stable-diffusion-webui/modules/processing.py
2024-01-21 09:02:18 +09:00

1702 lines
76 KiB
Python

from __future__ import annotations
import json
import logging
import math
import os
import sys
import hashlib
from dataclasses import dataclass, field
import torch
import numpy as np
from PIL import Image, ImageOps
import random
import cv2
from skimage import exposure
from typing import Any
import modules.sd_hijack
from modules import devices, prompt_parser, masking, sd_samplers, lowvram, infotext_utils, extra_networks, sd_vae_approx, scripts, sd_samplers_common, sd_unet, errors, rng
from modules.rng import slerp # noqa: F401
from modules.sd_hijack import model_hijack
from modules.sd_samplers_common import images_tensor_to_samples, decode_first_stage, approximation_indexes
from modules.shared import opts, cmd_opts, state
import modules.shared as shared
import modules.paths as paths
import modules.face_restoration
import modules.images as images
import modules.styles
import modules.sd_models as sd_models
import modules.sd_vae as sd_vae
from ldm.data.util import AddMiDaS
from ldm.models.diffusion.ddpm import LatentDepth2ImageDiffusion
from einops import repeat, rearrange
from blendmodes.blend import blendLayers, BlendType
# some of those options should not be changed at all because they would break the model, so I removed them from options.
opt_C = 4
opt_f = 8
def setup_color_correction(image):
logging.info("Calibrating color correction.")
correction_target = cv2.cvtColor(np.asarray(image.copy()), cv2.COLOR_RGB2LAB)
return correction_target
def apply_color_correction(correction, original_image):
logging.info("Applying color correction.")
image = Image.fromarray(cv2.cvtColor(exposure.match_histograms(
cv2.cvtColor(
np.asarray(original_image),
cv2.COLOR_RGB2LAB
),
correction,
channel_axis=2
), cv2.COLOR_LAB2RGB).astype("uint8"))
image = blendLayers(image, original_image, BlendType.LUMINOSITY)
return image.convert('RGB')
def uncrop(image, dest_size, paste_loc):
x, y, w, h = paste_loc
base_image = Image.new('RGBA', dest_size)
image = images.resize_image(1, image, w, h)
base_image.paste(image, (x, y))
image = base_image
return image
def apply_overlay(image, paste_loc, overlay):
if overlay is None:
return image
if paste_loc is not None:
image = uncrop(image, (overlay.width, overlay.height), paste_loc)
image = image.convert('RGBA')
image.alpha_composite(overlay)
image = image.convert('RGB')
return image
def create_binary_mask(image, round=True):
if image.mode == 'RGBA' and image.getextrema()[-1] != (255, 255):
if round:
image = image.split()[-1].convert("L").point(lambda x: 255 if x > 128 else 0)
else:
image = image.split()[-1].convert("L")
else:
image = image.convert('L')
return image
def txt2img_image_conditioning(sd_model, x, width, height):
if sd_model.model.conditioning_key in {'hybrid', 'concat'}: # Inpainting models
# The "masked-image" in this case will just be all 0.5 since the entire image is masked.
image_conditioning = torch.ones(x.shape[0], 3, height, width, device=x.device) * 0.5
image_conditioning = images_tensor_to_samples(image_conditioning, approximation_indexes.get(opts.sd_vae_encode_method))
# Add the fake full 1s mask to the first dimension.
image_conditioning = torch.nn.functional.pad(image_conditioning, (0, 0, 0, 0, 1, 0), value=1.0)
image_conditioning = image_conditioning.to(x.dtype)
return image_conditioning
elif sd_model.model.conditioning_key == "crossattn-adm": # UnCLIP models
return x.new_zeros(x.shape[0], 2*sd_model.noise_augmentor.time_embed.dim, dtype=x.dtype, device=x.device)
else:
sd = sd_model.model.state_dict()
diffusion_model_input = sd.get('diffusion_model.input_blocks.0.0.weight', None)
if diffusion_model_input is not None:
if diffusion_model_input.shape[1] == 9:
# The "masked-image" in this case will just be all 0.5 since the entire image is masked.
image_conditioning = torch.ones(x.shape[0], 3, height, width, device=x.device) * 0.5
image_conditioning = images_tensor_to_samples(image_conditioning,
approximation_indexes.get(opts.sd_vae_encode_method))
# Add the fake full 1s mask to the first dimension.
image_conditioning = torch.nn.functional.pad(image_conditioning, (0, 0, 0, 0, 1, 0), value=1.0)
image_conditioning = image_conditioning.to(x.dtype)
return image_conditioning
# Dummy zero conditioning if we're not using inpainting or unclip models.
# Still takes up a bit of memory, but no encoder call.
# Pretty sure we can just make this a 1x1 image since its not going to be used besides its batch size.
return x.new_zeros(x.shape[0], 5, 1, 1, dtype=x.dtype, device=x.device)
@dataclass(repr=False)
class StableDiffusionProcessing:
sd_model: object = None
outpath_samples: str = None
outpath_grids: str = None
prompt: str = ""
prompt_for_display: str = None
negative_prompt: str = ""
styles: list[str] = None
seed: int = -1
subseed: int = -1
subseed_strength: float = 0
seed_resize_from_h: int = -1
seed_resize_from_w: int = -1
seed_enable_extras: bool = True
sampler_name: str = None
batch_size: int = 1
n_iter: int = 1
steps: int = 50
cfg_scale: float = 7.0
width: int = 512
height: int = 512
restore_faces: bool = None
tiling: bool = None
do_not_save_samples: bool = False
do_not_save_grid: bool = False
extra_generation_params: dict[str, Any] = None
overlay_images: list = None
eta: float = None
do_not_reload_embeddings: bool = False
denoising_strength: float = None
ddim_discretize: str = None
s_min_uncond: float = None
s_churn: float = None
s_tmax: float = None
s_tmin: float = None
s_noise: float = None
override_settings: dict[str, Any] = None
override_settings_restore_afterwards: bool = True
sampler_index: int = None
refiner_checkpoint: str = None
refiner_switch_at: float = None
token_merging_ratio = 0
token_merging_ratio_hr = 0
disable_extra_networks: bool = False
firstpass_image: Image = None
scripts_value: scripts.ScriptRunner = field(default=None, init=False)
script_args_value: list = field(default=None, init=False)
scripts_setup_complete: bool = field(default=False, init=False)
cached_uc = [None, None]
cached_c = [None, None]
comments: dict = None
sampler: sd_samplers_common.Sampler | None = field(default=None, init=False)
is_using_inpainting_conditioning: bool = field(default=False, init=False)
paste_to: tuple | None = field(default=None, init=False)
is_hr_pass: bool = field(default=False, init=False)
c: tuple = field(default=None, init=False)
uc: tuple = field(default=None, init=False)
rng: rng.ImageRNG | None = field(default=None, init=False)
step_multiplier: int = field(default=1, init=False)
color_corrections: list = field(default=None, init=False)
all_prompts: list = field(default=None, init=False)
all_negative_prompts: list = field(default=None, init=False)
all_seeds: list = field(default=None, init=False)
all_subseeds: list = field(default=None, init=False)
iteration: int = field(default=0, init=False)
main_prompt: str = field(default=None, init=False)
main_negative_prompt: str = field(default=None, init=False)
prompts: list = field(default=None, init=False)
negative_prompts: list = field(default=None, init=False)
seeds: list = field(default=None, init=False)
subseeds: list = field(default=None, init=False)
extra_network_data: dict = field(default=None, init=False)
user: str = field(default=None, init=False)
sd_model_name: str = field(default=None, init=False)
sd_model_hash: str = field(default=None, init=False)
sd_vae_name: str = field(default=None, init=False)
sd_vae_hash: str = field(default=None, init=False)
is_api: bool = field(default=False, init=False)
def __post_init__(self):
if self.sampler_index is not None:
print("sampler_index argument for StableDiffusionProcessing does not do anything; use sampler_name", file=sys.stderr)
self.comments = {}
if self.styles is None:
self.styles = []
self.sampler_noise_scheduler_override = None
self.s_min_uncond = self.s_min_uncond if self.s_min_uncond is not None else opts.s_min_uncond
self.s_churn = self.s_churn if self.s_churn is not None else opts.s_churn
self.s_tmin = self.s_tmin if self.s_tmin is not None else opts.s_tmin
self.s_tmax = (self.s_tmax if self.s_tmax is not None else opts.s_tmax) or float('inf')
self.s_noise = self.s_noise if self.s_noise is not None else opts.s_noise
self.extra_generation_params = self.extra_generation_params or {}
self.override_settings = self.override_settings or {}
self.script_args = self.script_args or {}
self.refiner_checkpoint_info = None
if not self.seed_enable_extras:
self.subseed = -1
self.subseed_strength = 0
self.seed_resize_from_h = 0
self.seed_resize_from_w = 0
self.cached_uc = StableDiffusionProcessing.cached_uc
self.cached_c = StableDiffusionProcessing.cached_c
@property
def sd_model(self):
return shared.sd_model
@sd_model.setter
def sd_model(self, value):
pass
@property
def scripts(self):
return self.scripts_value
@scripts.setter
def scripts(self, value):
self.scripts_value = value
if self.scripts_value and self.script_args_value and not self.scripts_setup_complete:
self.setup_scripts()
@property
def script_args(self):
return self.script_args_value
@script_args.setter
def script_args(self, value):
self.script_args_value = value
if self.scripts_value and self.script_args_value and not self.scripts_setup_complete:
self.setup_scripts()
def setup_scripts(self):
self.scripts_setup_complete = True
self.scripts.setup_scrips(self, is_ui=not self.is_api)
def comment(self, text):
self.comments[text] = 1
def txt2img_image_conditioning(self, x, width=None, height=None):
self.is_using_inpainting_conditioning = self.sd_model.model.conditioning_key in {'hybrid', 'concat'}
return txt2img_image_conditioning(self.sd_model, x, width or self.width, height or self.height)
def depth2img_image_conditioning(self, source_image):
# Use the AddMiDaS helper to Format our source image to suit the MiDaS model
transformer = AddMiDaS(model_type="dpt_hybrid")
transformed = transformer({"jpg": rearrange(source_image[0], "c h w -> h w c")})
midas_in = torch.from_numpy(transformed["midas_in"][None, ...]).to(device=shared.device)
midas_in = repeat(midas_in, "1 ... -> n ...", n=self.batch_size)
conditioning_image = images_tensor_to_samples(source_image*0.5+0.5, approximation_indexes.get(opts.sd_vae_encode_method))
conditioning = torch.nn.functional.interpolate(
self.sd_model.depth_model(midas_in),
size=conditioning_image.shape[2:],
mode="bicubic",
align_corners=False,
)
(depth_min, depth_max) = torch.aminmax(conditioning)
conditioning = 2. * (conditioning - depth_min) / (depth_max - depth_min) - 1.
return conditioning
def edit_image_conditioning(self, source_image):
conditioning_image = shared.sd_model.encode_first_stage(source_image).mode()
return conditioning_image
def unclip_image_conditioning(self, source_image):
c_adm = self.sd_model.embedder(source_image)
if self.sd_model.noise_augmentor is not None:
noise_level = 0 # TODO: Allow other noise levels?
c_adm, noise_level_emb = self.sd_model.noise_augmentor(c_adm, noise_level=repeat(torch.tensor([noise_level]).to(c_adm.device), '1 -> b', b=c_adm.shape[0]))
c_adm = torch.cat((c_adm, noise_level_emb), 1)
return c_adm
def inpainting_image_conditioning(self, source_image, latent_image, image_mask=None, round_image_mask=True):
self.is_using_inpainting_conditioning = True
# Handle the different mask inputs
if image_mask is not None:
if torch.is_tensor(image_mask):
conditioning_mask = image_mask
else:
conditioning_mask = np.array(image_mask.convert("L"))
conditioning_mask = conditioning_mask.astype(np.float32) / 255.0
conditioning_mask = torch.from_numpy(conditioning_mask[None, None])
if round_image_mask:
# Caller is requesting a discretized mask as input, so we round to either 1.0 or 0.0
conditioning_mask = torch.round(conditioning_mask)
else:
conditioning_mask = source_image.new_ones(1, 1, *source_image.shape[-2:])
# Create another latent image, this time with a masked version of the original input.
# Smoothly interpolate between the masked and unmasked latent conditioning image using a parameter.
conditioning_mask = conditioning_mask.to(device=source_image.device, dtype=source_image.dtype)
conditioning_image = torch.lerp(
source_image,
source_image * (1.0 - conditioning_mask),
getattr(self, "inpainting_mask_weight", shared.opts.inpainting_mask_weight)
)
# Encode the new masked image using first stage of network.
conditioning_image = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(conditioning_image))
# Create the concatenated conditioning tensor to be fed to `c_concat`
conditioning_mask = torch.nn.functional.interpolate(conditioning_mask, size=latent_image.shape[-2:])
conditioning_mask = conditioning_mask.expand(conditioning_image.shape[0], -1, -1, -1)
image_conditioning = torch.cat([conditioning_mask, conditioning_image], dim=1)
image_conditioning = image_conditioning.to(shared.device).type(self.sd_model.dtype)
return image_conditioning
def img2img_image_conditioning(self, source_image, latent_image, image_mask=None, round_image_mask=True):
source_image = devices.cond_cast_float(source_image)
# HACK: Using introspection as the Depth2Image model doesn't appear to uniquely
# identify itself with a field common to all models. The conditioning_key is also hybrid.
if isinstance(self.sd_model, LatentDepth2ImageDiffusion):
return self.depth2img_image_conditioning(source_image)
if self.sd_model.cond_stage_key == "edit":
return self.edit_image_conditioning(source_image)
if self.sampler.conditioning_key in {'hybrid', 'concat'}:
return self.inpainting_image_conditioning(source_image, latent_image, image_mask=image_mask, round_image_mask=round_image_mask)
if self.sampler.conditioning_key == "crossattn-adm":
return self.unclip_image_conditioning(source_image)
sd = self.sampler.model_wrap.inner_model.model.state_dict()
diffusion_model_input = sd.get('diffusion_model.input_blocks.0.0.weight', None)
if diffusion_model_input is not None:
if diffusion_model_input.shape[1] == 9:
return self.inpainting_image_conditioning(source_image, latent_image, image_mask=image_mask)
# Dummy zero conditioning if we're not using inpainting or depth model.
return latent_image.new_zeros(latent_image.shape[0], 5, 1, 1)
def init(self, all_prompts, all_seeds, all_subseeds):
pass
def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength, prompts):
raise NotImplementedError()
def close(self):
self.sampler = None
self.c = None
self.uc = None
if not opts.persistent_cond_cache:
StableDiffusionProcessing.cached_c = [None, None]
StableDiffusionProcessing.cached_uc = [None, None]
def get_token_merging_ratio(self, for_hr=False):
if for_hr:
return self.token_merging_ratio_hr or opts.token_merging_ratio_hr or self.token_merging_ratio or opts.token_merging_ratio
return self.token_merging_ratio or opts.token_merging_ratio
def setup_prompts(self):
if isinstance(self.prompt,list):
self.all_prompts = self.prompt
elif isinstance(self.negative_prompt, list):
self.all_prompts = [self.prompt] * len(self.negative_prompt)
else:
self.all_prompts = self.batch_size * self.n_iter * [self.prompt]
if isinstance(self.negative_prompt, list):
self.all_negative_prompts = self.negative_prompt
else:
self.all_negative_prompts = [self.negative_prompt] * len(self.all_prompts)
if len(self.all_prompts) != len(self.all_negative_prompts):
raise RuntimeError(f"Received a different number of prompts ({len(self.all_prompts)}) and negative prompts ({len(self.all_negative_prompts)})")
self.all_prompts = [shared.prompt_styles.apply_styles_to_prompt(x, self.styles) for x in self.all_prompts]
self.all_negative_prompts = [shared.prompt_styles.apply_negative_styles_to_prompt(x, self.styles) for x in self.all_negative_prompts]
self.main_prompt = self.all_prompts[0]
self.main_negative_prompt = self.all_negative_prompts[0]
def cached_params(self, required_prompts, steps, extra_network_data, hires_steps=None, use_old_scheduling=False):
"""Returns parameters that invalidate the cond cache if changed"""
return (
required_prompts,
steps,
hires_steps,
use_old_scheduling,
opts.CLIP_stop_at_last_layers,
shared.sd_model.sd_checkpoint_info,
extra_network_data,
opts.sdxl_crop_left,
opts.sdxl_crop_top,
self.width,
self.height,
opts.fp8_storage,
opts.cache_fp16_weight,
)
def get_conds_with_caching(self, function, required_prompts, steps, caches, extra_network_data, hires_steps=None):
"""
Returns the result of calling function(shared.sd_model, required_prompts, steps)
using a cache to store the result if the same arguments have been used before.
cache is an array containing two elements. The first element is a tuple
representing the previously used arguments, or None if no arguments
have been used before. The second element is where the previously
computed result is stored.
caches is a list with items described above.
"""
if shared.opts.use_old_scheduling:
old_schedules = prompt_parser.get_learned_conditioning_prompt_schedules(required_prompts, steps, hires_steps, False)
new_schedules = prompt_parser.get_learned_conditioning_prompt_schedules(required_prompts, steps, hires_steps, True)
if old_schedules != new_schedules:
self.extra_generation_params["Old prompt editing timelines"] = True
cached_params = self.cached_params(required_prompts, steps, extra_network_data, hires_steps, shared.opts.use_old_scheduling)
for cache in caches:
if cache[0] is not None and cached_params == cache[0]:
return cache[1]
cache = caches[0]
with devices.autocast():
cache[1] = function(shared.sd_model, required_prompts, steps, hires_steps, shared.opts.use_old_scheduling)
cache[0] = cached_params
return cache[1]
def setup_conds(self):
prompts = prompt_parser.SdConditioning(self.prompts, width=self.width, height=self.height)
negative_prompts = prompt_parser.SdConditioning(self.negative_prompts, width=self.width, height=self.height, is_negative_prompt=True)
sampler_config = sd_samplers.find_sampler_config(self.sampler_name)
total_steps = sampler_config.total_steps(self.steps) if sampler_config else self.steps
self.step_multiplier = total_steps // self.steps
self.firstpass_steps = total_steps
self.uc = self.get_conds_with_caching(prompt_parser.get_learned_conditioning, negative_prompts, total_steps, [self.cached_uc], self.extra_network_data)
self.c = self.get_conds_with_caching(prompt_parser.get_multicond_learned_conditioning, prompts, total_steps, [self.cached_c], self.extra_network_data)
def get_conds(self):
return self.c, self.uc
def parse_extra_network_prompts(self):
self.prompts, self.extra_network_data = extra_networks.parse_prompts(self.prompts)
def save_samples(self) -> bool:
"""Returns whether generated images need to be written to disk"""
return opts.samples_save and not self.do_not_save_samples and (opts.save_incomplete_images or not state.interrupted and not state.skipped)
class Processed:
def __init__(self, p: StableDiffusionProcessing, images_list, seed=-1, info="", subseed=None, all_prompts=None, all_negative_prompts=None, all_seeds=None, all_subseeds=None, index_of_first_image=0, infotexts=None, comments=""):
self.images = images_list
self.prompt = p.prompt
self.negative_prompt = p.negative_prompt
self.seed = seed
self.subseed = subseed
self.subseed_strength = p.subseed_strength
self.info = info
self.comments = "".join(f"{comment}\n" for comment in p.comments)
self.width = p.width
self.height = p.height
self.sampler_name = p.sampler_name
self.cfg_scale = p.cfg_scale
self.image_cfg_scale = getattr(p, 'image_cfg_scale', None)
self.steps = p.steps
self.batch_size = p.batch_size
self.restore_faces = p.restore_faces
self.face_restoration_model = opts.face_restoration_model if p.restore_faces else None
self.sd_model_name = p.sd_model_name
self.sd_model_hash = p.sd_model_hash
self.sd_vae_name = p.sd_vae_name
self.sd_vae_hash = p.sd_vae_hash
self.seed_resize_from_w = p.seed_resize_from_w
self.seed_resize_from_h = p.seed_resize_from_h
self.denoising_strength = getattr(p, 'denoising_strength', None)
self.extra_generation_params = p.extra_generation_params
self.index_of_first_image = index_of_first_image
self.styles = p.styles
self.job_timestamp = state.job_timestamp
self.clip_skip = opts.CLIP_stop_at_last_layers
self.token_merging_ratio = p.token_merging_ratio
self.token_merging_ratio_hr = p.token_merging_ratio_hr
self.eta = p.eta
self.ddim_discretize = p.ddim_discretize
self.s_churn = p.s_churn
self.s_tmin = p.s_tmin
self.s_tmax = p.s_tmax
self.s_noise = p.s_noise
self.s_min_uncond = p.s_min_uncond
self.sampler_noise_scheduler_override = p.sampler_noise_scheduler_override
self.prompt = self.prompt if not isinstance(self.prompt, list) else self.prompt[0]
self.negative_prompt = self.negative_prompt if not isinstance(self.negative_prompt, list) else self.negative_prompt[0]
self.seed = int(self.seed if not isinstance(self.seed, list) else self.seed[0]) if self.seed is not None else -1
self.subseed = int(self.subseed if not isinstance(self.subseed, list) else self.subseed[0]) if self.subseed is not None else -1
self.is_using_inpainting_conditioning = p.is_using_inpainting_conditioning
self.all_prompts = all_prompts or p.all_prompts or [self.prompt]
self.all_negative_prompts = all_negative_prompts or p.all_negative_prompts or [self.negative_prompt]
self.all_seeds = all_seeds or p.all_seeds or [self.seed]
self.all_subseeds = all_subseeds or p.all_subseeds or [self.subseed]
self.infotexts = infotexts or [info]
self.version = program_version()
def js(self):
obj = {
"prompt": self.all_prompts[0],
"all_prompts": self.all_prompts,
"negative_prompt": self.all_negative_prompts[0],
"all_negative_prompts": self.all_negative_prompts,
"seed": self.seed,
"all_seeds": self.all_seeds,
"subseed": self.subseed,
"all_subseeds": self.all_subseeds,
"subseed_strength": self.subseed_strength,
"width": self.width,
"height": self.height,
"sampler_name": self.sampler_name,
"cfg_scale": self.cfg_scale,
"steps": self.steps,
"batch_size": self.batch_size,
"restore_faces": self.restore_faces,
"face_restoration_model": self.face_restoration_model,
"sd_model_name": self.sd_model_name,
"sd_model_hash": self.sd_model_hash,
"sd_vae_name": self.sd_vae_name,
"sd_vae_hash": self.sd_vae_hash,
"seed_resize_from_w": self.seed_resize_from_w,
"seed_resize_from_h": self.seed_resize_from_h,
"denoising_strength": self.denoising_strength,
"extra_generation_params": self.extra_generation_params,
"index_of_first_image": self.index_of_first_image,
"infotexts": self.infotexts,
"styles": self.styles,
"job_timestamp": self.job_timestamp,
"clip_skip": self.clip_skip,
"is_using_inpainting_conditioning": self.is_using_inpainting_conditioning,
"version": self.version,
}
return json.dumps(obj)
def infotext(self, p: StableDiffusionProcessing, index):
return create_infotext(p, self.all_prompts, self.all_seeds, self.all_subseeds, comments=[], position_in_batch=index % self.batch_size, iteration=index // self.batch_size)
def get_token_merging_ratio(self, for_hr=False):
return self.token_merging_ratio_hr if for_hr else self.token_merging_ratio
def create_random_tensors(shape, seeds, subseeds=None, subseed_strength=0.0, seed_resize_from_h=0, seed_resize_from_w=0, p=None):
g = rng.ImageRNG(shape, seeds, subseeds=subseeds, subseed_strength=subseed_strength, seed_resize_from_h=seed_resize_from_h, seed_resize_from_w=seed_resize_from_w)
return g.next()
class DecodedSamples(list):
already_decoded = True
def decode_latent_batch(model, batch, target_device=None, check_for_nans=False):
samples = DecodedSamples()
for i in range(batch.shape[0]):
sample = decode_first_stage(model, batch[i:i + 1])[0]
if check_for_nans:
try:
devices.test_for_nans(sample, "vae")
except devices.NansException as e:
if shared.opts.auto_vae_precision_bfloat16:
autofix_dtype = torch.bfloat16
autofix_dtype_text = "bfloat16"
autofix_dtype_setting = "Automatically convert VAE to bfloat16"
autofix_dtype_comment = ""
elif shared.opts.auto_vae_precision:
autofix_dtype = torch.float32
autofix_dtype_text = "32-bit float"
autofix_dtype_setting = "Automatically revert VAE to 32-bit floats"
autofix_dtype_comment = "\nTo always start with 32-bit VAE, use --no-half-vae commandline flag."
else:
raise e
if devices.dtype_vae == autofix_dtype:
raise e
errors.print_error_explanation(
"A tensor with all NaNs was produced in VAE.\n"
f"Web UI will now convert VAE into {autofix_dtype_text} and retry.\n"
f"To disable this behavior, disable the '{autofix_dtype_setting}' setting.{autofix_dtype_comment}"
)
devices.dtype_vae = autofix_dtype
model.first_stage_model.to(devices.dtype_vae)
batch = batch.to(devices.dtype_vae)
sample = decode_first_stage(model, batch[i:i + 1])[0]
if target_device is not None:
sample = sample.to(target_device)
samples.append(sample)
return samples
def get_fixed_seed(seed):
if seed == '' or seed is None:
seed = -1
elif isinstance(seed, str):
try:
seed = int(seed)
except Exception:
seed = -1
if seed == -1:
return int(random.randrange(4294967294))
return seed
def fix_seed(p):
p.seed = get_fixed_seed(p.seed)
p.subseed = get_fixed_seed(p.subseed)
def program_version():
import launch
res = launch.git_tag()
if res == "<none>":
res = None
return res
def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments=None, iteration=0, position_in_batch=0, use_main_prompt=False, index=None, all_negative_prompts=None):
if index is None:
index = position_in_batch + iteration * p.batch_size
if all_negative_prompts is None:
all_negative_prompts = p.all_negative_prompts
clip_skip = getattr(p, 'clip_skip', opts.CLIP_stop_at_last_layers)
enable_hr = getattr(p, 'enable_hr', False)
token_merging_ratio = p.get_token_merging_ratio()
token_merging_ratio_hr = p.get_token_merging_ratio(for_hr=True)
uses_ensd = opts.eta_noise_seed_delta != 0
if uses_ensd:
uses_ensd = sd_samplers_common.is_sampler_using_eta_noise_seed_delta(p)
generation_params = {
"Steps": p.steps,
"Sampler": p.sampler_name,
"CFG scale": p.cfg_scale,
"Image CFG scale": getattr(p, 'image_cfg_scale', None),
"Seed": p.all_seeds[0] if use_main_prompt else all_seeds[index],
"Face restoration": opts.face_restoration_model if p.restore_faces else None,
"Size": f"{p.width}x{p.height}",
"Model hash": p.sd_model_hash if opts.add_model_hash_to_info else None,
"Model": p.sd_model_name if opts.add_model_name_to_info else None,
"FP8 weight": opts.fp8_storage if devices.fp8 else None,
"Cache FP16 weight for LoRA": opts.cache_fp16_weight if devices.fp8 else None,
"VAE hash": p.sd_vae_hash if opts.add_vae_hash_to_info else None,
"VAE": p.sd_vae_name if opts.add_vae_name_to_info else None,
"Variation seed": (None if p.subseed_strength == 0 else (p.all_subseeds[0] if use_main_prompt else all_subseeds[index])),
"Variation seed strength": (None if p.subseed_strength == 0 else p.subseed_strength),
"Seed resize from": (None if p.seed_resize_from_w <= 0 or p.seed_resize_from_h <= 0 else f"{p.seed_resize_from_w}x{p.seed_resize_from_h}"),
"Denoising strength": p.extra_generation_params.get("Denoising strength"),
"Conditional mask weight": getattr(p, "inpainting_mask_weight", shared.opts.inpainting_mask_weight) if p.is_using_inpainting_conditioning else None,
"Clip skip": None if clip_skip <= 1 else clip_skip,
"ENSD": opts.eta_noise_seed_delta if uses_ensd else None,
"Token merging ratio": None if token_merging_ratio == 0 else token_merging_ratio,
"Token merging ratio hr": None if not enable_hr or token_merging_ratio_hr == 0 else token_merging_ratio_hr,
"Init image hash": getattr(p, 'init_img_hash', None),
"RNG": opts.randn_source if opts.randn_source != "GPU" else None,
"NGMS": None if p.s_min_uncond == 0 else p.s_min_uncond,
"Tiling": "True" if p.tiling else None,
**p.extra_generation_params,
"Version": program_version() if opts.add_version_to_infotext else None,
"User": p.user if opts.add_user_name_to_info else None,
}
generation_params_text = ", ".join([k if k == v else f'{k}: {infotext_utils.quote(v)}' for k, v in generation_params.items() if v is not None])
prompt_text = p.main_prompt if use_main_prompt else all_prompts[index]
negative_prompt_text = f"\nNegative prompt: {p.main_negative_prompt if use_main_prompt else all_negative_prompts[index]}" if all_negative_prompts[index] else ""
return f"{prompt_text}{negative_prompt_text}\n{generation_params_text}".strip()
def process_images(p: StableDiffusionProcessing) -> Processed:
if p.scripts is not None:
p.scripts.before_process(p)
stored_opts = {k: opts.data[k] if k in opts.data else opts.get_default(k) for k in p.override_settings.keys() if k in opts.data}
try:
# if no checkpoint override or the override checkpoint can't be found, remove override entry and load opts checkpoint
# and if after running refiner, the refiner model is not unloaded - webui swaps back to main model here, if model over is present it will be reloaded afterwards
if sd_models.checkpoint_aliases.get(p.override_settings.get('sd_model_checkpoint')) is None:
p.override_settings.pop('sd_model_checkpoint', None)
sd_models.reload_model_weights()
for k, v in p.override_settings.items():
opts.set(k, v, is_api=True, run_callbacks=False)
if k == 'sd_model_checkpoint':
sd_models.reload_model_weights()
if k == 'sd_vae':
sd_vae.reload_vae_weights()
sd_models.apply_token_merging(p.sd_model, p.get_token_merging_ratio())
res = process_images_inner(p)
finally:
sd_models.apply_token_merging(p.sd_model, 0)
# restore opts to original state
if p.override_settings_restore_afterwards:
for k, v in stored_opts.items():
setattr(opts, k, v)
if k == 'sd_vae':
sd_vae.reload_vae_weights()
return res
def process_images_inner(p: StableDiffusionProcessing) -> Processed:
"""this is the main loop that both txt2img and img2img use; it calls func_init once inside all the scopes and func_sample once per batch"""
if isinstance(p.prompt, list):
assert(len(p.prompt) > 0)
else:
assert p.prompt is not None
devices.torch_gc()
seed = get_fixed_seed(p.seed)
subseed = get_fixed_seed(p.subseed)
if p.restore_faces is None:
p.restore_faces = opts.face_restoration
if p.tiling is None:
p.tiling = opts.tiling
if p.refiner_checkpoint not in (None, "", "None", "none"):
p.refiner_checkpoint_info = sd_models.get_closet_checkpoint_match(p.refiner_checkpoint)
if p.refiner_checkpoint_info is None:
raise Exception(f'Could not find checkpoint with name {p.refiner_checkpoint}')
p.sd_model_name = shared.sd_model.sd_checkpoint_info.name_for_extra
p.sd_model_hash = shared.sd_model.sd_model_hash
p.sd_vae_name = sd_vae.get_loaded_vae_name()
p.sd_vae_hash = sd_vae.get_loaded_vae_hash()
modules.sd_hijack.model_hijack.apply_circular(p.tiling)
modules.sd_hijack.model_hijack.clear_comments()
p.setup_prompts()
if isinstance(seed, list):
p.all_seeds = seed
else:
p.all_seeds = [int(seed) + (x if p.subseed_strength == 0 else 0) for x in range(len(p.all_prompts))]
if isinstance(subseed, list):
p.all_subseeds = subseed
else:
p.all_subseeds = [int(subseed) + x for x in range(len(p.all_prompts))]
if os.path.exists(cmd_opts.embeddings_dir) and not p.do_not_reload_embeddings:
model_hijack.embedding_db.load_textual_inversion_embeddings()
if p.scripts is not None:
p.scripts.process(p)
infotexts = []
output_images = []
with torch.no_grad(), p.sd_model.ema_scope():
with devices.autocast():
p.init(p.all_prompts, p.all_seeds, p.all_subseeds)
# for OSX, loading the model during sampling changes the generated picture, so it is loaded here
if shared.opts.live_previews_enable and opts.show_progress_type == "Approx NN":
sd_vae_approx.model()
sd_unet.apply_unet()
if state.job_count == -1:
state.job_count = p.n_iter
for n in range(p.n_iter):
p.iteration = n
if state.skipped:
state.skipped = False
if state.interrupted or state.stopping_generation:
break
sd_models.reload_model_weights() # model can be changed for example by refiner
p.prompts = p.all_prompts[n * p.batch_size:(n + 1) * p.batch_size]
p.negative_prompts = p.all_negative_prompts[n * p.batch_size:(n + 1) * p.batch_size]
p.seeds = p.all_seeds[n * p.batch_size:(n + 1) * p.batch_size]
p.subseeds = p.all_subseeds[n * p.batch_size:(n + 1) * p.batch_size]
p.rng = rng.ImageRNG((opt_C, p.height // opt_f, p.width // opt_f), p.seeds, subseeds=p.subseeds, subseed_strength=p.subseed_strength, seed_resize_from_h=p.seed_resize_from_h, seed_resize_from_w=p.seed_resize_from_w)
if p.scripts is not None:
p.scripts.before_process_batch(p, batch_number=n, prompts=p.prompts, seeds=p.seeds, subseeds=p.subseeds)
if len(p.prompts) == 0:
break
p.parse_extra_network_prompts()
if not p.disable_extra_networks:
with devices.autocast():
extra_networks.activate(p, p.extra_network_data)
if p.scripts is not None:
p.scripts.process_batch(p, batch_number=n, prompts=p.prompts, seeds=p.seeds, subseeds=p.subseeds)
# params.txt should be saved after scripts.process_batch, since the
# infotext could be modified by that callback
# Example: a wildcard processed by process_batch sets an extra model
# strength, which is saved as "Model Strength: 1.0" in the infotext
if n == 0:
with open(os.path.join(paths.data_path, "params.txt"), "w", encoding="utf8") as file:
processed = Processed(p, [])
file.write(processed.infotext(p, 0))
p.setup_conds()
for comment in model_hijack.comments:
p.comment(comment)
p.extra_generation_params.update(model_hijack.extra_generation_params)
if p.n_iter > 1:
shared.state.job = f"Batch {n+1} out of {p.n_iter}"
def rescale_zero_terminal_snr_abar(alphas_cumprod):
alphas_bar_sqrt = alphas_cumprod.sqrt()
# Store old values.
alphas_bar_sqrt_0 = alphas_bar_sqrt[0].clone()
alphas_bar_sqrt_T = alphas_bar_sqrt[-1].clone()
# Shift so the last timestep is zero.
alphas_bar_sqrt -= (alphas_bar_sqrt_T)
# Scale so the first timestep is back to the old value.
alphas_bar_sqrt *= alphas_bar_sqrt_0 / (alphas_bar_sqrt_0 - alphas_bar_sqrt_T)
# Convert alphas_bar_sqrt to betas
alphas_bar = alphas_bar_sqrt**2 # Revert sqrt
alphas_bar[-1] = 4.8973451890853435e-08
return alphas_bar
if hasattr(p.sd_model, 'alphas_cumprod') and hasattr(p.sd_model, 'alphas_cumprod_original'):
p.sd_model.alphas_cumprod = p.sd_model.alphas_cumprod_original.to(shared.device)
if opts.use_downcasted_alpha_bar:
p.extra_generation_params['Downcast alphas_cumprod'] = opts.use_downcasted_alpha_bar
p.sd_model.alphas_cumprod = p.sd_model.alphas_cumprod.half().to(shared.device)
if opts.sd_noise_schedule == "Zero Terminal SNR":
p.extra_generation_params['Noise Schedule'] = opts.sd_noise_schedule
p.sd_model.alphas_cumprod = rescale_zero_terminal_snr_abar(p.sd_model.alphas_cumprod).to(shared.device)
with devices.without_autocast() if devices.unet_needs_upcast else devices.autocast():
samples_ddim = p.sample(conditioning=p.c, unconditional_conditioning=p.uc, seeds=p.seeds, subseeds=p.subseeds, subseed_strength=p.subseed_strength, prompts=p.prompts)
if p.scripts is not None:
ps = scripts.PostSampleArgs(samples_ddim)
p.scripts.post_sample(p, ps)
samples_ddim = ps.samples
if getattr(samples_ddim, 'already_decoded', False):
x_samples_ddim = samples_ddim
else:
if opts.sd_vae_decode_method != 'Full':
p.extra_generation_params['VAE Decoder'] = opts.sd_vae_decode_method
x_samples_ddim = decode_latent_batch(p.sd_model, samples_ddim, target_device=devices.cpu, check_for_nans=True)
x_samples_ddim = torch.stack(x_samples_ddim).float()
x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
del samples_ddim
if lowvram.is_enabled(shared.sd_model):
lowvram.send_everything_to_cpu()
devices.torch_gc()
state.nextjob()
if p.scripts is not None:
p.scripts.postprocess_batch(p, x_samples_ddim, batch_number=n)
p.prompts = p.all_prompts[n * p.batch_size:(n + 1) * p.batch_size]
p.negative_prompts = p.all_negative_prompts[n * p.batch_size:(n + 1) * p.batch_size]
batch_params = scripts.PostprocessBatchListArgs(list(x_samples_ddim))
p.scripts.postprocess_batch_list(p, batch_params, batch_number=n)
x_samples_ddim = batch_params.images
def infotext(index=0, use_main_prompt=False):
return create_infotext(p, p.prompts, p.seeds, p.subseeds, use_main_prompt=use_main_prompt, index=index, all_negative_prompts=p.negative_prompts)
save_samples = p.save_samples()
for i, x_sample in enumerate(x_samples_ddim):
p.batch_index = i
x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2)
x_sample = x_sample.astype(np.uint8)
if p.restore_faces:
if save_samples and opts.save_images_before_face_restoration:
images.save_image(Image.fromarray(x_sample), p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(i), p=p, suffix="-before-face-restoration")
devices.torch_gc()
x_sample = modules.face_restoration.restore_faces(x_sample)
devices.torch_gc()
image = Image.fromarray(x_sample)
if p.scripts is not None:
pp = scripts.PostprocessImageArgs(image)
p.scripts.postprocess_image(p, pp)
image = pp.image
mask_for_overlay = getattr(p, "mask_for_overlay", None)
overlay_image = p.overlay_images[i] if getattr(p, "overlay_images", None) is not None and i < len(p.overlay_images) else None
if p.scripts is not None:
ppmo = scripts.PostProcessMaskOverlayArgs(i, mask_for_overlay, overlay_image)
p.scripts.postprocess_maskoverlay(p, ppmo)
mask_for_overlay, overlay_image = ppmo.mask_for_overlay, ppmo.overlay_image
if p.color_corrections is not None and i < len(p.color_corrections):
if save_samples and opts.save_images_before_color_correction:
image_without_cc = apply_overlay(image, p.paste_to, overlay_image)
images.save_image(image_without_cc, p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(i), p=p, suffix="-before-color-correction")
image = apply_color_correction(p.color_corrections[i], image)
# If the intention is to show the output from the model
# that is being composited over the original image,
# we need to keep the original image around
# and use it in the composite step.
original_denoised_image = image.copy()
if p.paste_to is not None:
original_denoised_image = uncrop(original_denoised_image, (overlay_image.width, overlay_image.height), p.paste_to)
image = apply_overlay(image, p.paste_to, overlay_image)
if p.scripts is not None:
pp = scripts.PostprocessImageArgs(image)
p.scripts.postprocess_image_after_composite(p, pp)
image = pp.image
if save_samples:
images.save_image(image, p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(i), p=p)
text = infotext(i)
infotexts.append(text)
if opts.enable_pnginfo:
image.info["parameters"] = text
output_images.append(image)
if mask_for_overlay is not None:
if opts.return_mask or opts.save_mask:
image_mask = mask_for_overlay.convert('RGB')
if save_samples and opts.save_mask:
images.save_image(image_mask, p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(i), p=p, suffix="-mask")
if opts.return_mask:
output_images.append(image_mask)
if opts.return_mask_composite or opts.save_mask_composite:
image_mask_composite = Image.composite(original_denoised_image.convert('RGBA').convert('RGBa'), Image.new('RGBa', image.size), images.resize_image(2, mask_for_overlay, image.width, image.height).convert('L')).convert('RGBA')
if save_samples and opts.save_mask_composite:
images.save_image(image_mask_composite, p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(i), p=p, suffix="-mask-composite")
if opts.return_mask_composite:
output_images.append(image_mask_composite)
del x_samples_ddim
devices.torch_gc()
if not infotexts:
infotexts.append(Processed(p, []).infotext(p, 0))
p.color_corrections = None
index_of_first_image = 0
unwanted_grid_because_of_img_count = len(output_images) < 2 and opts.grid_only_if_multiple
if (opts.return_grid or opts.grid_save) and not p.do_not_save_grid and not unwanted_grid_because_of_img_count:
grid = images.image_grid(output_images, p.batch_size)
if opts.return_grid:
text = infotext(use_main_prompt=True)
infotexts.insert(0, text)
if opts.enable_pnginfo:
grid.info["parameters"] = text
output_images.insert(0, grid)
index_of_first_image = 1
if opts.grid_save:
images.save_image(grid, p.outpath_grids, "grid", p.all_seeds[0], p.all_prompts[0], opts.grid_format, info=infotext(use_main_prompt=True), short_filename=not opts.grid_extended_filename, p=p, grid=True)
if not p.disable_extra_networks and p.extra_network_data:
extra_networks.deactivate(p, p.extra_network_data)
devices.torch_gc()
res = Processed(
p,
images_list=output_images,
seed=p.all_seeds[0],
info=infotexts[0],
subseed=p.all_subseeds[0],
index_of_first_image=index_of_first_image,
infotexts=infotexts,
)
if p.scripts is not None:
p.scripts.postprocess(p, res)
return res
def old_hires_fix_first_pass_dimensions(width, height):
"""old algorithm for auto-calculating first pass size"""
desired_pixel_count = 512 * 512
actual_pixel_count = width * height
scale = math.sqrt(desired_pixel_count / actual_pixel_count)
width = math.ceil(scale * width / 64) * 64
height = math.ceil(scale * height / 64) * 64
return width, height
@dataclass(repr=False)
class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
enable_hr: bool = False
denoising_strength: float = 0.75
firstphase_width: int = 0
firstphase_height: int = 0
hr_scale: float = 2.0
hr_upscaler: str = None
hr_second_pass_steps: int = 0
hr_resize_x: int = 0
hr_resize_y: int = 0
hr_checkpoint_name: str = None
hr_sampler_name: str = None
hr_prompt: str = ''
hr_negative_prompt: str = ''
force_task_id: str = None
cached_hr_uc = [None, None]
cached_hr_c = [None, None]
hr_checkpoint_info: dict = field(default=None, init=False)
hr_upscale_to_x: int = field(default=0, init=False)
hr_upscale_to_y: int = field(default=0, init=False)
truncate_x: int = field(default=0, init=False)
truncate_y: int = field(default=0, init=False)
applied_old_hires_behavior_to: tuple = field(default=None, init=False)
latent_scale_mode: dict = field(default=None, init=False)
hr_c: tuple | None = field(default=None, init=False)
hr_uc: tuple | None = field(default=None, init=False)
all_hr_prompts: list = field(default=None, init=False)
all_hr_negative_prompts: list = field(default=None, init=False)
hr_prompts: list = field(default=None, init=False)
hr_negative_prompts: list = field(default=None, init=False)
hr_extra_network_data: list = field(default=None, init=False)
def __post_init__(self):
super().__post_init__()
if self.firstphase_width != 0 or self.firstphase_height != 0:
self.hr_upscale_to_x = self.width
self.hr_upscale_to_y = self.height
self.width = self.firstphase_width
self.height = self.firstphase_height
self.cached_hr_uc = StableDiffusionProcessingTxt2Img.cached_hr_uc
self.cached_hr_c = StableDiffusionProcessingTxt2Img.cached_hr_c
def calculate_target_resolution(self):
if opts.use_old_hires_fix_width_height and self.applied_old_hires_behavior_to != (self.width, self.height):
self.hr_resize_x = self.width
self.hr_resize_y = self.height
self.hr_upscale_to_x = self.width
self.hr_upscale_to_y = self.height
self.width, self.height = old_hires_fix_first_pass_dimensions(self.width, self.height)
self.applied_old_hires_behavior_to = (self.width, self.height)
if self.hr_resize_x == 0 and self.hr_resize_y == 0:
self.extra_generation_params["Hires upscale"] = self.hr_scale
self.hr_upscale_to_x = int(self.width * self.hr_scale)
self.hr_upscale_to_y = int(self.height * self.hr_scale)
else:
self.extra_generation_params["Hires resize"] = f"{self.hr_resize_x}x{self.hr_resize_y}"
if self.hr_resize_y == 0:
self.hr_upscale_to_x = self.hr_resize_x
self.hr_upscale_to_y = self.hr_resize_x * self.height // self.width
elif self.hr_resize_x == 0:
self.hr_upscale_to_x = self.hr_resize_y * self.width // self.height
self.hr_upscale_to_y = self.hr_resize_y
else:
target_w = self.hr_resize_x
target_h = self.hr_resize_y
src_ratio = self.width / self.height
dst_ratio = self.hr_resize_x / self.hr_resize_y
if src_ratio < dst_ratio:
self.hr_upscale_to_x = self.hr_resize_x
self.hr_upscale_to_y = self.hr_resize_x * self.height // self.width
else:
self.hr_upscale_to_x = self.hr_resize_y * self.width // self.height
self.hr_upscale_to_y = self.hr_resize_y
self.truncate_x = (self.hr_upscale_to_x - target_w) // opt_f
self.truncate_y = (self.hr_upscale_to_y - target_h) // opt_f
def init(self, all_prompts, all_seeds, all_subseeds):
if self.enable_hr:
self.extra_generation_params["Denoising strength"] = self.denoising_strength
if self.hr_checkpoint_name and self.hr_checkpoint_name != 'Use same checkpoint':
self.hr_checkpoint_info = sd_models.get_closet_checkpoint_match(self.hr_checkpoint_name)
if self.hr_checkpoint_info is None:
raise Exception(f'Could not find checkpoint with name {self.hr_checkpoint_name}')
self.extra_generation_params["Hires checkpoint"] = self.hr_checkpoint_info.short_title
if self.hr_sampler_name is not None and self.hr_sampler_name != self.sampler_name:
self.extra_generation_params["Hires sampler"] = self.hr_sampler_name
if tuple(self.hr_prompt) != tuple(self.prompt):
self.extra_generation_params["Hires prompt"] = self.hr_prompt
if tuple(self.hr_negative_prompt) != tuple(self.negative_prompt):
self.extra_generation_params["Hires negative prompt"] = self.hr_negative_prompt
self.latent_scale_mode = shared.latent_upscale_modes.get(self.hr_upscaler, None) if self.hr_upscaler is not None else shared.latent_upscale_modes.get(shared.latent_upscale_default_mode, "nearest")
if self.enable_hr and self.latent_scale_mode is None:
if not any(x.name == self.hr_upscaler for x in shared.sd_upscalers):
raise Exception(f"could not find upscaler named {self.hr_upscaler}")
self.calculate_target_resolution()
if not state.processing_has_refined_job_count:
if state.job_count == -1:
state.job_count = self.n_iter
if getattr(self, 'txt2img_upscale', False):
total_steps = (self.hr_second_pass_steps or self.steps) * state.job_count
else:
total_steps = (self.steps + (self.hr_second_pass_steps or self.steps)) * state.job_count
shared.total_tqdm.updateTotal(total_steps)
state.job_count = state.job_count * 2
state.processing_has_refined_job_count = True
if self.hr_second_pass_steps:
self.extra_generation_params["Hires steps"] = self.hr_second_pass_steps
if self.hr_upscaler is not None:
self.extra_generation_params["Hires upscaler"] = self.hr_upscaler
def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength, prompts):
self.sampler = sd_samplers.create_sampler(self.sampler_name, self.sd_model)
if self.firstpass_image is not None and self.enable_hr:
# here we don't need to generate image, we just take self.firstpass_image and prepare it for hires fix
if self.latent_scale_mode is None:
image = np.array(self.firstpass_image).astype(np.float32) / 255.0 * 2.0 - 1.0
image = np.moveaxis(image, 2, 0)
samples = None
decoded_samples = torch.asarray(np.expand_dims(image, 0))
else:
image = np.array(self.firstpass_image).astype(np.float32) / 255.0
image = np.moveaxis(image, 2, 0)
image = torch.from_numpy(np.expand_dims(image, axis=0))
image = image.to(shared.device, dtype=devices.dtype_vae)
if opts.sd_vae_encode_method != 'Full':
self.extra_generation_params['VAE Encoder'] = opts.sd_vae_encode_method
samples = images_tensor_to_samples(image, approximation_indexes.get(opts.sd_vae_encode_method), self.sd_model)
decoded_samples = None
devices.torch_gc()
else:
# here we generate an image normally
x = self.rng.next()
samples = self.sampler.sample(self, x, conditioning, unconditional_conditioning, image_conditioning=self.txt2img_image_conditioning(x))
del x
if not self.enable_hr:
return samples
devices.torch_gc()
if self.latent_scale_mode is None:
decoded_samples = torch.stack(decode_latent_batch(self.sd_model, samples, target_device=devices.cpu, check_for_nans=True)).to(dtype=torch.float32)
else:
decoded_samples = None
with sd_models.SkipWritingToConfig():
sd_models.reload_model_weights(info=self.hr_checkpoint_info)
return self.sample_hr_pass(samples, decoded_samples, seeds, subseeds, subseed_strength, prompts)
def sample_hr_pass(self, samples, decoded_samples, seeds, subseeds, subseed_strength, prompts):
if shared.state.interrupted:
return samples
self.is_hr_pass = True
target_width = self.hr_upscale_to_x
target_height = self.hr_upscale_to_y
def save_intermediate(image, index):
"""saves image before applying hires fix, if enabled in options; takes as an argument either an image or batch with latent space images"""
if not self.save_samples() or not opts.save_images_before_highres_fix:
return
if not isinstance(image, Image.Image):
image = sd_samplers.sample_to_image(image, index, approximation=0)
info = create_infotext(self, self.all_prompts, self.all_seeds, self.all_subseeds, [], iteration=self.iteration, position_in_batch=index)
images.save_image(image, self.outpath_samples, "", seeds[index], prompts[index], opts.samples_format, info=info, p=self, suffix="-before-highres-fix")
img2img_sampler_name = self.hr_sampler_name or self.sampler_name
self.sampler = sd_samplers.create_sampler(img2img_sampler_name, self.sd_model)
if self.latent_scale_mode is not None:
for i in range(samples.shape[0]):
save_intermediate(samples, i)
samples = torch.nn.functional.interpolate(samples, size=(target_height // opt_f, target_width // opt_f), mode=self.latent_scale_mode["mode"], antialias=self.latent_scale_mode["antialias"])
# Avoid making the inpainting conditioning unless necessary as
# this does need some extra compute to decode / encode the image again.
if getattr(self, "inpainting_mask_weight", shared.opts.inpainting_mask_weight) < 1.0:
image_conditioning = self.img2img_image_conditioning(decode_first_stage(self.sd_model, samples), samples)
else:
image_conditioning = self.txt2img_image_conditioning(samples)
else:
lowres_samples = torch.clamp((decoded_samples + 1.0) / 2.0, min=0.0, max=1.0)
batch_images = []
for i, x_sample in enumerate(lowres_samples):
x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2)
x_sample = x_sample.astype(np.uint8)
image = Image.fromarray(x_sample)
save_intermediate(image, i)
image = images.resize_image(0, image, target_width, target_height, upscaler_name=self.hr_upscaler)
image = np.array(image).astype(np.float32) / 255.0
image = np.moveaxis(image, 2, 0)
batch_images.append(image)
decoded_samples = torch.from_numpy(np.array(batch_images))
decoded_samples = decoded_samples.to(shared.device, dtype=devices.dtype_vae)
if opts.sd_vae_encode_method != 'Full':
self.extra_generation_params['VAE Encoder'] = opts.sd_vae_encode_method
samples = images_tensor_to_samples(decoded_samples, approximation_indexes.get(opts.sd_vae_encode_method))
image_conditioning = self.img2img_image_conditioning(decoded_samples, samples)
shared.state.nextjob()
samples = samples[:, :, self.truncate_y//2:samples.shape[2]-(self.truncate_y+1)//2, self.truncate_x//2:samples.shape[3]-(self.truncate_x+1)//2]
self.rng = rng.ImageRNG(samples.shape[1:], self.seeds, subseeds=self.subseeds, subseed_strength=self.subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w)
noise = self.rng.next()
# GC now before running the next img2img to prevent running out of memory
devices.torch_gc()
if not self.disable_extra_networks:
with devices.autocast():
extra_networks.activate(self, self.hr_extra_network_data)
with devices.autocast():
self.calculate_hr_conds()
sd_models.apply_token_merging(self.sd_model, self.get_token_merging_ratio(for_hr=True))
if self.scripts is not None:
self.scripts.before_hr(self)
samples = self.sampler.sample_img2img(self, samples, noise, self.hr_c, self.hr_uc, steps=self.hr_second_pass_steps or self.steps, image_conditioning=image_conditioning)
sd_models.apply_token_merging(self.sd_model, self.get_token_merging_ratio())
self.sampler = None
devices.torch_gc()
decoded_samples = decode_latent_batch(self.sd_model, samples, target_device=devices.cpu, check_for_nans=True)
self.is_hr_pass = False
return decoded_samples
def close(self):
super().close()
self.hr_c = None
self.hr_uc = None
if not opts.persistent_cond_cache:
StableDiffusionProcessingTxt2Img.cached_hr_uc = [None, None]
StableDiffusionProcessingTxt2Img.cached_hr_c = [None, None]
def setup_prompts(self):
super().setup_prompts()
if not self.enable_hr:
return
if self.hr_prompt == '':
self.hr_prompt = self.prompt
if self.hr_negative_prompt == '':
self.hr_negative_prompt = self.negative_prompt
if isinstance(self.hr_prompt, list):
self.all_hr_prompts = self.hr_prompt
else:
self.all_hr_prompts = self.batch_size * self.n_iter * [self.hr_prompt]
if isinstance(self.hr_negative_prompt, list):
self.all_hr_negative_prompts = self.hr_negative_prompt
else:
self.all_hr_negative_prompts = self.batch_size * self.n_iter * [self.hr_negative_prompt]
self.all_hr_prompts = [shared.prompt_styles.apply_styles_to_prompt(x, self.styles) for x in self.all_hr_prompts]
self.all_hr_negative_prompts = [shared.prompt_styles.apply_negative_styles_to_prompt(x, self.styles) for x in self.all_hr_negative_prompts]
def calculate_hr_conds(self):
if self.hr_c is not None:
return
hr_prompts = prompt_parser.SdConditioning(self.hr_prompts, width=self.hr_upscale_to_x, height=self.hr_upscale_to_y)
hr_negative_prompts = prompt_parser.SdConditioning(self.hr_negative_prompts, width=self.hr_upscale_to_x, height=self.hr_upscale_to_y, is_negative_prompt=True)
sampler_config = sd_samplers.find_sampler_config(self.hr_sampler_name or self.sampler_name)
steps = self.hr_second_pass_steps or self.steps
total_steps = sampler_config.total_steps(steps) if sampler_config else steps
self.hr_uc = self.get_conds_with_caching(prompt_parser.get_learned_conditioning, hr_negative_prompts, self.firstpass_steps, [self.cached_hr_uc, self.cached_uc], self.hr_extra_network_data, total_steps)
self.hr_c = self.get_conds_with_caching(prompt_parser.get_multicond_learned_conditioning, hr_prompts, self.firstpass_steps, [self.cached_hr_c, self.cached_c], self.hr_extra_network_data, total_steps)
def setup_conds(self):
if self.is_hr_pass:
# if we are in hr pass right now, the call is being made from the refiner, and we don't need to setup firstpass cons or switch model
self.hr_c = None
self.calculate_hr_conds()
return
super().setup_conds()
self.hr_uc = None
self.hr_c = None
if self.enable_hr and self.hr_checkpoint_info is None:
if shared.opts.hires_fix_use_firstpass_conds:
self.calculate_hr_conds()
elif lowvram.is_enabled(shared.sd_model) and shared.sd_model.sd_checkpoint_info == sd_models.select_checkpoint(): # if in lowvram mode, we need to calculate conds right away, before the cond NN is unloaded
with devices.autocast():
extra_networks.activate(self, self.hr_extra_network_data)
self.calculate_hr_conds()
with devices.autocast():
extra_networks.activate(self, self.extra_network_data)
def get_conds(self):
if self.is_hr_pass:
return self.hr_c, self.hr_uc
return super().get_conds()
def parse_extra_network_prompts(self):
res = super().parse_extra_network_prompts()
if self.enable_hr:
self.hr_prompts = self.all_hr_prompts[self.iteration * self.batch_size:(self.iteration + 1) * self.batch_size]
self.hr_negative_prompts = self.all_hr_negative_prompts[self.iteration * self.batch_size:(self.iteration + 1) * self.batch_size]
self.hr_prompts, self.hr_extra_network_data = extra_networks.parse_prompts(self.hr_prompts)
return res
@dataclass(repr=False)
class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
init_images: list = None
resize_mode: int = 0
denoising_strength: float = 0.75
image_cfg_scale: float = None
mask: Any = None
mask_blur_x: int = 4
mask_blur_y: int = 4
mask_blur: int = None
mask_round: bool = True
inpainting_fill: int = 0
inpaint_full_res: bool = True
inpaint_full_res_padding: int = 0
inpainting_mask_invert: int = 0
initial_noise_multiplier: float = None
latent_mask: Image = None
force_task_id: str = None
image_mask: Any = field(default=None, init=False)
nmask: torch.Tensor = field(default=None, init=False)
image_conditioning: torch.Tensor = field(default=None, init=False)
init_img_hash: str = field(default=None, init=False)
mask_for_overlay: Image = field(default=None, init=False)
init_latent: torch.Tensor = field(default=None, init=False)
def __post_init__(self):
super().__post_init__()
self.image_mask = self.mask
self.mask = None
self.initial_noise_multiplier = opts.initial_noise_multiplier if self.initial_noise_multiplier is None else self.initial_noise_multiplier
@property
def mask_blur(self):
if self.mask_blur_x == self.mask_blur_y:
return self.mask_blur_x
return None
@mask_blur.setter
def mask_blur(self, value):
if isinstance(value, int):
self.mask_blur_x = value
self.mask_blur_y = value
def init(self, all_prompts, all_seeds, all_subseeds):
self.extra_generation_params["Denoising strength"] = self.denoising_strength
self.image_cfg_scale: float = self.image_cfg_scale if shared.sd_model.cond_stage_key == "edit" else None
self.sampler = sd_samplers.create_sampler(self.sampler_name, self.sd_model)
crop_region = None
image_mask = self.image_mask
if image_mask is not None:
# image_mask is passed in as RGBA by Gradio to support alpha masks,
# but we still want to support binary masks.
image_mask = create_binary_mask(image_mask, round=self.mask_round)
if self.inpainting_mask_invert:
image_mask = ImageOps.invert(image_mask)
self.extra_generation_params["Mask mode"] = "Inpaint not masked"
if self.mask_blur_x > 0:
np_mask = np.array(image_mask)
kernel_size = 2 * int(2.5 * self.mask_blur_x + 0.5) + 1
np_mask = cv2.GaussianBlur(np_mask, (kernel_size, 1), self.mask_blur_x)
image_mask = Image.fromarray(np_mask)
if self.mask_blur_y > 0:
np_mask = np.array(image_mask)
kernel_size = 2 * int(2.5 * self.mask_blur_y + 0.5) + 1
np_mask = cv2.GaussianBlur(np_mask, (1, kernel_size), self.mask_blur_y)
image_mask = Image.fromarray(np_mask)
if self.mask_blur_x > 0 or self.mask_blur_y > 0:
self.extra_generation_params["Mask blur"] = self.mask_blur
if self.inpaint_full_res:
self.mask_for_overlay = image_mask
mask = image_mask.convert('L')
crop_region = masking.get_crop_region(mask, self.inpaint_full_res_padding)
crop_region = masking.expand_crop_region(crop_region, self.width, self.height, mask.width, mask.height)
x1, y1, x2, y2 = crop_region
mask = mask.crop(crop_region)
image_mask = images.resize_image(2, mask, self.width, self.height)
self.paste_to = (x1, y1, x2-x1, y2-y1)
self.extra_generation_params["Inpaint area"] = "Only masked"
self.extra_generation_params["Masked area padding"] = self.inpaint_full_res_padding
else:
image_mask = images.resize_image(self.resize_mode, image_mask, self.width, self.height)
np_mask = np.array(image_mask)
np_mask = np.clip((np_mask.astype(np.float32)) * 2, 0, 255).astype(np.uint8)
self.mask_for_overlay = Image.fromarray(np_mask)
self.overlay_images = []
latent_mask = self.latent_mask if self.latent_mask is not None else image_mask
add_color_corrections = opts.img2img_color_correction and self.color_corrections is None
if add_color_corrections:
self.color_corrections = []
imgs = []
for img in self.init_images:
# Save init image
if opts.save_init_img:
self.init_img_hash = hashlib.md5(img.tobytes()).hexdigest()
images.save_image(img, path=opts.outdir_init_images, basename=None, forced_filename=self.init_img_hash, save_to_dirs=False, existing_info=img.info)
image = images.flatten(img, opts.img2img_background_color)
if crop_region is None and self.resize_mode != 3:
image = images.resize_image(self.resize_mode, image, self.width, self.height)
if image_mask is not None:
image_masked = Image.new('RGBa', (image.width, image.height))
image_masked.paste(image.convert("RGBA").convert("RGBa"), mask=ImageOps.invert(self.mask_for_overlay.convert('L')))
self.overlay_images.append(image_masked.convert('RGBA'))
# crop_region is not None if we are doing inpaint full res
if crop_region is not None:
image = image.crop(crop_region)
image = images.resize_image(2, image, self.width, self.height)
if image_mask is not None:
if self.inpainting_fill != 1:
image = masking.fill(image, latent_mask)
if self.inpainting_fill == 0:
self.extra_generation_params["Masked content"] = 'fill'
if add_color_corrections:
self.color_corrections.append(setup_color_correction(image))
image = np.array(image).astype(np.float32) / 255.0
image = np.moveaxis(image, 2, 0)
imgs.append(image)
if len(imgs) == 1:
batch_images = np.expand_dims(imgs[0], axis=0).repeat(self.batch_size, axis=0)
if self.overlay_images is not None:
self.overlay_images = self.overlay_images * self.batch_size
if self.color_corrections is not None and len(self.color_corrections) == 1:
self.color_corrections = self.color_corrections * self.batch_size
elif len(imgs) <= self.batch_size:
self.batch_size = len(imgs)
batch_images = np.array(imgs)
else:
raise RuntimeError(f"bad number of images passed: {len(imgs)}; expecting {self.batch_size} or less")
image = torch.from_numpy(batch_images)
image = image.to(shared.device, dtype=devices.dtype_vae)
if opts.sd_vae_encode_method != 'Full':
self.extra_generation_params['VAE Encoder'] = opts.sd_vae_encode_method
self.init_latent = images_tensor_to_samples(image, approximation_indexes.get(opts.sd_vae_encode_method), self.sd_model)
devices.torch_gc()
if self.resize_mode == 3:
self.init_latent = torch.nn.functional.interpolate(self.init_latent, size=(self.height // opt_f, self.width // opt_f), mode="bilinear")
if image_mask is not None:
init_mask = latent_mask
latmask = init_mask.convert('RGB').resize((self.init_latent.shape[3], self.init_latent.shape[2]))
latmask = np.moveaxis(np.array(latmask, dtype=np.float32), 2, 0) / 255
latmask = latmask[0]
if self.mask_round:
latmask = np.around(latmask)
latmask = np.tile(latmask[None], (4, 1, 1))
self.mask = torch.asarray(1.0 - latmask).to(shared.device).type(self.sd_model.dtype)
self.nmask = torch.asarray(latmask).to(shared.device).type(self.sd_model.dtype)
# this needs to be fixed to be done in sample() using actual seeds for batches
if self.inpainting_fill == 2:
self.init_latent = self.init_latent * self.mask + create_random_tensors(self.init_latent.shape[1:], all_seeds[0:self.init_latent.shape[0]]) * self.nmask
self.extra_generation_params["Masked content"] = 'latent noise'
elif self.inpainting_fill == 3:
self.init_latent = self.init_latent * self.mask
self.extra_generation_params["Masked content"] = 'latent nothing'
self.image_conditioning = self.img2img_image_conditioning(image * 2 - 1, self.init_latent, image_mask, self.mask_round)
def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength, prompts):
x = self.rng.next()
if self.initial_noise_multiplier != 1.0:
self.extra_generation_params["Noise multiplier"] = self.initial_noise_multiplier
x *= self.initial_noise_multiplier
samples = self.sampler.sample_img2img(self, self.init_latent, x, conditioning, unconditional_conditioning, image_conditioning=self.image_conditioning)
if self.mask is not None:
blended_samples = samples * self.nmask + self.init_latent * self.mask
if self.scripts is not None:
mba = scripts.MaskBlendArgs(samples, self.nmask, self.init_latent, self.mask, blended_samples)
self.scripts.on_mask_blend(self, mba)
blended_samples = mba.blended_latent
samples = blended_samples
del x
devices.torch_gc()
return samples
def get_token_merging_ratio(self, for_hr=False):
return self.token_merging_ratio or ("token_merging_ratio" in self.override_settings and opts.token_merging_ratio) or opts.token_merging_ratio_img2img or opts.token_merging_ratio