stable-diffusion-webui/modules/sd_samplers_timesteps.py
drhead 5381405eaa
re-derive sqrt alpha bar and sqrt one minus alphabar
This is the only place these values are ever referenced outside of training code so this change is very justifiable and more consistent.
2023-12-09 14:09:28 -05:00

168 lines
6.4 KiB
Python

import torch
import inspect
import sys
from modules import devices, sd_samplers_common, sd_samplers_timesteps_impl
from modules.sd_samplers_cfg_denoiser import CFGDenoiser
from modules.script_callbacks import ExtraNoiseParams, extra_noise_callback
from modules.shared import opts
import modules.shared as shared
samplers_timesteps = [
('DDIM', sd_samplers_timesteps_impl.ddim, ['ddim'], {}),
('PLMS', sd_samplers_timesteps_impl.plms, ['plms'], {}),
('UniPC', sd_samplers_timesteps_impl.unipc, ['unipc'], {}),
]
samplers_data_timesteps = [
sd_samplers_common.SamplerData(label, lambda model, funcname=funcname: CompVisSampler(funcname, model), aliases, options)
for label, funcname, aliases, options in samplers_timesteps
]
class CompVisTimestepsDenoiser(torch.nn.Module):
def __init__(self, model, *args, **kwargs):
super().__init__(*args, **kwargs)
self.inner_model = model
def forward(self, input, timesteps, **kwargs):
return self.inner_model.apply_model(input, timesteps, **kwargs)
class CompVisTimestepsVDenoiser(torch.nn.Module):
def __init__(self, model, *args, **kwargs):
super().__init__(*args, **kwargs)
self.inner_model = model
def predict_eps_from_z_and_v(self, x_t, t, v):
return torch.sqrt(self.inner_model.alphas_cumprod)[t.to(torch.int), None, None, None] * v + torch.sqrt(1 - self.inner_model.alphas_cumprod)[t.to(torch.int), None, None, None] * x_t
def forward(self, input, timesteps, **kwargs):
model_output = self.inner_model.apply_model(input, timesteps, **kwargs)
e_t = self.predict_eps_from_z_and_v(input, timesteps, model_output)
return e_t
class CFGDenoiserTimesteps(CFGDenoiser):
def __init__(self, sampler):
super().__init__(sampler)
self.alphas = shared.sd_model.alphas_cumprod
self.mask_before_denoising = True
def get_pred_x0(self, x_in, x_out, sigma):
ts = sigma.to(dtype=int)
a_t = self.alphas[ts][:, None, None, None]
sqrt_one_minus_at = (1 - a_t).sqrt()
pred_x0 = (x_in - sqrt_one_minus_at * x_out) / a_t.sqrt()
return pred_x0
@property
def inner_model(self):
if self.model_wrap is None:
denoiser = CompVisTimestepsVDenoiser if shared.sd_model.parameterization == "v" else CompVisTimestepsDenoiser
self.model_wrap = denoiser(shared.sd_model)
return self.model_wrap
class CompVisSampler(sd_samplers_common.Sampler):
def __init__(self, funcname, sd_model):
super().__init__(funcname)
self.eta_option_field = 'eta_ddim'
self.eta_infotext_field = 'Eta DDIM'
self.eta_default = 0.0
self.model_wrap_cfg = CFGDenoiserTimesteps(self)
def get_timesteps(self, p, steps):
discard_next_to_last_sigma = self.config is not None and self.config.options.get('discard_next_to_last_sigma', False)
if opts.always_discard_next_to_last_sigma and not discard_next_to_last_sigma:
discard_next_to_last_sigma = True
p.extra_generation_params["Discard penultimate sigma"] = True
steps += 1 if discard_next_to_last_sigma else 0
timesteps = torch.clip(torch.asarray(list(range(0, 1000, 1000 // steps)), device=devices.device) + 1, 0, 999)
return timesteps
def sample_img2img(self, p, x, noise, conditioning, unconditional_conditioning, steps=None, image_conditioning=None):
steps, t_enc = sd_samplers_common.setup_img2img_steps(p, steps)
timesteps = self.get_timesteps(p, steps)
timesteps_sched = timesteps[:t_enc]
alphas_cumprod = shared.sd_model.alphas_cumprod
sqrt_alpha_cumprod = torch.sqrt(alphas_cumprod[timesteps[t_enc]])
sqrt_one_minus_alpha_cumprod = torch.sqrt(1 - alphas_cumprod[timesteps[t_enc]])
xi = x * sqrt_alpha_cumprod + noise * sqrt_one_minus_alpha_cumprod
if opts.img2img_extra_noise > 0:
p.extra_generation_params["Extra noise"] = opts.img2img_extra_noise
extra_noise_params = ExtraNoiseParams(noise, x, xi)
extra_noise_callback(extra_noise_params)
noise = extra_noise_params.noise
xi += noise * opts.img2img_extra_noise * sqrt_alpha_cumprod
extra_params_kwargs = self.initialize(p)
parameters = inspect.signature(self.func).parameters
if 'timesteps' in parameters:
extra_params_kwargs['timesteps'] = timesteps_sched
if 'is_img2img' in parameters:
extra_params_kwargs['is_img2img'] = True
self.model_wrap_cfg.init_latent = x
self.last_latent = x
self.sampler_extra_args = {
'cond': conditioning,
'image_cond': image_conditioning,
'uncond': unconditional_conditioning,
'cond_scale': p.cfg_scale,
's_min_uncond': self.s_min_uncond
}
samples = self.launch_sampling(t_enc + 1, lambda: self.func(self.model_wrap_cfg, xi, extra_args=self.sampler_extra_args, disable=False, callback=self.callback_state, **extra_params_kwargs))
if self.model_wrap_cfg.padded_cond_uncond:
p.extra_generation_params["Pad conds"] = True
return samples
def sample(self, p, x, conditioning, unconditional_conditioning, steps=None, image_conditioning=None):
steps = steps or p.steps
timesteps = self.get_timesteps(p, steps)
extra_params_kwargs = self.initialize(p)
parameters = inspect.signature(self.func).parameters
if 'timesteps' in parameters:
extra_params_kwargs['timesteps'] = timesteps
self.last_latent = x
self.sampler_extra_args = {
'cond': conditioning,
'image_cond': image_conditioning,
'uncond': unconditional_conditioning,
'cond_scale': p.cfg_scale,
's_min_uncond': self.s_min_uncond
}
samples = self.launch_sampling(steps, lambda: self.func(self.model_wrap_cfg, x, extra_args=self.sampler_extra_args, disable=False, callback=self.callback_state, **extra_params_kwargs))
if self.model_wrap_cfg.padded_cond_uncond:
p.extra_generation_params["Pad conds"] = True
return samples
sys.modules['modules.sd_samplers_compvis'] = sys.modules[__name__]
VanillaStableDiffusionSampler = CompVisSampler # temp. compatibility with older extensions