mirror of
https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
synced 2025-04-04 19:49:01 +08:00
553 lines
20 KiB
Python
553 lines
20 KiB
Python
"""
|
||
Txt2Img Prompt Optimizer (Multilingual)
|
||
|
||
This script optimizes text prompts for Stable Diffusion image generation.
|
||
It can detect non-English prompts, translate them to English, and then optimize them
|
||
for better image generation results.
|
||
|
||
The script uses a LangGraph workflow to manage the optimization process, with nodes for
|
||
language detection, translation, and optimization. If LangGraph is not available,
|
||
it falls back to a simplified workflow.
|
||
"""
|
||
|
||
from modules import scripts
|
||
from modules.processing import StableDiffusionProcessingTxt2Img
|
||
import os
|
||
from dotenv import load_dotenv
|
||
import requests
|
||
from typing import Dict, Literal, TypedDict, Optional, Any
|
||
|
||
# Try to import LangGraph related libraries
|
||
try:
|
||
from langgraph.graph import StateGraph, END
|
||
LANGGRAPH_AVAILABLE = True
|
||
except ImportError:
|
||
LANGGRAPH_AVAILABLE = False
|
||
print("Warning: LangGraph library not installed, using simplified implementation")
|
||
print("Can be installed via 'pip install langgraph'")
|
||
|
||
# Try to import Pydantic
|
||
try:
|
||
from pydantic import BaseModel, Field
|
||
PYDANTIC_AVAILABLE = True
|
||
except ImportError:
|
||
PYDANTIC_AVAILABLE = False
|
||
print("Warning: Pydantic library not installed, using simplified implementation")
|
||
print("Can be installed via 'pip install pydantic'")
|
||
|
||
# Load environment variables
|
||
load_dotenv()
|
||
|
||
# Get DeepSeek API key
|
||
DEEPSEEK_API_KEY = os.getenv("DEEPSEEK_API_KEY")
|
||
|
||
# Define state type
|
||
class PromptState(TypedDict):
|
||
original_prompt: str
|
||
language: str
|
||
translated_prompt: Optional[str]
|
||
optimized_prompt: Optional[str]
|
||
error: Optional[str]
|
||
|
||
class PromptTemplate(BaseModel):
|
||
"""Prompt template for specific tasks"""
|
||
name: str = Field(..., description="Template name")
|
||
content: str = Field(..., description="Template content")
|
||
|
||
def __str__(self) -> str:
|
||
return self.content.strip()
|
||
|
||
class PromptTemplates(BaseModel):
|
||
"""Collection of prompt templates"""
|
||
txt2img_optimizer: PromptTemplate = Field(
|
||
default=PromptTemplate(
|
||
name="Stable Diffusion Prompt Optimizer",
|
||
content="""\
|
||
You are an expert prompt engineer for Stable Diffusion image generation with deep knowledge of how SD models interpret text.
|
||
|
||
Your task is to transform standard prompts into highly optimized versions that produce exceptional quality images. Follow these guidelines:
|
||
|
||
1. Maintain the original subject and core concept
|
||
2. Enhance with precise descriptive adjectives and specific details
|
||
3. Add appropriate artistic style references (artists, movements, platforms)
|
||
4. Incorporate quality-boosting terms (masterpiece, best quality, highly detailed)
|
||
5. Apply technical enhancements through brackets for emphasis:
|
||
- Use (term) for 1.1x emphasis
|
||
- Use ((term)) for 1.2x emphasis
|
||
- Use [term] for 0.9x emphasis
|
||
- Use [[term]] for 0.8x emphasis
|
||
- Use :1.x for specific weighting
|
||
|
||
6. Structure prompts effectively:
|
||
- Main subject first with strongest emphasis
|
||
- Scene details and environment
|
||
- Style, quality, and technical terms last
|
||
|
||
Return ONLY the optimized prompt without explanations or commentary. Preserve all special formatting like (), [], {}, :1.2, etc. from the original prompt.
|
||
"""
|
||
),
|
||
description="Stable Diffusion prompt optimization template"
|
||
)
|
||
|
||
language_detector: PromptTemplate = Field(
|
||
default=PromptTemplate(
|
||
name="Language Detector",
|
||
content="""\
|
||
You are a language detection expert. Your task is to identify if the given text is in English or not.
|
||
|
||
Analyze the provided text and determine if it's in English. Return ONLY 'yes' if the text is primarily in English, or 'no' if it's primarily in another language.
|
||
|
||
If the text is primarily in English or contains mostly English words with a few non-English terms, return 'yes'.
|
||
If the text is primarily in another language, return 'no'.
|
||
|
||
Return ONLY 'yes' or 'no' without any explanations or additional text.
|
||
"""
|
||
),
|
||
description="Language detection template"
|
||
)
|
||
|
||
universal_translator: PromptTemplate = Field(
|
||
default=PromptTemplate(
|
||
name="Universal Translator",
|
||
content="""\
|
||
You are a professional translator specializing in translating text to English for image generation.
|
||
|
||
Your task is to accurately translate prompts from any language to English while preserving the original meaning and intent. Follow these guidelines:
|
||
|
||
1. Maintain the core subject and concept of the original prompt
|
||
2. Preserve any special formatting like (), [], {}, :1.2, etc.
|
||
3. Translate cultural-specific terms appropriately for an international audience
|
||
4. Keep artistic style references intact
|
||
5. Ensure the translation is natural and fluent in English
|
||
|
||
Return ONLY the translated English prompt without explanations or commentary.
|
||
"""
|
||
),
|
||
description="Universal translation template"
|
||
)
|
||
|
||
def get(self, template_name: str) -> PromptTemplate:
|
||
"""Get template by name"""
|
||
if hasattr(self, template_name):
|
||
return getattr(self, template_name)
|
||
raise ValueError(f"Template not found: {template_name}")
|
||
|
||
# Create template instance
|
||
TEMPLATES = PromptTemplates()
|
||
|
||
|
||
# Helper function for simple language detection
|
||
def simple_language_detection(prompt: str) -> str:
|
||
"""Simple language detection based on ASCII character ratio"""
|
||
if not prompt:
|
||
return "unknown"
|
||
|
||
non_ascii_chars = 0
|
||
for char in prompt:
|
||
if ord(char) > 127:
|
||
non_ascii_chars += 1
|
||
|
||
language = "english" if (non_ascii_chars / len(prompt) < 0.3) else "other"
|
||
print(f"Simple language detection: Prompt '{prompt}' detected as '{'English' if language == 'english' else 'Non-English'}'")
|
||
return language
|
||
|
||
# Agent functions
|
||
def router_agent(state: PromptState) -> Dict[str, Any]:
|
||
"""Determine the language of the prompt"""
|
||
prompt = state["original_prompt"]
|
||
|
||
if not prompt:
|
||
return {"language": "unknown"}
|
||
|
||
try:
|
||
headers = {
|
||
"Content-Type": "application/json",
|
||
"Authorization": f"Bearer {DEEPSEEK_API_KEY}"
|
||
}
|
||
|
||
# Use predefined language detection template
|
||
detector_template = TEMPLATES.get("language_detector")
|
||
|
||
payload = {
|
||
"model": "deepseek-chat",
|
||
"messages": [
|
||
{"role": "system", "content": detector_template.content},
|
||
{"role": "user", "content": f"Is this text in English? {prompt}"}
|
||
],
|
||
"temperature": 0.1,
|
||
"max_tokens": 10
|
||
}
|
||
|
||
response = requests.post(
|
||
"https://api.deepseek.com/v1/chat/completions",
|
||
headers=headers,
|
||
json=payload
|
||
)
|
||
|
||
if response.status_code == 200:
|
||
result = response.json()
|
||
is_english = result["choices"][0]["message"]["content"].strip().lower() == "yes"
|
||
language = "english" if is_english else "other"
|
||
print(f"RouterAgent: Prompt '{prompt}' detected as '{'English' if language == 'english' else 'Non-English'}'")
|
||
return {"language": language}
|
||
else:
|
||
print(f"RouterAgent: Language detection failed - {response.status_code} - {response.text}")
|
||
# Fallback to simple detection
|
||
language = simple_language_detection(prompt)
|
||
return {"language": language}
|
||
except Exception as e:
|
||
print(f"RouterAgent: Language detection failed - {str(e)}")
|
||
# Fallback to simple detection
|
||
language = simple_language_detection(prompt)
|
||
return {"language": language}
|
||
|
||
def translator_agent(state: PromptState) -> Dict[str, Any]:
|
||
"""Translate non-English prompts to English"""
|
||
prompt = state["original_prompt"]
|
||
language = state["language"]
|
||
|
||
if language == "english":
|
||
print("TranslatorAgent: Prompt is already in English, no translation needed")
|
||
return {"translated_prompt": prompt}
|
||
|
||
if not DEEPSEEK_API_KEY:
|
||
print("TranslatorAgent: Warning - DEEPSEEK_API_KEY not set, using simplified translation")
|
||
return {"error": "DEEPSEEK_API_KEY not set", "translated_prompt": prompt}
|
||
|
||
try:
|
||
headers = {
|
||
"Content-Type": "application/json",
|
||
"Authorization": f"Bearer {DEEPSEEK_API_KEY}"
|
||
}
|
||
|
||
# Use predefined universal translation template
|
||
translator_template = TEMPLATES.get("universal_translator")
|
||
|
||
payload = {
|
||
"model": "deepseek-chat",
|
||
"messages": [
|
||
{"role": "system", "content": translator_template.content},
|
||
{"role": "user", "content": f"Translate this prompt from {language} to English: {prompt}"}
|
||
],
|
||
"temperature": 0.1,
|
||
"max_tokens": 1000
|
||
}
|
||
|
||
response = requests.post(
|
||
"https://api.deepseek.com/v1/chat/completions",
|
||
headers=headers,
|
||
json=payload
|
||
)
|
||
|
||
if response.status_code == 200:
|
||
result = response.json()
|
||
translated_text = result["choices"][0]["message"]["content"].strip()
|
||
print(f"TranslatorAgent: Translation result - '{translated_text}'")
|
||
return {"translated_prompt": translated_text}
|
||
else:
|
||
print(f"TranslatorAgent: Translation failed - {response.status_code} - {response.text}")
|
||
return {"error": f"Translation API error: {response.status_code}", "translated_prompt": prompt}
|
||
except Exception as e:
|
||
print(f"TranslatorAgent: Translation failed - {str(e)}")
|
||
return {"error": f"Translation error: {str(e)}", "translated_prompt": prompt}
|
||
|
||
def optimizer_agent(state: PromptState) -> Dict[str, Any]:
|
||
"""Optimize English prompts"""
|
||
# Determine the prompt to optimize
|
||
prompt_to_optimize = state.get("translated_prompt") or state["original_prompt"]
|
||
|
||
if not DEEPSEEK_API_KEY:
|
||
print("OptimizerAgent: Warning - DEEPSEEK_API_KEY not set, using local optimization")
|
||
optimized = local_optimize(prompt_to_optimize)
|
||
return {"optimized_prompt": optimized}
|
||
|
||
try:
|
||
headers = {
|
||
"Content-Type": "application/json",
|
||
"Authorization": f"Bearer {DEEPSEEK_API_KEY}"
|
||
}
|
||
|
||
# Use predefined optimization template
|
||
optimizer_template = TEMPLATES.get("txt2img_optimizer")
|
||
|
||
payload = {
|
||
"model": "deepseek-chat",
|
||
"messages": [
|
||
{"role": "system", "content": optimizer_template.content},
|
||
{"role": "user", "content": f"Optimize this prompt: {prompt_to_optimize}"}
|
||
],
|
||
"temperature": 0.3,
|
||
"max_tokens": 1000
|
||
}
|
||
|
||
response = requests.post(
|
||
"https://api.deepseek.com/v1/chat/completions",
|
||
headers=headers,
|
||
json=payload
|
||
)
|
||
|
||
if response.status_code == 200:
|
||
result = response.json()
|
||
enhanced_text = result["choices"][0]["message"]["content"].strip()
|
||
print(f"OptimizerAgent: Optimization result - '{enhanced_text}'")
|
||
return {"optimized_prompt": enhanced_text}
|
||
else:
|
||
print(f"OptimizerAgent: Optimization failed - {response.status_code} - {response.text}")
|
||
optimized = local_optimize(prompt_to_optimize)
|
||
return {"error": f"Optimization API error: {response.status_code}", "optimized_prompt": optimized}
|
||
except Exception as e:
|
||
print(f"OptimizerAgent: Optimization failed - {str(e)}")
|
||
optimized = local_optimize(prompt_to_optimize)
|
||
return {"error": f"Optimization error: {str(e)}", "optimized_prompt": optimized}
|
||
|
||
def local_optimize(prompt: str) -> str:
|
||
"""Local prompt optimization method (used when API is unavailable)"""
|
||
# Example optimization: add quality-boosting keywords
|
||
quality_terms = ["high quality", "detailed", "sharp focus"]
|
||
style_terms = ["masterpiece", "best quality"]
|
||
|
||
# Check if prompt already contains these terms
|
||
optimized = prompt
|
||
|
||
# Add quality terms
|
||
for term in quality_terms:
|
||
if term.lower() not in optimized.lower():
|
||
if optimized.strip().endswith((',', '。', ',', '.')):
|
||
optimized = f"{optimized} {term}"
|
||
else:
|
||
optimized = f"{optimized}, {term}"
|
||
|
||
# Add style terms (at the beginning)
|
||
for term in reversed(style_terms):
|
||
if term.lower() not in optimized.lower():
|
||
optimized = f"{term}, {optimized}"
|
||
|
||
print(f"OptimizerAgent: Local optimization result - '{optimized}'")
|
||
return optimized
|
||
|
||
# Define routing logic
|
||
def should_translate(state: PromptState) -> Literal["translator", "optimizer"]:
|
||
"""Determine if translation is needed"""
|
||
if state.get("language", "") != "english":
|
||
return "translator"
|
||
else:
|
||
return "optimizer"
|
||
|
||
# Create LangGraph workflow
|
||
def create_prompt_optimization_graph():
|
||
"""Create prompt optimization workflow graph"""
|
||
# If LangGraph is not available, return None
|
||
if not LANGGRAPH_AVAILABLE:
|
||
return None
|
||
|
||
# Create state graph
|
||
graph = StateGraph(PromptState)
|
||
|
||
# Add nodes
|
||
graph.add_node("router", router_agent)
|
||
graph.add_node("translator", translator_agent)
|
||
graph.add_node("optimizer", optimizer_agent)
|
||
|
||
# Add edges
|
||
# From start to router
|
||
graph.set_entry_point("router")
|
||
|
||
# From router to translator or optimizer (based on language)
|
||
graph.add_conditional_edges(
|
||
"router",
|
||
should_translate,
|
||
{
|
||
"translator": "translator",
|
||
"optimizer": "optimizer"
|
||
}
|
||
)
|
||
|
||
# From translator to optimizer
|
||
graph.add_edge("translator", "optimizer")
|
||
|
||
# From optimizer to end
|
||
graph.add_edge("optimizer", END)
|
||
|
||
# Compile workflow
|
||
return graph.compile()
|
||
|
||
# Simplified workflow (used when LangGraph is not available)
|
||
def simple_prompt_optimization_workflow(prompt: str) -> str:
|
||
"""Simplified prompt optimization workflow"""
|
||
print("\n--- Simplified workflow started ---")
|
||
print(f"Original prompt: '{prompt}'")
|
||
|
||
# Initialize state
|
||
state = PromptState(
|
||
original_prompt=prompt,
|
||
language="unknown",
|
||
translated_prompt=None,
|
||
optimized_prompt=None,
|
||
error=None
|
||
)
|
||
|
||
# Step 1: Router - determine language
|
||
router_result = router_agent(state)
|
||
state["language"] = router_result["language"]
|
||
|
||
# Step 2: Translator - translate if not English
|
||
if state["language"] != "english":
|
||
translator_result = translator_agent(state)
|
||
state["translated_prompt"] = translator_result.get("translated_prompt")
|
||
if "error" in translator_result:
|
||
state["error"] = translator_result["error"]
|
||
|
||
# Step 3: Optimizer - optimize prompt
|
||
optimizer_result = optimizer_agent(state)
|
||
state["optimized_prompt"] = optimizer_result.get("optimized_prompt")
|
||
if "error" in optimizer_result and not state["error"]:
|
||
state["error"] = optimizer_result["error"]
|
||
|
||
print(f"Final optimized prompt: '{state['optimized_prompt']}'")
|
||
print("--- Simplified workflow finished ---\n")
|
||
|
||
return state["optimized_prompt"] or prompt
|
||
|
||
class PromptOptimizer(scripts.Script):
|
||
# Class-level flag to track if initialization message has been shown
|
||
_init_message_shown = False
|
||
|
||
def __init__(self):
|
||
super().__init__()
|
||
# Show initialization message only once
|
||
if not PromptOptimizer._init_message_shown:
|
||
print("\n\n=== Txt2Img Prompt Optimizer (Multilingual) script loaded ===\n\n")
|
||
PromptOptimizer._init_message_shown = True
|
||
|
||
# Try to create LangGraph workflow
|
||
self.graph = create_prompt_optimization_graph()
|
||
|
||
# If LangGraph is not available, use simplified workflow
|
||
if self.graph is None and not PromptOptimizer._init_message_shown:
|
||
print("Using simplified prompt optimization workflow")
|
||
|
||
# Track processed prompts to avoid duplicates
|
||
self.processed_prompts = set()
|
||
|
||
def title(self):
|
||
return "Txt2Img Prompt Optimizer (Multilingual)"
|
||
|
||
# Return AlwaysVisible to show script in UI
|
||
def show(self, is_img2img):
|
||
return scripts.AlwaysVisible
|
||
|
||
# No UI elements needed
|
||
def ui(self, is_img2img):
|
||
return []
|
||
|
||
# Optimize prompt before processing
|
||
def process(self, p):
|
||
# Only optimize Txt2Img processing objects
|
||
if not isinstance(p, StableDiffusionProcessingTxt2Img):
|
||
return p
|
||
|
||
# Record original prompt
|
||
original_prompt = p.prompt
|
||
print(f"\n=== Original prompt ===\n{original_prompt}\n")
|
||
|
||
# Optimize main prompt (if not already processed)
|
||
if p.prompt not in self.processed_prompts:
|
||
optimized_prompt = self.optimize_prompt(p.prompt)
|
||
p.prompt = optimized_prompt
|
||
# Ensure all_prompts also uses optimized prompt
|
||
if hasattr(p, 'all_prompts') and p.all_prompts:
|
||
p.all_prompts = [optimized_prompt] * len(p.all_prompts)
|
||
# Ensure main_prompt also uses optimized prompt
|
||
if hasattr(p, 'main_prompt'):
|
||
p.main_prompt = optimized_prompt
|
||
self.processed_prompts.add(optimized_prompt)
|
||
|
||
# Record optimization information (optional, for verification)
|
||
if not hasattr(p, 'extra_generation_params'):
|
||
p.extra_generation_params = {}
|
||
p.extra_generation_params['Prompt optimized'] = True
|
||
|
||
# Record final prompt sent to model
|
||
print(f"\n=== Final prompt sent to model ===\n{p.prompt}\n")
|
||
|
||
# Add post-processing hook to ensure prompt remains optimized
|
||
original_setup_prompts = p.setup_prompts
|
||
|
||
def patched_setup_prompts():
|
||
# Call original method
|
||
original_setup_prompts()
|
||
# Ensure prompt remains optimized
|
||
if p.prompt in self.processed_prompts:
|
||
p.all_prompts = [p.prompt] * len(p.all_prompts)
|
||
p.main_prompt = p.prompt
|
||
|
||
# Replace method
|
||
p.setup_prompts = patched_setup_prompts
|
||
|
||
return p
|
||
|
||
def postprocess(self, p, processed):
|
||
"""Post-process after image generation"""
|
||
# Add original prompt to extra generation params
|
||
if hasattr(self, 'extra_generation_params') and hasattr(self, 'main_prompt'):
|
||
processed.infotexts[0] = processed.infotexts[0].replace(
|
||
"Prompt: ", f"Prompt: {self.extra_generation_params.get('Original prompt', '')}\nOptimized: "
|
||
)
|
||
# Nothing to do here
|
||
return processed
|
||
|
||
def optimize_prompt(self, prompt: str) -> str:
|
||
"""Optimize a prompt using the workflow"""
|
||
if not prompt:
|
||
return prompt
|
||
|
||
# Use LangGraph workflow or simplified workflow
|
||
if self.graph is not None:
|
||
# Use LangGraph workflow
|
||
try:
|
||
print("\n--- LangGraph started ---")
|
||
print(f"Original prompt: '{prompt}'")
|
||
|
||
# Create initial state
|
||
initial_state = PromptState(
|
||
original_prompt=prompt,
|
||
language="unknown",
|
||
translated_prompt=None,
|
||
optimized_prompt=None,
|
||
error=None
|
||
)
|
||
|
||
# Execute workflow
|
||
final_state = self.graph.invoke(initial_state)
|
||
|
||
optimized = final_state.get("optimized_prompt") or prompt
|
||
print(f"Final optimized prompt: '{optimized}'")
|
||
print("--- LangGraph finished ---\n")
|
||
return optimized
|
||
except Exception as e:
|
||
print(f"LangGraph workflow error: {str(e)}")
|
||
print("Falling back to simplified workflow")
|
||
return simple_prompt_optimization_workflow(prompt)
|
||
else:
|
||
# Use simplified workflow
|
||
return simple_prompt_optimization_workflow(prompt)
|
||
|
||
# For standalone testing
|
||
if __name__ == "__main__":
|
||
# Test the prompt optimization workflow
|
||
test_prompts = [
|
||
"a beautiful landscape with mountains", # English
|
||
"美丽的山水画", # Chinese: "beautiful landscape painting"
|
||
]
|
||
|
||
print("Testing prompt optimization workflow...")
|
||
|
||
# Initialize optimizer
|
||
optimizer = PromptOptimizer()
|
||
|
||
# Test each prompt
|
||
for prompt in test_prompts:
|
||
print(f"\nTesting prompt: '{prompt}'")
|
||
optimized = optimizer.optimize_prompt(prompt)
|
||
print(f"Optimized: '{optimized}'")
|