "grid", all_seeds[0], all_prompts[0], opts.grid_format, info=infotext(), short_filename=not opts.grid_extended_filename, p=p)
|
|
|
|
devices.torch_gc()
|
|
return Processed(p, output_images, all_seeds[0], infotext(), subseed=all_subseeds[0], all_prompts=all_prompts, all_seeds=all_seeds, all_subseeds=all_subseeds, index_of_first_image=index_of_first_image)
|
|
|
|
|
|
class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
|
|
sampler = None
|
|
firstphase_width = 0
|
|
firstphase_height = 0
|
|
firstphase_width_truncated = 0
|
|
firstphase_height_truncated = 0
|
|
|
|
def __init__(self, enable_hr=False, scale_latent=True, denoising_strength=0.75, **kwargs):
|
|
super().__init__(**kwargs)
|
|
self.enable_hr = enable_hr
|
|
self.scale_latent = scale_latent
|
|
self.denoising_strength = denoising_strength
|
|
|
|
def init(self, all_prompts, all_seeds, all_subseeds):
|
|
if self.enable_hr:
|
|
if state.job_count == -1:
|
|
state.job_count = self.n_iter * 2
|
|
else:
|
|
state.job_count = state.job_count * 2
|
|
|
|
desired_pixel_count = 512 * 512
|
|
actual_pixel_count = self.width * self.height
|
|
scale = math.sqrt(desired_pixel_count / actual_pixel_count)
|
|
|
|
self.firstphase_width = math.ceil(scale * self.width / 64) * 64
|
|
self.firstphase_height = math.ceil(scale * self.height / 64) * 64
|
|
self.firstphase_width_truncated = int(scale * self.width)
|
|
self.firstphase_height_truncated = int(scale * self.height)
|
|
|
|
def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength):
|
|
self.sampler = samplers[self.sampler_index].constructor(self.sd_model)
|
|
|
|
if not self.enable_hr:
|
|
x = create_random_tensors([opt_C, self.height // opt_f, self.width // opt_f], seeds=seeds, subseeds=subseeds, subseed_strength=self.subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self)
|
|
samples = self.sampler.sample(self, x, conditioning, unconditional_conditioning)
|
|
return samples
|
|
|
|
x = create_random_tensors([opt_C, self.firstphase_height // opt_f, self.firstphase_width // opt_f], seeds=seeds, subseeds=subseeds, subseed_strength=self.subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self)
|
|
samples = self.sampler.sample(self, x, conditioning, unconditional_conditioning)
|
|
|
|
truncate_x = (self.firstphase_width - self.firstphase_width_truncated) // opt_f
|
|
truncate_y = (self.firstphase_height - self.firstphase_height_truncated) // opt_f
|
|
|
|
samples = samples[:, :, truncate_y//2:samples.shape[2]-truncate_y//2, truncate_x//2:samples.shape[3]-truncate_x//2]
|
|
|
|
if self.scale_latent:
|
|
samples = torch.nn.functional.interpolate(samples, size=(self.height // opt_f, self.width // opt_f), mode="bilinear")
|
|
else:
|
|
decoded_samples = self.sd_model.decode_first_stage(samples)
|
|
|
|
if opts.upscaler_for_hires_fix is None or opts.upscaler_for_hires_fix == "None":
|
|
decoded_samples = torch.nn.functional.interpolate(decoded_samples, size=(self.height, self.width), mode="bilinear")
|
|
else:
|
|
lowres_samples = torch.clamp((decoded_samples + 1.0) / 2.0, min=0.0, max=1.0)
|
|
|
|
batch_images = []
|
|
for i, x_sample in enumerate(lowres_samples):
|
|
x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2)
|
|
x_sample = x_sample.astype(np.uint8)
|
|
image = Image.fromarray(x_sample)
|
|
upscaler = [x for x in shared.sd_upscalers if x.name == opts.upscaler_for_hires_fix][0]
|
|
image = upscaler.upscale(image, self.width, self.height)
|
|
image = np.array(image).astype(np.float32) / 255.0
|
|
image = np.moveaxis(image, 2, 0)
|
|
batch_images.append(image)
|
|
|
|
decoded_samples = torch.from_numpy(np.array(batch_images))
|
|
decoded_samples = decoded_samples.to(shared.device)
|
|
decoded_samples = 2. * decoded_samples - 1.
|
|
|
|
samples = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(decoded_samples))
|
|
|
|
shared.state.nextjob()
|
|
|
|
self.sampler = samplers[self.sampler_index].constructor(self.sd_model)
|
|
noise = create_random_tensors(samples.shape[1:], seeds=seeds, subseeds=subseeds, subseed_strength=subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self)
|
|
samples = self.sampler.sample_img2img(self, samples, noise, conditioning, unconditional_conditioning, steps=self.steps)
|
|
|
|
return samples
|
|
|
|
|
|
class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
|
|
sampler = None
|
|
|
|
def __init__(self, init_images=None, resize_mode=0, denoising_strength=0.75, mask=None, mask_blur=4, inpainting_fill=0, inpaint_full_res=True, inpaint_full_res_padding=0, inpainting_mask_invert=0, **kwargs):
|
|
super().__init__(**kwargs)
|
|
|
|
self.init_images = init_images
|
|
self.resize_mode: int = resize_mode
|
|
self.denoising_strength: float = denoising_strength
|
|
self.init_latent = None
|
|
self.image_mask = mask
|
|
#self.image_unblurred_mask = None
|
|
self.latent_mask = None
|
|
self.mask_for_overlay = None
|
|
self.mask_blur = mask_blur
|
|
self.inpainting_fill = inpainting_fill
|
|
self.inpaint_full_res = inpaint_full_res
|
|
self.inpaint_full_res_padding = inpaint_full_res_padding
|
|
self.inpainting_mask_invert = inpainting_mask_invert
|
|
self.mask = None
|
|
self.nmask = None
|
|
|
|
def init(self, all_prompts, all_seeds, all_subseeds):
|
|
self.sampler = samplers_for_img2img[self.sampler_index].constructor(self.sd_model)
|
|
crop_region = None
|
|
|
|
if self.image_mask is not None:
|
|
self.image_mask = self.image_mask.convert('L')
|
|
|
|
if self.inpainting_mask_invert:
|
|
self.image_mask = ImageOps.invert(self.image_mask)
|
|
|
|
#self.image_unblurred_mask = self.image_mask
|
|
|
|
if self.mask_blur > 0:
|
|
self.image_mask = self.image_mask.filter(ImageFilter.GaussianBlur(self.mask_blur))
|
|
|
|
if self.inpaint_full_res:
|
|
self.mask_for_overlay = self.image_mask
|
|
mask = self.image_mask.convert('L')
|
|
crop_region = masking.get_crop_region(np.array(mask), self.inpaint_full_res_padding)
|
|
crop_region = masking.expand_crop_region(crop_region, self.width, self.height, mask.width, mask.height)
|
|
x1, y1, x2, y2 = crop_region
|
|
|
|
mask = mask.crop(crop_region)
|
|
self.image_mask = images.resize_image(2, mask, self.width, self.height)
|
|
self.paste_to = (x1, y1, x2-x1, y2-y1)
|
|
else:
|
|
self.image_mask = images.resize_image(self.resize_mode, self.image_mask, self.width, self.height)
|
|
np_mask = np.array(self.image_mask)
|
|
np_mask = np.clip((np_mask.astype(np.float32)) * 2, 0, 255).astype(np.uint8)
|
|
self.mask_for_overlay = Image.fromarray(np_mask)
|
|
|
|
self.overlay_images = []
|
|
|
|
latent_mask = self.latent_mask if self.latent_mask is not None else self.image_mask
|
|
|
|
add_color_corrections = opts.img2img_color_correction and self.color_corrections is None
|
|
if add_color_corrections:
|
|
self.color_corrections = []
|
|
imgs = []
|
|
for img in self.init_images:
|
|
image = img.convert("RGB")
|
|
|
|
if crop_region is None:
|
|
image = images.resize_image(self.resize_mode, image, self.width, self.height)
|
|
|
|
if self.image_mask is not None:
|
|
image_masked = Image.new('RGBa', (image.width, image.height))
|
|
image_masked.paste(image.convert("RGBA").convert("RGBa"), mask=ImageOps.invert(self.mask_for_overlay.convert('L')))
|
|
|
|
self.overlay_images.append(image_masked.convert('RGBA'))
|
|
|
|
if crop_region is not None:
|
|
image = image.crop(crop_region)
|
|
image = images.resize_image(2, image, self.width, self.height)
|
|
|
|
if self.image_mask is not None:
|
|
if self.inpainting_fill != 1:
|
|
image = masking.fill(image, latent_mask)
|
|
|
|
if add_color_corrections:
|
|
self.color_corrections.append(setup_color_correction(image))
|
|
|
|
image = np.array(image).astype(np.float32) / 255.0
|
|
image = np.moveaxis(image, 2, 0)
|
|
|
|
imgs.append(image)
|
|
|
|
if len(imgs) == 1:
|
|
batch_images = np.expand_dims(imgs[0], axis=0).repeat(self.batch_size, axis=0)
|
|
if self.overlay_images is not None:
|
|
self.overlay_images = self.overlay_images * self.batch_size
|
|
elif len(imgs) <= self.batch_size:
|
|
self.batch_size = len(imgs)
|
|
batch_images = np.array(imgs)
|
|
else:
|
|
raise RuntimeError(f"bad number of images passed: {len(imgs)}; expecting {self.batch_size} or less")
|
|
|
|
image = torch.from_numpy(batch_images)
|
|
image = 2. * image - 1.
|
|
image = image.to(shared.device)
|
|
|
|
self.init_latent = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(image))
|
|
|
|
if self.image_mask is not None:
|
|
init_mask = latent_mask
|
|
latmask = init_mask.convert('RGB').resize((self.init_latent.shape[3], self.init_latent.shape[2]))
|
|
latmask = np.moveaxis(np.array(latmask, dtype=np.float32), 2, 0) / 255
|
|
latmask = latmask[0]
|
|
latmask = np.around(latmask)
|
|
latmask = np.tile(latmask[None], (4, 1, 1))
|
|
|
|
self.mask = torch.asarray(1.0 - latmask).to(shared.device).type(self.sd_model.dtype)
|
|
self.nmask = torch.asarray(latmask).to(shared.device).type(self.sd_model.dtype)
|
|
|
|
# this needs to be fixed to be done in sample() using actual seeds for batches
|
|
if self.inpainting_fill == 2:
|
|
self.init_latent = self.init_latent * self.mask + create_random_tensors(self.init_latent.shape[1:], all_seeds[0:self.init_latent.shape[0]]) * self.nmask
|
|
elif self.inpainting_fill == 3:
|
|
self.init_latent = self.init_latent * self.mask
|
|
|
|
def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength):
|
|
x = create_random_tensors([opt_C, self.height // opt_f, self.width // opt_f], seeds=seeds, subseeds=subseeds, subseed_strength=self.subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self)
|
|
|
|
samples = self.sampler.sample_img2img(self, self.init_latent, x, conditioning, unconditional_conditioning)
|
|
|
|
if self.mask is not None:
|
|
samples = samples * self.nmask + self.init_latent * self.mask
|
|
|
|
return samples
|