stable-diffusion-webui/modules/esrgan_model.py
2022-09-26 09:29:50 -05:00

168 lines
6.0 KiB
Python

import os
import sys
import traceback
import numpy as np
import torch
from PIL import Image
from basicsr.utils.download_util import load_file_from_url
import modules.esrgam_model_arch as arch
import modules.images
from modules import shared
from modules import shared, modelloader
from modules.devices import has_mps
from modules.paths import models_path
from modules.shared import opts
model_dir = "ESRGAN"
model_path = os.path.join(models_path, model_dir)
model_url = "https://drive.google.com/u/0/uc?id=1TPrz5QKd8DHHt1k8SRtm6tMiPjz_Qene&export=download"
model_name = "ESRGAN_x4.pth"
def load_model(path: str, name: str):
global model_path
global model_url
global model_dir
global model_name
if "http" in path:
filename = load_file_from_url(url=model_url, model_dir=model_path, file_name=model_name, progress=True)
else:
filename = path
if not os.path.exists(filename) or filename is None:
print("Unable to load %s from %s" % (model_dir, filename))
return None
print("Loading %s from %s" % (model_dir, filename))
# this code is adapted from https://github.com/xinntao/ESRGAN
pretrained_net = torch.load(filename, map_location='cpu' if has_mps else None)
crt_model = arch.RRDBNet(3, 3, 64, 23, gc=32)
if 'conv_first.weight' in pretrained_net:
crt_model.load_state_dict(pretrained_net)
return crt_model
if 'model.0.weight' not in pretrained_net:
is_realesrgan = "params_ema" in pretrained_net and 'body.0.rdb1.conv1.weight' in pretrained_net["params_ema"]
if is_realesrgan:
raise Exception("The file is a RealESRGAN model, it can't be used as a ESRGAN model.")
else:
raise Exception("The file is not a ESRGAN model.")
crt_net = crt_model.state_dict()
load_net_clean = {}
for k, v in pretrained_net.items():
if k.startswith('module.'):
load_net_clean[k[7:]] = v
else:
load_net_clean[k] = v
pretrained_net = load_net_clean
tbd = []
for k, v in crt_net.items():
tbd.append(k)
# directly copy
for k, v in crt_net.items():
if k in pretrained_net and pretrained_net[k].size() == v.size():
crt_net[k] = pretrained_net[k]
tbd.remove(k)
crt_net['conv_first.weight'] = pretrained_net['model.0.weight']
crt_net['conv_first.bias'] = pretrained_net['model.0.bias']
for k in tbd.copy():
if 'RDB' in k:
ori_k = k.replace('RRDB_trunk.', 'model.1.sub.')
if '.weight' in k:
ori_k = ori_k.replace('.weight', '.0.weight')
elif '.bias' in k:
ori_k = ori_k.replace('.bias', '.0.bias')
crt_net[k] = pretrained_net[ori_k]
tbd.remove(k)
crt_net['trunk_conv.weight'] = pretrained_net['model.1.sub.23.weight']
crt_net['trunk_conv.bias'] = pretrained_net['model.1.sub.23.bias']
crt_net['upconv1.weight'] = pretrained_net['model.3.weight']
crt_net['upconv1.bias'] = pretrained_net['model.3.bias']
crt_net['upconv2.weight'] = pretrained_net['model.6.weight']
crt_net['upconv2.bias'] = pretrained_net['model.6.bias']
crt_net['HRconv.weight'] = pretrained_net['model.8.weight']
crt_net['HRconv.bias'] = pretrained_net['model.8.bias']
crt_net['conv_last.weight'] = pretrained_net['model.10.weight']
crt_net['conv_last.bias'] = pretrained_net['model.10.bias']
crt_model.load_state_dict(crt_net)
crt_model.eval()
return crt_model
def upscale_without_tiling(model, img):
img = np.array(img)
img = img[:, :, ::-1]
img = np.moveaxis(img, 2, 0) / 255
img = torch.from_numpy(img).float()
img = img.unsqueeze(0).to(shared.device)
with torch.no_grad():
output = model(img)
output = output.squeeze().float().cpu().clamp_(0, 1).numpy()
output = 255. * np.moveaxis(output, 0, 2)
output = output.astype(np.uint8)
output = output[:, :, ::-1]
return Image.fromarray(output, 'RGB')
def esrgan_upscale(model, img):
if opts.ESRGAN_tile == 0:
return upscale_without_tiling(model, img)
grid = modules.images.split_grid(img, opts.ESRGAN_tile, opts.ESRGAN_tile, opts.ESRGAN_tile_overlap)
newtiles = []
scale_factor = 1
for y, h, row in grid.tiles:
newrow = []
for tiledata in row:
x, w, tile = tiledata
output = upscale_without_tiling(model, tile)
scale_factor = output.width // tile.width
newrow.append([x * scale_factor, w * scale_factor, output])
newtiles.append([y * scale_factor, h * scale_factor, newrow])
newgrid = modules.images.Grid(newtiles, grid.tile_w * scale_factor, grid.tile_h * scale_factor, grid.image_w * scale_factor, grid.image_h * scale_factor, grid.overlap * scale_factor)
output = modules.images.combine_grid(newgrid)
return output
class UpscalerESRGAN(modules.images.Upscaler):
def __init__(self, filename, title):
self.name = title
self.filename = filename
def do_upscale(self, img):
model = load_model(self.filename, self.name)
if model is None:
return img
model.to(shared.device)
img = esrgan_upscale(model, img)
return img
def setup_model(dirname):
global model_path
global model_name
if not os.path.exists(model_path):
os.makedirs(model_path)
model_paths = modelloader.load_models(model_path, command_path=dirname, ext_filter=[".pt", ".pth"])
if len(model_paths) == 0:
modules.shared.sd_upscalers.append(UpscalerESRGAN(model_url, model_name))
for file in model_paths:
name = modelloader.friendly_name(file)
try:
modules.shared.sd_upscalers.append(UpscalerESRGAN(file, name))
except Exception:
print(f"Error loading ESRGAN model: {file}", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)