mirror of
https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
synced 2025-01-06 15:15:05 +08:00
59ed744383
Try to move the crop in the direction of a face if it is present More internal configuration options for choosing weights of each of the algorithm's findings Move logic into its module
216 lines
6.3 KiB
Python
216 lines
6.3 KiB
Python
import cv2
|
|
from collections import defaultdict
|
|
from math import log, sqrt
|
|
import numpy as np
|
|
from PIL import Image, ImageDraw
|
|
|
|
GREEN = "#0F0"
|
|
BLUE = "#00F"
|
|
RED = "#F00"
|
|
|
|
def crop_image(im, settings):
|
|
""" Intelligently crop an image to the subject matter """
|
|
if im.height > im.width:
|
|
im = im.resize((settings.crop_width, settings.crop_height * im.height // im.width))
|
|
else:
|
|
im = im.resize((settings.crop_width * im.width // im.height, settings.crop_height))
|
|
|
|
focus = focal_point(im, settings)
|
|
|
|
# take the focal point and turn it into crop coordinates that try to center over the focal
|
|
# point but then get adjusted back into the frame
|
|
y_half = int(settings.crop_height / 2)
|
|
x_half = int(settings.crop_width / 2)
|
|
|
|
x1 = focus.x - x_half
|
|
if x1 < 0:
|
|
x1 = 0
|
|
elif x1 + settings.crop_width > im.width:
|
|
x1 = im.width - settings.crop_width
|
|
|
|
y1 = focus.y - y_half
|
|
if y1 < 0:
|
|
y1 = 0
|
|
elif y1 + settings.crop_height > im.height:
|
|
y1 = im.height - settings.crop_height
|
|
|
|
x2 = x1 + settings.crop_width
|
|
y2 = y1 + settings.crop_height
|
|
|
|
crop = [x1, y1, x2, y2]
|
|
|
|
if settings.annotate_image:
|
|
d = ImageDraw.Draw(im)
|
|
rect = list(crop)
|
|
rect[2] -= 1
|
|
rect[3] -= 1
|
|
d.rectangle(rect, outline=GREEN)
|
|
if settings.destop_view_image:
|
|
im.show()
|
|
|
|
return im.crop(tuple(crop))
|
|
|
|
def focal_point(im, settings):
|
|
corner_points = image_corner_points(im, settings)
|
|
entropy_points = image_entropy_points(im, settings)
|
|
face_points = image_face_points(im, settings)
|
|
|
|
total_points = len(corner_points) + len(entropy_points) + len(face_points)
|
|
|
|
corner_weight = settings.corner_points_weight
|
|
entropy_weight = settings.entropy_points_weight
|
|
face_weight = settings.face_points_weight
|
|
|
|
weight_pref_total = corner_weight + entropy_weight + face_weight
|
|
|
|
# weight things
|
|
pois = []
|
|
if weight_pref_total == 0 or total_points == 0:
|
|
return pois
|
|
|
|
pois.extend(
|
|
[ PointOfInterest( p.x, p.y, weight=p.weight * ( (corner_weight/weight_pref_total) / (len(corner_points)/total_points) )) for p in corner_points ]
|
|
)
|
|
pois.extend(
|
|
[ PointOfInterest( p.x, p.y, weight=p.weight * ( (entropy_weight/weight_pref_total) / (len(entropy_points)/total_points) )) for p in entropy_points ]
|
|
)
|
|
pois.extend(
|
|
[ PointOfInterest( p.x, p.y, weight=p.weight * ( (face_weight/weight_pref_total) / (len(face_points)/total_points) )) for p in face_points ]
|
|
)
|
|
|
|
if settings.annotate_image:
|
|
d = ImageDraw.Draw(im)
|
|
|
|
average_point = poi_average(pois, settings, im=im)
|
|
|
|
if settings.annotate_image:
|
|
d.ellipse([average_point.x - 25, average_point.y - 25, average_point.x + 25, average_point.y + 25], outline=GREEN)
|
|
|
|
return average_point
|
|
|
|
|
|
def image_face_points(im, settings):
|
|
np_im = np.array(im)
|
|
gray = cv2.cvtColor(np_im, cv2.COLOR_BGR2GRAY)
|
|
classifier = cv2.CascadeClassifier(f'{cv2.data.haarcascades}haarcascade_frontalface_default.xml')
|
|
|
|
minsize = int(min(im.width, im.height) * 0.15) # at least N percent of the smallest side
|
|
faces = classifier.detectMultiScale(gray, scaleFactor=1.05,
|
|
minNeighbors=5, minSize=(minsize, minsize), flags=cv2.CASCADE_SCALE_IMAGE)
|
|
|
|
if len(faces) == 0:
|
|
return []
|
|
|
|
rects = [[f[0], f[1], f[0] + f[2], f[1] + f[3]] for f in faces]
|
|
if settings.annotate_image:
|
|
for f in rects:
|
|
d = ImageDraw.Draw(im)
|
|
d.rectangle(f, outline=RED)
|
|
|
|
return [PointOfInterest((r[0] +r[2]) // 2, (r[1] + r[3]) // 2) for r in rects]
|
|
|
|
|
|
def image_corner_points(im, settings):
|
|
grayscale = im.convert("L")
|
|
|
|
# naive attempt at preventing focal points from collecting at watermarks near the bottom
|
|
gd = ImageDraw.Draw(grayscale)
|
|
gd.rectangle([0, im.height*.9, im.width, im.height], fill="#999")
|
|
|
|
np_im = np.array(grayscale)
|
|
|
|
points = cv2.goodFeaturesToTrack(
|
|
np_im,
|
|
maxCorners=100,
|
|
qualityLevel=0.04,
|
|
minDistance=min(grayscale.width, grayscale.height)*0.07,
|
|
useHarrisDetector=False,
|
|
)
|
|
|
|
if points is None:
|
|
return []
|
|
|
|
focal_points = []
|
|
for point in points:
|
|
x, y = point.ravel()
|
|
focal_points.append(PointOfInterest(x, y))
|
|
|
|
return focal_points
|
|
|
|
|
|
def image_entropy_points(im, settings):
|
|
landscape = im.height < im.width
|
|
portrait = im.height > im.width
|
|
if landscape:
|
|
move_idx = [0, 2]
|
|
move_max = im.size[0]
|
|
elif portrait:
|
|
move_idx = [1, 3]
|
|
move_max = im.size[1]
|
|
else:
|
|
return []
|
|
|
|
e_max = 0
|
|
crop_current = [0, 0, settings.crop_width, settings.crop_height]
|
|
crop_best = crop_current
|
|
while crop_current[move_idx[1]] < move_max:
|
|
crop = im.crop(tuple(crop_current))
|
|
e = image_entropy(crop)
|
|
|
|
if (e > e_max):
|
|
e_max = e
|
|
crop_best = list(crop_current)
|
|
|
|
crop_current[move_idx[0]] += 4
|
|
crop_current[move_idx[1]] += 4
|
|
|
|
x_mid = int(crop_best[0] + settings.crop_width/2)
|
|
y_mid = int(crop_best[1] + settings.crop_height/2)
|
|
|
|
return [PointOfInterest(x_mid, y_mid)]
|
|
|
|
|
|
def image_entropy(im):
|
|
# greyscale image entropy
|
|
band = np.asarray(im.convert("1"))
|
|
hist, _ = np.histogram(band, bins=range(0, 256))
|
|
hist = hist[hist > 0]
|
|
return -np.log2(hist / hist.sum()).sum()
|
|
|
|
|
|
def poi_average(pois, settings, im=None):
|
|
weight = 0.0
|
|
x = 0.0
|
|
y = 0.0
|
|
for pois in pois:
|
|
if settings.annotate_image and im is not None:
|
|
w = 4 * 0.5 * sqrt(pois.weight)
|
|
d = ImageDraw.Draw(im)
|
|
d.ellipse([
|
|
pois.x - w, pois.y - w,
|
|
pois.x + w, pois.y + w ], fill=BLUE)
|
|
weight += pois.weight
|
|
x += pois.x * pois.weight
|
|
y += pois.y * pois.weight
|
|
avg_x = round(x / weight)
|
|
avg_y = round(y / weight)
|
|
|
|
return PointOfInterest(avg_x, avg_y)
|
|
|
|
|
|
class PointOfInterest:
|
|
def __init__(self, x, y, weight=1.0):
|
|
self.x = x
|
|
self.y = y
|
|
self.weight = weight
|
|
|
|
|
|
class Settings:
|
|
def __init__(self, crop_width=512, crop_height=512, corner_points_weight=0.5, entropy_points_weight=0.5, face_points_weight=0.5, annotate_image=False):
|
|
self.crop_width = crop_width
|
|
self.crop_height = crop_height
|
|
self.corner_points_weight = corner_points_weight
|
|
self.entropy_points_weight = entropy_points_weight
|
|
self.face_points_weight = entropy_points_weight
|
|
self.annotate_image = annotate_image
|
|
self.destop_view_image = False |