mirror of
https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
synced 2025-01-18 12:20:11 +08:00
00bd271faf
Why? one of the internal calls of `load_file_from_url` import cv2, which locks the cv2 site-package, which extensions may (and in our case, is) breaking the installation of some libraries. The base project should be limiting its import of unnecessary libraries when possible during the installation phase.
177 lines
6.5 KiB
Python
177 lines
6.5 KiB
Python
import glob
|
|
import os
|
|
import shutil
|
|
import importlib
|
|
from urllib.parse import urlparse
|
|
|
|
from modules import shared
|
|
from modules.upscaler import Upscaler, UpscalerLanczos, UpscalerNearest, UpscalerNone
|
|
from modules.paths import script_path, models_path
|
|
|
|
|
|
def load_models(model_path: str, model_url: str = None, command_path: str = None, ext_filter=None, download_name=None, ext_blacklist=None) -> list:
|
|
"""
|
|
A one-and done loader to try finding the desired models in specified directories.
|
|
|
|
@param download_name: Specify to download from model_url immediately.
|
|
@param model_url: If no other models are found, this will be downloaded on upscale.
|
|
@param model_path: The location to store/find models in.
|
|
@param command_path: A command-line argument to search for models in first.
|
|
@param ext_filter: An optional list of filename extensions to filter by
|
|
@return: A list of paths containing the desired model(s)
|
|
"""
|
|
output = []
|
|
|
|
if ext_filter is None:
|
|
ext_filter = []
|
|
|
|
try:
|
|
places = []
|
|
|
|
if command_path is not None and command_path != model_path:
|
|
pretrained_path = os.path.join(command_path, 'experiments/pretrained_models')
|
|
if os.path.exists(pretrained_path):
|
|
print(f"Appending path: {pretrained_path}")
|
|
places.append(pretrained_path)
|
|
elif os.path.exists(command_path):
|
|
places.append(command_path)
|
|
|
|
places.append(model_path)
|
|
|
|
for place in places:
|
|
if os.path.exists(place):
|
|
for file in glob.iglob(place + '**/**', recursive=True):
|
|
full_path = file
|
|
if os.path.isdir(full_path):
|
|
continue
|
|
if os.path.islink(full_path) and not os.path.exists(full_path):
|
|
print(f"Skipping broken symlink: {full_path}")
|
|
continue
|
|
if ext_blacklist is not None and any([full_path.endswith(x) for x in ext_blacklist]):
|
|
continue
|
|
if len(ext_filter) != 0:
|
|
model_name, extension = os.path.splitext(file)
|
|
if extension not in ext_filter:
|
|
continue
|
|
if file not in output:
|
|
output.append(full_path)
|
|
|
|
if model_url is not None and len(output) == 0:
|
|
if download_name is not None:
|
|
from basicsr.utils.download_util import load_file_from_url
|
|
dl = load_file_from_url(model_url, model_path, True, download_name)
|
|
output.append(dl)
|
|
else:
|
|
output.append(model_url)
|
|
|
|
except Exception:
|
|
pass
|
|
|
|
return output
|
|
|
|
|
|
def friendly_name(file: str):
|
|
if "http" in file:
|
|
file = urlparse(file).path
|
|
|
|
file = os.path.basename(file)
|
|
model_name, extension = os.path.splitext(file)
|
|
return model_name
|
|
|
|
|
|
def cleanup_models():
|
|
# This code could probably be more efficient if we used a tuple list or something to store the src/destinations
|
|
# and then enumerate that, but this works for now. In the future, it'd be nice to just have every "model" scaler
|
|
# somehow auto-register and just do these things...
|
|
root_path = script_path
|
|
src_path = models_path
|
|
dest_path = os.path.join(models_path, "Stable-diffusion")
|
|
move_files(src_path, dest_path, ".ckpt")
|
|
move_files(src_path, dest_path, ".safetensors")
|
|
src_path = os.path.join(root_path, "ESRGAN")
|
|
dest_path = os.path.join(models_path, "ESRGAN")
|
|
move_files(src_path, dest_path)
|
|
src_path = os.path.join(models_path, "BSRGAN")
|
|
dest_path = os.path.join(models_path, "ESRGAN")
|
|
move_files(src_path, dest_path, ".pth")
|
|
src_path = os.path.join(root_path, "gfpgan")
|
|
dest_path = os.path.join(models_path, "GFPGAN")
|
|
move_files(src_path, dest_path)
|
|
src_path = os.path.join(root_path, "SwinIR")
|
|
dest_path = os.path.join(models_path, "SwinIR")
|
|
move_files(src_path, dest_path)
|
|
src_path = os.path.join(root_path, "repositories/latent-diffusion/experiments/pretrained_models/")
|
|
dest_path = os.path.join(models_path, "LDSR")
|
|
move_files(src_path, dest_path)
|
|
|
|
|
|
def move_files(src_path: str, dest_path: str, ext_filter: str = None):
|
|
try:
|
|
if not os.path.exists(dest_path):
|
|
os.makedirs(dest_path)
|
|
if os.path.exists(src_path):
|
|
for file in os.listdir(src_path):
|
|
fullpath = os.path.join(src_path, file)
|
|
if os.path.isfile(fullpath):
|
|
if ext_filter is not None:
|
|
if ext_filter not in file:
|
|
continue
|
|
print(f"Moving {file} from {src_path} to {dest_path}.")
|
|
try:
|
|
shutil.move(fullpath, dest_path)
|
|
except:
|
|
pass
|
|
if len(os.listdir(src_path)) == 0:
|
|
print(f"Removing empty folder: {src_path}")
|
|
shutil.rmtree(src_path, True)
|
|
except:
|
|
pass
|
|
|
|
|
|
builtin_upscaler_classes = []
|
|
forbidden_upscaler_classes = set()
|
|
|
|
|
|
def list_builtin_upscalers():
|
|
load_upscalers()
|
|
|
|
builtin_upscaler_classes.clear()
|
|
builtin_upscaler_classes.extend(Upscaler.__subclasses__())
|
|
|
|
|
|
def forbid_loaded_nonbuiltin_upscalers():
|
|
for cls in Upscaler.__subclasses__():
|
|
if cls not in builtin_upscaler_classes:
|
|
forbidden_upscaler_classes.add(cls)
|
|
|
|
|
|
def load_upscalers():
|
|
# We can only do this 'magic' method to dynamically load upscalers if they are referenced,
|
|
# so we'll try to import any _model.py files before looking in __subclasses__
|
|
modules_dir = os.path.join(shared.script_path, "modules")
|
|
for file in os.listdir(modules_dir):
|
|
if "_model.py" in file:
|
|
model_name = file.replace("_model.py", "")
|
|
full_model = f"modules.{model_name}_model"
|
|
try:
|
|
importlib.import_module(full_model)
|
|
except:
|
|
pass
|
|
|
|
datas = []
|
|
commandline_options = vars(shared.cmd_opts)
|
|
for cls in Upscaler.__subclasses__():
|
|
if cls in forbidden_upscaler_classes:
|
|
continue
|
|
|
|
name = cls.__name__
|
|
cmd_name = f"{name.lower().replace('upscaler', '')}_models_path"
|
|
scaler = cls(commandline_options.get(cmd_name, None))
|
|
datas += scaler.scalers
|
|
|
|
shared.sd_upscalers = sorted(
|
|
datas,
|
|
# Special case for UpscalerNone keeps it at the beginning of the list.
|
|
key=lambda x: x.name.lower() if not isinstance(x.scaler, (UpscalerNone, UpscalerLanczos, UpscalerNearest)) else ""
|
|
)
|