mirror of
https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
synced 2025-01-17 03:40:14 +08:00
87 lines
3.7 KiB
Python
87 lines
3.7 KiB
Python
import torch
|
|
|
|
import lyco_helpers
|
|
import network
|
|
from modules import devices
|
|
|
|
|
|
class ModuleTypeLora(network.ModuleType):
|
|
def create_module(self, net: network.Network, weights: network.NetworkWeights):
|
|
if all(x in weights.w for x in ["lora_up.weight", "lora_down.weight"]):
|
|
return NetworkModuleLora(net, weights)
|
|
|
|
return None
|
|
|
|
|
|
class NetworkModuleLora(network.NetworkModule):
|
|
def __init__(self, net: network.Network, weights: network.NetworkWeights):
|
|
super().__init__(net, weights)
|
|
|
|
self.up_model = self.create_module(weights.w, "lora_up.weight")
|
|
self.down_model = self.create_module(weights.w, "lora_down.weight")
|
|
self.mid_model = self.create_module(weights.w, "lora_mid.weight", none_ok=True)
|
|
|
|
self.dim = weights.w["lora_down.weight"].shape[0]
|
|
|
|
def create_module(self, weights, key, none_ok=False):
|
|
weight = weights.get(key)
|
|
|
|
if weight is None and none_ok:
|
|
return None
|
|
|
|
is_linear = type(self.sd_module) in [torch.nn.Linear, torch.nn.modules.linear.NonDynamicallyQuantizableLinear, torch.nn.MultiheadAttention]
|
|
is_conv = type(self.sd_module) in [torch.nn.Conv2d]
|
|
|
|
if is_linear:
|
|
weight = weight.reshape(weight.shape[0], -1)
|
|
module = torch.nn.Linear(weight.shape[1], weight.shape[0], bias=False)
|
|
elif is_conv and key == "lora_down.weight" or key == "dyn_up":
|
|
if len(weight.shape) == 2:
|
|
weight = weight.reshape(weight.shape[0], -1, 1, 1)
|
|
|
|
if weight.shape[2] != 1 or weight.shape[3] != 1:
|
|
module = torch.nn.Conv2d(weight.shape[1], weight.shape[0], self.sd_module.kernel_size, self.sd_module.stride, self.sd_module.padding, bias=False)
|
|
else:
|
|
module = torch.nn.Conv2d(weight.shape[1], weight.shape[0], (1, 1), bias=False)
|
|
elif is_conv and key == "lora_mid.weight":
|
|
module = torch.nn.Conv2d(weight.shape[1], weight.shape[0], self.sd_module.kernel_size, self.sd_module.stride, self.sd_module.padding, bias=False)
|
|
elif is_conv and key == "lora_up.weight" or key == "dyn_down":
|
|
module = torch.nn.Conv2d(weight.shape[1], weight.shape[0], (1, 1), bias=False)
|
|
else:
|
|
raise AssertionError(f'Lora layer {self.network_key} matched a layer with unsupported type: {type(self.sd_module).__name__}')
|
|
|
|
with torch.no_grad():
|
|
if weight.shape != module.weight.shape:
|
|
weight = weight.reshape(module.weight.shape)
|
|
module.weight.copy_(weight)
|
|
|
|
module.to(device=devices.cpu, dtype=devices.dtype)
|
|
module.weight.requires_grad_(False)
|
|
|
|
return module
|
|
|
|
def calc_updown(self, orig_weight):
|
|
up = self.up_model.weight.to(orig_weight.device)
|
|
down = self.down_model.weight.to(orig_weight.device)
|
|
|
|
output_shape = [up.size(0), down.size(1)]
|
|
if self.mid_model is not None:
|
|
# cp-decomposition
|
|
mid = self.mid_model.weight.to(orig_weight.device)
|
|
updown = lyco_helpers.rebuild_cp_decomposition(up, down, mid)
|
|
output_shape += mid.shape[2:]
|
|
else:
|
|
if len(down.shape) == 4:
|
|
output_shape += down.shape[2:]
|
|
updown = lyco_helpers.rebuild_conventional(up, down, output_shape, self.network.dyn_dim)
|
|
|
|
return self.finalize_updown(updown, orig_weight, output_shape)
|
|
|
|
def forward(self, x, y):
|
|
self.up_model.to(device=devices.device)
|
|
self.down_model.to(device=devices.device)
|
|
|
|
return y + self.up_model(self.down_model(x)) * self.multiplier() * self.calc_scale()
|
|
|
|
|